Title:
Self calibrating weapon shot counter
Kind Code:
A1


Abstract:
A microcontroller operated module is affixed to a fire arm. The module includes an accelerometer for measuring the G force of each round fired by the firearm, a flash memory (non-volatile memory) for storing the shot profile data that includes shot count and recoil data and transmitting it to a remote location such as a remote computer via a serial communication device pursuant to RS232 standard, Bluetooth, awave or other low power RF transmitter



Inventors:
Ufer, Robert (Punta Gorda, FL, US)
Brinkley, Kenneth V. (Owenton, KY, US)
Application Number:
12/380375
Publication Date:
08/27/2009
Filing Date:
02/26/2009
Primary Class:
International Classes:
F41A35/00
View Patent Images:
Related US Applications:
20080216376LOCKABLE SAFETY FOR FIREARMSeptember, 2008Pikielny
20020129535Passive wind reading scopeSeptember, 2002John II
20060254108Electrical discharge immobilization weapon projectile having multiple deployed contactsNovember, 2006Park
20040088897Dual profile pen gunMay, 2004Braverman
20070175079Integral scope and mountAugust, 2007Epling et al.
20090277065Processes and Systems for Monitoring Usage of Projectile WeaponsNovember, 2009Clark et al.
20090223103CARTRIDGE MAGAZINE WITH SHOULDER RETENTION FEATURESSeptember, 2009Young
20090249674Firearm steady-restOctober, 2009Boord
20030196366Stock for a firearmOctober, 2003Beretta
20070289192Accessory mountDecember, 2007Whaley
20090265974"MOVING RED DOT" SIGHTING DEVICEOctober, 2009Joannes



Primary Examiner:
CLEMENT, MICHELLE RENEE
Attorney, Agent or Firm:
Richard B. Klar (Mineola, NY, US)
Claims:
What is claimed:

1. A shot device for recording and transmitting shot profile data of shots fired from a fire: arm, comprising: a microcontroller operated module affixed to a fire arm; said module comprising a MEMS accelerometer for measuring the G force of each round fired by the firearm, a non volatile memory for storing the shot profile data that includes shot count and recoil data a serial communication device for transmitting said stored shot profile data to a remote location via an RF signal.

Description:

This is a non-provisional application of a provisional application Ser. No. 61/067,294 filed Feb. 27, 2008.

BACKGROUND

1. Field

The present disclosure relates to a self calibrating weapon shot counter. In particular, the present disclosure relates to a self calibrating weapon shot counter that has a module operated by a microcontroller for collecting, storing and transmitting data to a computer, PDA or other electronic device, preferably remotely located from the firearm. The data collected and transmitted by the self calibrating weapons shot counter of the present disclosure includes, shot profile data, including recoil in both directions, rotational axis sensor data and duration of shot, identifying type of weapon, round fired; i.e caliber and weight and barrel length. The time, date and profile of the shot fired is also recorded and transmitted to the remote computer. The present disclosure provides for an active RFID tag communication port that listens for, records the data and sends it to a remote location. The weapon shot counter of the present disclosure is capable of being interchanged from one weapon to another. The weapon shot counter can also be used as an ancillary munitions recognition system i.e. hand grenades, high explosive, fragmentary, incendiary, chemical and smoke as well as, claymore mines utilized by same user as weapon counting device. In this type of use the weapon shot counter of the present disclosure acts as a repeater gathering the data from the thrown hand grenades, upon spoon release the chip in the hand grenade is charged by an onboard generator that sends out the serial number to the Weapon shot counter that in turn sends it on to the PDA, identifying the grenade or other munitions has been used. In this way, the present disclosure provides for real time information as to munitions usage, which can be transmitted to support personnel allowing for timely resupply of munitions. This was previously unheard of. As it is understood that no previous weapon shot counter discussed this feature or capability and is unique to the self-calibrating weapons shot counter of the present disclosure.

2. The Prior Art

U.S. Pat. No. 5,566,486 to Brinkley discloses a firearm monitor device for counting a number of rounds discharged.

SUMMARY

The present disclosure relates to a microcontroller operated module affixed to a fire arm. The module includes a MEMS accelerometer for measuring the G force of each round fired by the firearm. The G force is measured simultaneously in two axes, in line with the recoil and in cross-rotational axis in both directions. The weapons shot counter of the present disclosure includes a flash memory (non-volatile memory) for storing the shot profile data that includes shot count and recoil data. The flash memory transmits the shot profile data to a remote location such as a remote computer via a serial communication device such as but not limited to an RFID device pursuant to RS232 standard, Bluetooth, awave or other low power RF transmitter.

BRIEF DESCRIPTION

FIG. 1 is a block diagram of the circuitry of the module of the present disclosure;

FIG. 2A is an operational software diagram of the microcontroller operation of the module of the present disclosure;

FIG. 3A is a illustration of the MEMS Sensor deflection under given G Load vs. time of the shot

FIG. 3B is a graph illustrating G force due to a shot fired versus time;

FIG. 4 is a partially exploded view of one embodiment of a handgun grip attachment of the module of the present disclosure; and

FIG. 5 is a partially exploded view of another embodiment of an attachment of the module of the present disclosure to a barrel of a fire arm; and

FIG. 6 illustrates a rotational measuring direction in which a firearm will twist in the direction of the rifling as the bullet expands and engages the groves in the rifling as the bullet is fired.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to the drawings of FIGS. 1-5, FIG. 1 is a block diagram of the circuit of the module 5 of the present disclosure.

The module 5 can be battery powered by way on non-limiting exemplary illustration, a lithium battery 3—such as a 3.6 V lithium battery. The circuitry of module 5 can be mounted on a printed circuit (PC) board 6. The circuitry of the module 5 includes a microcontroller 7 programmed to operate the module 5, a MEMS accelerometer 8, an RF 2 module or any other preferred serial communications link that can transmit by RS 232 standard, Bluetooth, or awave and a flash memory or other suitable non-volatile memory such as an EE Prom 10.

The microcontroller 7 controls the operation of the module 5. The accelerometer 8 is in the plane of firing of the firearm and provides and measures the actual G force of each round fired by the firearm. The microcontroller 7 converts the analog output of the accelerometer 8 to a digital recorder. The microcontroller 7 interrogates or periodically samples the accelerometer 8 at its output, preferably every 10 milliseconds. If the samples taken by the microcontroller 7 exceed a predetermined threshold a shot is counted by the microcontroller 7. The microcontroller then continues sampling until the accelerometer output falls below the threshold level at which point the time and profile of the shot is recorded.

The data for the shot profile is stored in the EEPROM 10 or other flash memory. It is then transmitted remotely to a remote location such as a remote computer terminal via a serial communications device such as the RFID device 2, which converts the flash memory data into a serial format conforming to RS 232 standard, Bluetooth or awave for transmission to the remote computer station. The flash memory 10 includes instructions at every command back to start to prevent the firearm unit to which the module 5 is attached from being lost

The accelerometer 8 is a two axis MEMS accelerometer and is in the plane of firing and it provides and measures the active G force of the shot fired by the firearm. The shot profile information collected will include the recoil and rotation of the barrel due to the shot. The data will continue be collected until the acceleration level falls below the threshold programmed. At this point, the number of shots fired is tallied up and recorded for this round. In addition to recoil sensor data, duration and shots counted, the type of round fired is identified, and the time and profile of the shot fired is recorded and transmitted.

One type of MEMS accelerometer that can be used is ANALOG DEVICES AD22283-B-R2. The microcontroller can be a MSP430F12321DW(SOWB) or an MSP430F12321PW(TSSOP). The Flash memory can be ATMEL AMT25F2048N-10FU-2.7. It is understood that the present disclosure is not limited to any particular cards and the above are listed as non-limiting illustrative examples

The present disclosure further includes a charge pump (not shown) for raising the battery voltage to the necessary power to operate the MEMS accelerometer 8 The remote computer terminal will have computer software package that resembles the data from the module 5 and logs it into a file to be input to an EXCEL spread sheet where it can be displayed as a bar graph or raw data. By way of non-limiting illustrative example, commercially available RF transmitter chip sets can be used with firmware to permit the RF chips to communicate with a remote location such as but not limited to a wireless PDA.

FIG. 2 illustrates the firmware of operation of the microcontroller 7 for the module 5 of the present disclosure.

FIG. 3A shows the MEMS Sensor deflection under given G Load vs. time of the shot.

FIG. 3B illustrates the shot profile date that can be graphed from the information obtained by the module 5 of the present disclosure.

FIG. 4 shows a partially exploded view of the module 5 as part of an attachment to the pistol grip of a handgun in one embodiment of the present disclosure.

FIG. 5 shows a partially exploded view of the module 5 as part of an attachment to the barrel of a firearm in another embodiment of the present disclosure. FIG. 5 shows a shot counter housing 51 for the self calibrating shot counter weapon of the present disclosure having a rail mount 52 that is used for mounting accessories. The module S is shown and as can be seen in FIG. 5, a lithium battery 3, a microcontroller 7 and an MEMS accelerometer 8 are mounted thereon. A rail mount 56 for the self calibrating weapon shot counter of the present disclosure is shown as by way of non-limiting illustrative example a Picatinny Rail mount 56 having a recess 2a for placing the rail mount on a barrel of a firearm.

FIG. 6 shows the rotational measuring direction, the firearm will twist in the direction of the rifling as the bullet expands and engages the groves in the rifling as the bullet is fired. It is necessary to take this measurement in account to determine the different caliber and weight of bullets fired. FIG. 6 shows the direction of travel when firearm is discharged (shown as 61) ;the grooves 62 in rifling twist to right as they pass down the barrel; the bullet-projectile, the front sight at 12 o'clock position zero degrees before cartridge ignition 42; the negative or return direction after firing 65; and the rotational direction when rifling is twisted to the right 66.

While presently preferred embodiments have been described for purposes of the disclosure, numerous changes in the arrangement of method steps and apparatus parts can be made by those skilled in the art. Such changes are encompassed within the spirit of the invention as defined by the appended claims.