Title:
Reciprocating Pump with Electronically Monitored Air Valve and Piston
Kind Code:
A1


Abstract:
An air operated pump 10 uses a magnet 14 mounted in the valve cup 16 of the air motor 18 and two reed sensors 20 mounted in the valve cover 22 to monitor the speed and position of the valve 16. A solenoid 24 is mounted on the valve cover 22 and can be commanded to extend a plunger 26 into the valve cup 16 to stop valve movement and therefore the pump from running away. A magnetoresistive sensor 34 is located in the center of the air motor 18 to precisely monitor the piston 36 position and with air valve sensors 20 provides the input necessary for precise control and diagnostics of the pump 10 and makes it suitable for metering and plural component application.



Inventors:
Bauck, Mark L. (Coon Rapids, MN, US)
Weinberger, Mark T. (Mounds View, MN, US)
Behrens, David M. (Hopkins, MN, US)
Nguyen, Vu K. (Brooklyn Park, MN, US)
Lange, Christopher M. (New Brighton, MN, US)
Palashewski, Wade D. (Andover, MN, US)
Application Number:
11/996402
Publication Date:
08/21/2008
Filing Date:
07/25/2006
Primary Class:
Other Classes:
417/375
International Classes:
F04B35/02; F04B9/12; F04B49/00; F04B49/02
View Patent Images:
Related US Applications:
20050036895Canned motor and pumpFebruary, 2005Tremain et al.
20090324436MOTOR CENTRIFUGAL PUMP HAVING COOLANT PUMPDecember, 2009Wendel et al.
20030223877Blower assembly with closed-loop feedbackDecember, 2003Anstine et al.
20080188789Peristaltic Pump TubeAugust, 2008Galavotti et al.
20050079079Dilution systemApril, 2005Wahlin et al.
20050002800Device having a pulsation reducing structure, a passage forming body and compressorJanuary, 2005Kimura et al.
20090220364Reciprocating-Piston Compressor Having Non-Contact Gap SealSeptember, 2009Rigal et al.
20090117790WATER-JET PUMP, IMPELLER FOR THE SAME, AND BOAT INCLUDING THE SAMEMay, 2009Makita
20080273993Ejector Tube of an Ejector PumpNovember, 2008Markefka et al.
20080226504PUMP UNIT AND CENTRIFUGAL MICROFLUIDIC SYSTEM HAVING THE SAMESeptember, 2008Park et al.
20050142005Submersible well pump with improved diaphragmJune, 2005Traylor



Primary Examiner:
FREAY, CHARLES GRANT
Attorney, Agent or Firm:
GRACO MINNESOTA INC (MINNEAPOLIS, MN, US)
Claims:
1. An air operated pump having an air valve with an valve cup and a valve cover, the improvement comprising: a magnet mounted in said valve cup of said air motor; and first and second reed sensors mounted in the valve cover to monitor the speed and position of the valve.

2. The air operated pump of claim 1 further comprising a solenoid having a plunger and being mounted on said valve cover said solenoid being capable of extending said plunger into said valve cup to stop valve movement and therefore the pump from running away.

3. The air operated pump of claim 1 further comprising a user interface monitoring said reed sensors to allow the display of various parameters.

4. The air operated pump of claim 3 wherein said parameters may include cycle rate, flow rate, total cycles and diagnostic errors.

5. The air operated pump of claim 1 wherein said air operated pump comprises a piston and further comprising a sensor for sensing the position of said piston.

6. The air operated pump of claim 5 wherein said sensor comprises a magnetoresistive sensor.

Description:

TECHNICAL FIELD

This application claims the benefit of U.S. application Ser. Nos. 60/703,306, filed Jul. 28, 2005 and 60/704,290 filed Aug. 1, 2005.

BACKGROUND ART

Air-operated reciprocating piston pumps are well known for the pumping of various fluids. Such pumps typically have mechanically or pneumatically operated air valves to control the flow of air to the two sides of the piston. Control of such pumps has traditionally been by monitoring and controlling the resulting fluid flow rather than the pump itself. Prior art devices such as Graco's EXTREME-MIX™ proportioner have monitored the position of the piston for purposes of control.

DISCLOSURE OF THE INVENTION

It is therefore an object of this invention to provide a system which allows enhanced monitoring and control of a reciprocating air motor so as to allow monitoring of piston position, cycle and flow rates, total cycles, runaway control and the ability to diagnose failing air motor and pump lower components.

The control uses a magnet mounted in the valve cup of the air motor and two reed sensors mounted in the valve cover to monitor the speed and position of the valve. A solenoid is mounted on the valve cover and can be commanded to extend a plunger into the valve cup to stop valve movement and therefore the pump from running away (typically caused by the fluid supply being empty.) The user interface comprises an LCD and buttons to set up and control the pump. The display can be toggled to display cycle rate, flow rate (in various units), total cycles and diagnostic errors. Setup parameters can include fluid units (quarts, liters, etc.) and the runaway set point.

The reed switches and magnets are located so as to detect when the air valve is at the extreme position of each stroke or in transition or both. The controller calculates the rate at which the motor is running by counting the opening and closing of the reed switches activated by the varying positions of the air valve. The controller then compares that rate to a pre-programmed value to determine if the air motor is in a runaway condition. The that condition is present, the controller activates the solenoid preventing changeover which stops the motor. This acts to prevent spilled fluid and/or pump damage.

A magnetoresistive sensor is located in the center of the air motor to precisely monitor the piston position. The data from this sensor in conjunction with that from the air valve sensors provides the input necessary for precise control and diagnostics of the pump and makes it suitable for metering and plural component application.

These and other objects and advantages of the invention will appear more fully from the following description made in conjunction with the accompanying drawings wherein like reference characters refer to the same or similar parts throughout the several views.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 shows a cross-section of the air valve as part of the instant invention showing the magnets and reed switches.

FIG. 2 shows a detail of the FIG. 1 cross-section of the air valve as part of the instant invention.

FIG. 3 shows a cross-section (opposite that of FIG. 1) of the air valve as part of the instant invention showing the solenoid.

FIG. 4 shows a view of a pump incorporating the instant invention.

FIG. 5 shows a detail of the user interface of the instant invention.

FIG. 6 shows the diagnostic codes which may be obtained by sensing the sir valve.

FIG. 7 shows the piston and magnetoresistive sensor.

BEST MODE FOR CARRYING OUT THE INVENTION

In an air-operated reciprocating piston pump 10, the controller 12 uses a magnet 14 mounted in the valve cup 16 of the air motor 18 and two reed sensors 20 mounted in the valve cover 22 to monitor the speed and position of the valve 16. A solenoid 24 is mounted on the valve cover 22 and can be commanded to extend a plunger 26 into the valve cup 16 to stop valve movement and therefore the pump 10 from running away (typically caused by the fluid supply being empty or the hose of other supply conduit having a leak/rupture.) The user interface 28 comprises an LCD display 30 and buttons 32 to set up and control the pump 10. The display 30 can be toggled to display cycle rate, flow rate (in various units), total cycles and diagnostic errors. Setup parameters can include fluid units (quarts, liters, etc.) and the runaway set point.

The reed switches 20 and magnets 14 are located so as to detect when the air valve 16 is at the extreme position of each stroke or in transition or both. The controller 12 calculates the rate at which the motor 18 is running by counting the opening and closing of the reed switches 20 activated by the varying positions of the air valve 16. The controller 12 then compares that rate to a pre-programmed value to determine if the air motor 18 is in a runaway condition. The that condition is present, the controller 12 activates the solenoid 24 preventing changeover which stops the motor 18. This acts to prevent spilled fluid and/or pump damage.

A magnetoresistive sensor 34 is located in the center of the air motor 18 to precisely monitor the piston 36 position. The data from this sensor 34 in conjunction with that from the air valve sensors 20 provides the input necessary for precise control and diagnostics of the pump 10 and makes it suitable for metering and plural component application.

It is contemplated that various changes and modifications may be made to the pump control without departing from the spirit and scope of the invention as defined by the following claims.