Title:
Novel Dual Cores for Golf Balls
Kind Code:
A1


Abstract:
The present invention is directed to a golf ball comprising a dual core component. The dual core comprises an interior center component formed from a thermoset material, a thermoplastic material, or combinations thereof. The dual core also comprises a core layer disposed about the center component, formed from a thermoset material, a thermoplastic material, or combinations thereof. The present invention golf ball may further comprise an outer core layer that surrounds the dual core. The resulting multi-layered golf ball of the present invention provides for enhanced distance without sacrificing playability or durability when compared to known golf balls.



Inventors:
Sullivan, Michael J. (Chicopee, MA, US)
Nesbitt, Dennis R. (Westfield, MA, US)
Application Number:
11/609271
Publication Date:
04/12/2007
Filing Date:
12/11/2006
Primary Class:
International Classes:
A63B37/04; A63B37/00; A63B37/06; A63B37/12; C08J5/00; C08L23/08
View Patent Images:
Related US Applications:
20090137352Padded sports ballMay, 2009Ou
20060046879Sports ball with unitary stripe memberMarch, 2006Kelly et al.
20050049071Handle cover for a golf clubMarch, 2005Chuang
20070298910Golf Tee and Packaging for Golf TeeDecember, 2007Potempa et al.
20070142138TRAINING ARTICLE FOR THROWING AND CATCHINGJune, 2007Acton
20040266562Ball tossing apparatus and methodDecember, 2004Gowan et al.
20020128090Golf putter with improved curved striking face, putter system, and method of making sameSeptember, 2002Slucker et al.
20090325729IRON GOLF CLUB HEADDecember, 2009Takechi
20090069124BACKSTOP RETRIEVING DEVICES AND METHODS THEREOFMarch, 2009Forlini et al.
20080200285Mat For Sport and GamesAugust, 2008Haseth
20100069176GOLF BALL WITH POLYGONAL DIMPLE GROUPINGSMarch, 2010Aoyama



Primary Examiner:
HUNTER, ALVIN A
Attorney, Agent or Firm:
Richard M. Klein, Esq. (Cleveland, OH, US)
Claims:
What is claimed is:

1. A golf ball comprising: a dual core including a center component and a core layer disposed about the center component, the center component comprising a thermoset material including a polyurethane, and the core layer comprising a thermoplastic material; and a cover layer assembly disposed about the dual core, the cover layer assembly including an inner cover layer and an outer cover layer, wherein one of the inner cover layer and the outer cover layer has a Shore D hardness of 65 or greater and the other of the inner cover layer and the outer cover layer has a Shore D hardness of 65 or less, wherein the Shore D hardnesses of the inner cover layer and the outer cover layer are not the same.

2. The golf ball of claim 1 wherein at least one of the inner cover layer and the outer cover layer comprises a polyurethane material.

3. A golf ball comprising: a dual core including a center component and a core layer disposed about the center component, the center component comprising a thermoset material, the thermoset material comprising a material selected from the group consisting of (i) a diene-containing polymer, (ii) a metallocene catalyzed polyolefin that is crosslinked, (iii) a polyurethane, (iv) a silicone, (v) a polyamide, (vi) a polyurea, and (vii) combinations thereof, and the core layer comprising a thermoplastic material, wherein the center component of the dual core has an outer diameter of from about 0.500 inch to about 1.250 inches, and the dual core has an outer diameter of from about 1.25 inches to about 1.600 inches, and further wherein at least one of the core layer and the center component of the dual core comprise an agent that is foamed or otherwise reduced in density; and a cover layer assembly disposed about the dual core, wherein the cover layer assembly includes at least one of (i) an inner cover layer having a Shore D hardness of 65 or less and an outer cover layer having a Shore D hardness different from that of the inner cover layer, or (ii) a single outer cover layer having a Shore D hardness of from about 40 to 80.

4. The golf ball of claim 3, wherein the thermoplastic material comprises a material selected from the group consisting of (i) an ionomer, (ii) a polyurethane, (iii) an elastomer, (iv) a polyetheramide, (v) a polyetherester, (vi) a metallocene catalyzed polyolefin, (vii) a styrene butadiene block copolymer, and (viii) combinations thereof.

5. A golf ball comprising: a dual core including a center component and a core layer disposed about the center component, wherein at least one of the core layer and the center component comprises an agent that is foamed or otherwise reduced in density; and a cover assembly disposed on the dual core, the cover assembly including an inner cover layer and an outer cover layer, the outer cover layer defining a plurality of dimples, at least one of the inner cover layer and the outer cover layer comprising a first ionomer having 16 weight percent acid or less, and at least one of the inner cover layer and the outer cover layer comprising a second ionomer having greater than 16 weight percent acid.

6. The golf ball of claim 5, wherein the inner cover layer comprises the second ionomer having great than 16 weight percent acid.

7. A golf ball comprising: a core assembly including a center component and at least one core layer disposed about the core component, wherein at least one of the center component and the at least one core layer comprises a density increasing agent, and wherein at least one of the center component and the at least one core layer comprises an agent that is foamed or otherwise reduced in density; and a cover assembly disposed on the core assembly, the cover assembly including a plurality of cover layers.

Description:

CROSS REFERENCES TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 09/829,708 filed on Apr. 10, 2001 which is a continuation of U.S. patent application Ser. No. 09/048,701 filed on Mar. 26, 1998 now U.S. Pat. No. 6,213,895.

FIELD OF THE INVENTION

The present invention relates to golf balls and, more particularly, to improved golf balls comprising a unique dual core configuration. The improved golf balls provide for enhanced distance and durability properties.

BACKGROUND OF THE INVENTION

A number of two-piece (a solid resilient center or core with a molded cover) and three-piece (a liquid or solid center, elastomeric winding about the center, and a molded cover) golf balls have been produced. The different types of materials utilized to formulate the cores, covers, etc. of these balls dramatically alters the balls' overall characteristics. In addition, multi-layered covers containing one or more ionomer resins have also been formulated in an attempt to produce a golf ball having the overall distance, playability and durability characteristics desired.

Despite the great number of materials and combinations of materials utilized in prior art golf balls, there still remains a need for an improved golf ball exhibiting superior properties.

These and other objects and features of the invention will be apparent from the following summary and description of the invention, the drawings and from the claims.

SUMMARY OF THE INVENTION

The present invention addresses the previously noted needs for an improved golf ball and provides, in a first aspect, a golf ball comprising a dual core assembly and a cover layer assembly disposed about the dual core assembly. The dual core assembly includes a center component and a core layer disposed about the center core component. The center component includes a thermoset material, and the core layer comprises a thermoplastic material. The cover layer assembly includes an inner cover layer and an outer cover layer disposed on the inner cover layer. The inner and outer cover layers exhibit particular combinations of Shore D hardness.

In another aspect, the present invention provides a golf ball comprising a dual core having a center component, a core layer disposed about the center component, and a single cover layer disposed about the dual core. The center component of the dual core comprises a thermoset material, and the core layer comprises a thermoplastic material. The single cover layer exhibits a Shore D hardness of from about 40 to about 80.

In a further aspect, the present invention, provides a golf ball comprising a dual core which includes a center component and core layer disposed about the center component. The golf ball further includes a cover layer assembly disposed about the dual core. The center component of the dual core includes a thermoset material, and the core layer comprises a thermoplastic material.

In yet another aspect, the present invention provides a golf ball comprising a dual core having a center component and a core layer disposed about the center component, and a cover layer disposed about the dual core. The center component and the core layer both comprise a thermoplastic material.

In a further aspect, the present invention provides a golf ball comprising a dual core assembly which includes a center component and a core layer disposed about the center component. The golf ball further includes a dual cover assembly disposed on the dual core assembly. The dual cover assembly includes an inner cover layer and an outer cover layer disposed on the inner cover layer. The outer cover layer includes a plurality of dimples, and the inner cover layer and/or the outer cover layer include a first ionomer having 16 weight percent or less acid. And at least one of the inner and outer cover layer includes a second ionomer having more than 16 weight percent acid.

In a further aspect, the present invention provides a golf ball comprising a dual core assembly that includes a center core component and a core layer disposed about the center core component. The golf ball further comprises a cover layer disposed about the dual core assembly in which the cover layer comprises a polyurethane material.

Moreover, the present invention provides a golf ball comprising a dual core assembly which includes a center core component and a core layer disposed about the center core component. The golf ball additionally includes a dual cover assembly disposed on the dual core assembly. The cover assembly includes an inner cover layer having a Shore D hardness of 70 or more and an outer cover layer having a Shore D hardness of 45 or less.

Furthermore, in a still further aspect, the present invention provides a golf ball comprising a dual core assembly having a center core component and a core layer disposed about the center core component. The golf ball further comprises a cover layer disposed about the dual core assembly in which the cover layer includes an acrylic acid based high acid ionomer. That ionomer is neutralized with one or more sodium, potassium, lithium, zinc, magnesium, manganese, calcium, and/or nickel cations.

The present invention also provides in a still further aspect, a golf ball comprising a multi-layer core assembly including a center core component, a first core layer disposed on the core component, and a second core layer disposed on the first core layer. The golf ball further comprises a cover layer disposed on the multi-layer core assembly.

Still further, the present invention provides in another aspect, a golf ball comprising a dual core assembly including a center core component and a core layer disposed on the center core component. The golf ball further comprises a cover layer disposed on the dual core assembly such that the cover layer includes a thermoplastic elastomer.

In yet another aspect, the present invention provides a golf ball comprising a dual core assembly that comprises a center core component and a core layer disposed on the center core component. The center core component includes a thermoset material and the core component includes a thermoplastic material. The golf ball further comprises a multi-layer cover assembly disposed on the dual core assembly such that the multi-layer cover assembly includes an inner cover layer and an outer cover layer.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a cross-sectional view of a preferred embodiment golf ball in accordance with the present invention illustrating a core and a cover comprising an inner layer and an outer dimpled layer;

FIG. 2 is a diametrical cross-sectional view of the preferred embodiment golf ball depicted in FIG. 1 having a core and a cover comprising an inner layer surrounding the core and an outer layer having a plurality of dimples;

FIG. 3 is a cross-sectional view of another preferred embodiment golf ball in accordance with the present invention comprising a dual core component;

FIG. 4 is a cross-sectional view of yet another preferred embodiment golf ball in accordance with the present invention comprising a dual core component;

FIG. 5 is a cross-sectional view of another preferred embodiment golf ball in accordance with the present invention comprising a dual core component and an outer core layer;

FIG. 6 is a cross-sectional view of yet another preferred embodiment golf ball in accordance with the present invention comprising a dual core component and an outer core layer; and

FIG. 7 is a schematic view of an assembly used for molding a preferred embodiment golf ball in accordance with the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention is directed to a golf ball comprising a dual-core component. The present invention golf balls preferably utilize a multi-layer cover. However, the golf balls may instead utilize conventional cover materials such as balata or blends of balata with elastomeric or plastic materials. The multi-layer golf ball covers include a first or inner layer or ply of a high acid (greater than 16 weight percent acid) ionomer blend or, more preferably, a low acid (16 weight percent acid or less) ionomer blend and second or outer layer or ply comprised of a comparatively softer, low modulus ionomer, ionomer blend or other non-ionomeric thermoplastic or thermosetting elastomer such as polyurethane or polyester elastomer. The multi-layer golf balls of the present invention can be of standard or enlarged size. Preferably, the inner layer or ply includes a blend of low acid ionomers and has a Shore D hardness of 70 or greater and the outer cover layer comprised of polyurethane and has a Shore D hardness of about 45 (i.e., Shore C hardness of about 65).

The present invention golf balls utilize a unique dual-core configuration. Preferably, the cores comprise (i) an interior spherical center component formed from a thermoset material, a thermoplastic material, or combinations thereof; and (ii) a core layer disposed about the spherical center component, the core layer formed from a thermoset material, a thermoplastic material, or combinations thereof. The cores may further comprise (iii) an optional outer core layer disposed about the core layer. The outer core layer may be formed from a thermoset material, a thermoplastic material, or combinations thereof.

Although the present invention is primarily directed to golf balls comprising a dual core component and preferably in conjunction with a multi-layer cover as described herein, the present invention also includes golf balls having a dual core component and conventional covers comprising balata, various thermoplastic materials, cast polyurethanes, or any other known cover material.

It has been found that multi-layer golf balls having inner and outer cover layers exhibit higher C.O.R. values and have greater travel distance in comparison with balls made from a single cover layer. In addition, it has been found that use of an inner cover layer constructed of a blend of low acid (i.e., 16 weight percent acid or less) ionomer resins produces softer compression and higher spin rates than inner cover layers constructed of high acid ionomer resins. This is compounded by the fact that the softer polyurethane outer layer adds to the desirable “feel” and high spin rate while maintaining respectable resilience. The soft outer layer allows the cover to deform more during impact and increases the area of contact between the club face and the cover, thereby imparting more spin on the ball. As a result, the soft polyurethane cover provides the ball with a balata-like feel and playability characteristics with improved distance and durability.

Consequently, the overall combination of the unique dual core configuration, described in greater detail herein, and the multi-layer cover construction of inner and outer cover layers made, for example, from blends of low acid ionomer resins and polyurethane results in a standard size or oversized golf ball having enhanced resilience (improved travel distance) and durability (i.e. cut resistance, etc.) characteristics while maintaining and in many instances, improving the ball's playability properties.

The combination of a low acid ionomer blend inner cover layer with a soft, relatively low modulus ionomer, polyurethane based elastomer outer cover layer provides for good overall coefficient of restitution (i.e., enhanced resilience) while at the same time demonstrating improved compression and spin. The outer cover layer generally contributes to a more desirable feel and spin, particularly at lower swing speeds with highly lofted clubs such as half wedge shots.

Accordingly, the present invention is directed to a golf ball comprising a dual-core configuration and an improved multi-layer cover which produces, upon molding each layer around a core to formulate a multi-layer cover, a golf ball exhibiting enhanced distance (i.e., resilience) without adversely affecting, and in many instances, improving the ball's playability (hardness/softness) and/or durability (i.e., cut resistance, fatigue resistance, etc.) characteristics.

FIGS. 1 and 2 illustrate a preferred embodiment golf ball 5 in accordance with the present invention. It will be understood that none of the referenced figures are to scale. And so, the thicknesses and proportions of the various layers and the diameter of the various core components are not necessarily as depicted. The golf ball 5 comprises a multi-layered cover 12 disposed about a core 10. The core 10 of the golf ball can be formed of a solid, a liquid, or any other substances that may be utilized to form the novel dual core described herein. The core 10 is preferably a dual core as described herein. The multi-layered cover 12 comprises two layers: a first or inner layer or ply 14 and a second or outer layer or ply 16. The inner layer 14 can be ionomer, ionomer blends, non-ionomer, non-ionomer blends, or blends of ionomer and non-ionomer. The outer layer 16 is softer than the inner layer and can be ionomer, ionomer blends, non-ionomer, non-ionomer blends or blends of ionomer and non-ionomer.

In a first preferred embodiment, the inner layer 14 is comprised of a high acid (i.e., greater than 16 weight percent acid) ionomer resin or high acid ionomer blend. Preferably, the inner layer is comprised of a blend of two or more high acid (i.e., at least 16 weight percent acid) ionomer resins neutralized to various extents by different metal cations. The inner cover layer may or may not include a metal stearate (e.g., zinc stearate) or other metal fatty acid salt. The purpose of the metal stearate or other metal fatty acid salt is to lower the cost of production without affecting the overall performance of the finished golf ball. In a second embodiment, the inner layer 14 is comprised of a low acid (i.e., 16 weight percent acid or less) ionomer blend. Preferably, the inner layer is comprised of a blend of two or more low acid (i.e., 16 weight percent acid or less) ionomer resins neutralized to various extents by different metal cations. The inner cover layer may or may not include a metal stearate (e.g., zinc stearate) or other metal fatty acid salt. The purpose of the metal stearate or other metal fatty acid salt is to lower the cost of production without affecting the overall performance of the finished golf ball.

Two principal properties involved in golf ball performance are resilience and hardness. Resilience is determined by the coefficient of restitution (C.O.R.), the constant “e” which is the ratio of the relative velocity of an elastic sphere after direct impact to that before impact. As a result, the coefficient of restitution (“e”) can vary from 0 to 1, with 1 being equivalent to a perfectly or completely elastic collision and 0 being equivalent to a perfectly or completely inelastic collision.

Resilience (C.O.R.), along with additional factors such as club head speed, angle of trajectory and ball configuration (i.e., dimple pattern) generally determine the distance a ball will travel when hit. Since club head speed and the angle of trajectory are factors not easily controllable by a manufacturer, factors of concern among manufacturers are the coefficient of restitution (C.O.R.) and the surface configuration of the ball.

The coefficient of restitution (C.O.R.) in solid core balls is a function of the composition of the molded core and of the cover. In balls containing a dual core (i.e., balls comprising an interior spherical center component, a core layer disposed about the spherical center component, and a cover), the coefficient of restitution is a function of not only the composition of the cover, but also the composition and physical characteristics of the interior spherical center component and the core layer. Both the dual core and the cover contribute to the coefficient of restitution in the golf balls of the present invention.

In this regard, the coefficient of restitution of a golf ball is generally measured by propelling a ball at a given speed against a hard surface and measuring the ball's incoming and outgoing velocity electronically. As mentioned above, the coefficient of restitution is the ratio of the outgoing velocity to the incoming velocity. The coefficient of restitution must be carefully controlled in all commercial golf balls in order for the ball to be within the specifications regulated by the United States Golf Association (U.S.G.A.). Along this line, the U.S.G.A. standards indicate that a “regulation” ball cannot have an initial velocity (i.e., the speed of the club) exceeding 255 feet per second. Since the coefficient of restitution of a ball is related to the ball's initial velocity, it is highly desirable to produce a ball having sufficiently high coefficient of restitution to closely approach the U.S.G.A. limit on initial velocity, while having an ample degree of softness (i.e., hardness) to produce enhanced playability (i.e., spin, etc.).

The hardness of the ball is the second principal property involved in the performance of a golf ball. The hardness of the ball can affect the playability of the ball on striking and the sound or “click” produced. Hardness is determined by the deformation (i.e., compression) of the ball under various, load conditions applied across the ball's diameter (i.e., the lower the compression value, the harder the material). As indicated in U.S. Pat. No. 4,674,751, softer covers permit the accomplished golfer to impart increased spin. This is because the softer covers deform on impact significantly more than balls having “harder” ionomeric resin covers. As a result, the better player is allowed to impart fade, draw or backspin to the ball thereby enhancing playability. Such properties may be determined by various spin rate tests.

It has been found that a hard inner cover layer provides for a substantial increase in resilience (i.e., enhanced distance) over known multi-layer covered balls. The softer outer cover layer provides for desirable “feel” and high spin rate while maintaining respectable resiliency. The soft outer layer allows the cover to deform more during impact and increases the area of contact between the club face and the cover, thereby imparting more spin on the ball. As a result, the soft cover provides the ball with a balata-like feel and playability characteristics with improved distance and durability. Consequently, the overall combination of the inner and outer cover layers and the unique dual core configuration results in a golf ball having enhanced resilience (improved travel distance) and durability (i.e., cut resistance, etc.) characteristics while maintaining and in many instances, improving the playability properties of the ball.

The combination of a dual core component and a hard inner cover layer with a soft, relatively low modulus ionomer, ionomer blend or other non-ionomeric thermoplastic elastomer outer cover layer provides for excellent overall coefficient of restitution (i.e., excellent resilience) because of the improved resiliency produced by the inner cover layer. Moreover, the configuration of, and the ability to select the materials used in, the dual core component enables the formulator to readily tailor the end properties and characteristics of the resulting golf ball. While some improvement in resiliency is also produced by the outer cover layer, the outer cover layer generally provides for a more desirable feel and high spin, particularly at lower swing speeds with highly lofted clubs such as half wedge shots.

Inner Cover Layer

The inner cover layer is harder than the outer cover layer and generally has a thickness in the range of 0.01 to 0.10 inches, preferably 0.03 to 0.07 inches for a 1.68 inch ball and 0.05 to 0.10 inches for a 1.72 inch (or more) ball. The core and inner cover layer together form an inner ball having a coefficient of restitution of 0.780 or more and more preferably 0.790 or more, and a diameter in the range of 1.48-1.66 inches for a 1.68 inch ball and 1.50-1.70 inches for a 1.72 inch (or more) ball. The inner cover layer has a Shore D hardness of 60 or more. It is particularly advantageous if the golf balls of the invention have an inner layer with a Shore D hardness of 65 or more. The above-described characteristics of the inner cover layer provide an inner ball having a PGA compression of 100 or less. It is found that when the inner ball has a PGA compression of 90 or less, excellent playability results.

The inner layer compositions include the high acid ionomers such as those developed by E.I. DuPont de Nemours & Company under the trademark Surlyn® and by Exxon Corporation under the trademark Escor® or trade name lotek®, or blends thereof. Examples of compositions which may be used as the inner layer herein are set forth in detail in a continuation of U.S. application Ser. No. 08/174,765, now abandoned, which is a continuation of U.S. application Ser. No. 07/776,803 filed Oct. 15, 1991, now abandoned, and Ser. No. 08/493,089, now U.S. Pat. No. 5,688,869, which is a continuation of Ser. No. 07/981,751, now abandoned, which in turn is a continuation of Ser. No. 07/901,660 filed Jun. 19, 1992, now abandoned, all of which are incorporated herein by reference. Of course, the inner layer high acid ionomer compositions are not limited in any way to those compositions set forth in said applications.

The high acid ionomers which may be suitable for use in formulating the inner layer compositions are ionic copolymers which are the metal, i.e., sodium, zinc, magnesium, etc., salts of the reaction product of an olefin having from about 2 to 8 carbon atoms and an unsaturated monocarboxylic acid having from about 3 to 8 carbon atoms. Preferably, the ionomeric resins are copolymers of ethylene and either acrylic or methacrylic acid. In some circumstances, an additional comonomer such as an acrylate ester (i.e., iso- or n-butylacrylate, etc.) can also be included to produce a softer terpolymer. The carboxylic acid groups of the copolymer are partially neutralized (i.e., approximately 10-100%, preferably 30-70%) by the metal ions. Each of the high acid ionomer resins which may be included in the inner layer cover compositions of the invention contains greater than about 16% by weight of a carboxylic acid, preferably from about 17% to about 25% by weight of a carboxylic acid, more preferably from about 18.5% to about 21.5% by weight of a carboxylic acid.

Although the inner layer cover composition of several embodiments of the present invention preferably includes a high acid ionomeric resin, the scope of the patent embraces all known high acid ionomeric resins falling within the parameters set forth above. Only a relatively limited number of these high acid ionomeric resins have recently become commercially available.

The high acid ionomeric resins available from Exxon under the designation Escor® and or lotek®, are somewhat similar to the high acid ionomeric resins available under the Surlyn® trademark. However, since the Escor®/lotek® ionomeric resins are sodium or zinc salts of poly(ethylene-acrylic acid) and the Surlyn® resins are zinc, sodium, magnesium, etc. salts of poly(ethylene-methacrylic acid), distinct differences in properties exist.

Examples of the high acid methacrylic acid based ionomers found suitable for use in accordance with this invention include Surlyn® 8220 and 8240 (both formerly known as forms of Surlyn® AD-8422), Surlyn® 9220 (zinc cation), Surlyn® SEP-503-1 (zinc cation), and Surlyn® SEP-503-2 (magnesium cation). According to DuPont, all of these ionomers contain from about 18.5 to about 21.5% by weight methacrylic acid.

More particularly, Surlyn® AD-8422 is currently commercially available from DuPont in a number of different grades (i.e., AD-8422-2, AD-8422-3, AD-8422-5, etc.) based upon differences in melt index. According to DuPont, Surlyn® 8422, which is believed recently to have been redesignated as 8220 and 8240, offers the following general properties when compared to Surlyn® 8920, the stiffest, hardest of all on the low acid grades (referred to as “hard” ionomers in U.S. Pat. No. 4,884,814):

LOW ACIDHIGH ACID
(15 wt % Acid)(>20 wt % Acid)
SURLYN ®SURLYN ®SURLYN ®
89208422-28422-3
IONOMER
CationNaNaNa
Melt Index1.22.81.0
Sodium, Wt %2.31.92.4
Base Resin MI606060
MP1, ° C.888685
FP1, ° C.4748.545
COMPRESSION
MOLDING2
Tensile Break,435041905330
psi
Yield, psi288036703590
Elongation, %315263289
Flex Mod,53.276.488.3
K psi
Shore D666768
hardness

1DSC second heat, 10° C./min heating rate.

2Samples compression molded at 150° C. annealed 24 hours at 60° C. 8422-2, -3 were homogenized at 190° C. before molding.

In comparing Surlyn® 8920 to Surlyn® 8422-2 and Surlyn® 8422-3, it is noted that the high acid Surlyn® 8422-2 and 8422-3 ionomers have a higher tensile yield, lower elongation, slightly higher Shore D hardness and much higher flexural modulus. Surlyn® 8920 contains 15 weight percent methacrylic acid and is 59% neutralized with sodium.

In addition, Surlyn® SEP-503-1 (zinc cation) and Surlyn® SEP-503-2 (magnesium cation) are high acid zinc and magnesium versions of the Surlyn® AD 8422 high acid ionomers. When compared to the Surlyn® AD 8422 high acid ionomers, the Surlyn® SEP-503-1 and SEP-503-2 ionomers can be defined as follows:

Surlyn ® IonomerIonMelt IndexNeutralization %
AD 8422-3Na1.045
SEP 503-1Zn0.838
SEP 503-2Mg1.843

Further, Surlyn® 8162 is a zinc cation ionomer resin containing approximately 20% by weight (i.e., 18.5-21.5% weight) methacrylic acid copolymer that has been 30-70% neutralized. Surlyn® 8162 is currently commercially available from DuPont.

Examples of the high acid acrylic acid based ionomers suitable for use in the present invention also include the Escor® or lotek® high acid ethylene acrylic acid ionomers produced by Exxon such as Ex 1001, 1002, 959, 960, 989, 990, 1003, 1004, 993, 994. In this regard, Escor® or lotek® 959 is a sodium ion neutralized ethylene-acrylic neutralized ethylene-acrylic acid copolymer. According to Exxon, loteks® 959 and 960 contain from about 19.0 to 21.0% by weight acrylic acid with approximately 30 to about 70 percent of the acid groups neutralized with sodium and zinc ions, respectively. The physical properties of these high acid acrylic acid based ionomers are set forth in Tables 1 and 2 as follows:

TABLE 1
Physical Properties of Various Ionomers
ESCOR ®ESCOR ®
(IOTEK ®)(IOTEK ®)
PROPERTYEx 1001Ex 1002959Ex 1003Ex 1004960
Melt index,1.01.62.01.12.01.8
g/10 min
CationNaNaNaZnZnZn
Melting183183172180180.5174
Point, ° F.
Vicat125125130133131131
Softening
Point, ° F.
Tensile34.4 MPa22.5 MPa  4600 psi24.8 MPa20.6 MPa  3500 psi
@ Break
Elongation341348325387437430
@ Break, %
Hardness,636266545357
Shore D
Flexural 365 MPa 380 MPa66,000 psi 147 MPa 130 MPa27,000 psi
Modulus

TABLE 2
Physical Properties of Various Ionomers
PROPERTYUNITSEX 989EX 993EX 994EX 990
Melt indexg/10 min1.301.251.321.24
Moistureppm482214997654
Cation typeNaLiKZn
M+ content by AASwt %2.740.874.540
Zn content by AASwt %0003.16
Densitykg/m3959945976977
Vicat softening point° C.52.5515055.0
Crystallization point° C.40.139.844.954.4
Melting point° C.82.681.080.481.0
Tensile at yieldMPa23.824.62216.5
Tensile at breakMPa32.331.129.723.8
Elongation at break%330260340357
1% secant modulusMPa389379312205
Flexural modulusMPa340368303183
Abrasion resistancemg20.09.215.220.5
Hardness Shore D6262.56156
Zwick Rebound%61635948

Furthermore, as a result of the development by the assignee of this application of a number of new high acid ionomers neutralized to various extents by several different types of metal cations, such as by manganese, lithium, potassium, calcium and nickel cations, several new high acid ionomers and/or high acid ionomer blends besides sodium, zinc and magnesium high acid ionomers or ionomer blends are now available for golf ball cover production. It has been found that these new cation neutralized high acid ionomer blends produce inner cover layer compositions exhibiting enhanced hardness and resilience due to synergies which occur during processing. Consequently, the metal cation neutralized high acid ionomer resins recently produced can be blended to produce substantially higher C.O.R.'s than those produced by the low acid ionomer inner cover compositions presently commercially available.

More particularly, several new metal cation neutralized high acid ionomer resins have been produced by the inventors by neutralizing, to various extents, high acid copolymers of an alpha-olefin and an alpha, beta-unsaturated carboxylic acid with a wide variety of different metal cation salts. This discovery is the subject matter of U.S. application Ser. No. 08/493,089, now U.S. Pat. No. 5,688,869, incorporated herein by reference. It has been found that numerous new metal cation neutralized high acid ionomer resins can be obtained by reacting a high acid copolymer (i.e., a copolymer containing greater than 16% by weight acid, preferably from about 17 to about 25 weight percent acid, and more preferably about 20 weight percent acid), with a metal cation salt capable of ionizing or neutralizing the copolymer to the extent desired (i.e., from about 10% to 90%).

The base copolymer is made up of greater than 16% by weight of an alpha, beta-unsaturated carboxylic acid and an alpha-olefin. Optionally, a softening comonomer can be included in the copolymer. Generally, the alpha-olefin has from 2 to 10 carbon atoms and is preferably ethylene, and the unsaturated carboxylic acid is a carboxylic acid having from about 3 to 8 carbons. Examples of such acids include acrylic acid, methacrylic acid, ethacrylic acid, chloroacrylic acid, crotonic acid, maleic acid, fumaric acid, and itaconic acid, with acrylic acid being preferred.

The softening comonomer that can be optionally included in the inner cover layer for the golf ball of the invention may be selected from the group consisting of vinyl esters of aliphatic carboxylic acids wherein the acids have 2 to 10 carbon atoms, vinyl ethers wherein the alkyl groups contains 1 to 10 carbon atoms, and alkyl acrylates or methacrylates wherein the alkyl group contains 1 to 10 carbon atoms. Suitable softening comonomers include vinyl acetate, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, or the like.

Consequently, examples of a number of copolymers suitable for use to produce the high acid ionomers included in the present invention include, but are not limited to, high acid embodiments of an ethylene/acrylic acid copolymer, an ethylene/methacrylic acid copolymer, an ethylene/itaconic acid copolymer, an ethylene/maleic acid copolymer, an ethylene/methacrylic acid/vinyl acetate copolymer, an ethylene/acrylic acid/vinyl alcohol copolymer, etc. The base copolymer broadly contains greater than 16% by weight unsaturated carboxylic acid, from about 39 to about 83% by weight ethylene and from 0 to about 40% by weight of a softening comonomer. Preferably, the copolymer contains about 20% by weight unsaturated carboxylic acid and about 80% by weight ethylene. Most preferably, the copolymer contains about 20% acrylic acid with the remainder being ethylene.

Along these lines, examples of the preferred high acid base copolymers which fulfill the criteria set forth above, are a series of ethylene-acrylic copolymers which are commercially available from The Dow Chemical Company, Midland, Mich., under the Primacor® designation. These high acid base copolymers exhibit the typical properties set forth below in Table 3.

TABLE 3
Typical Properties of Primacor ®
Ethylene-Acrylic Acid Copolymers
MELTTENSILEFLEXURALVICAT
PERCENTDENSITY,INDEX,YD. STMODULUSSOFT PTSHORE D
GRADEACIDglccg/10 min(psi)(psi)(° C.)HARDNESS
ASTMD-792D-1238D-638D-790D-1525D-2240
598020.00.958300.048004350
599020.00.9551300.065026004042
599020.00.9551300.065032004042
598120.00.960300.090032004648
598120.00.960300.090032004648
598320.00.958500.085031004445
599120.00.9532600.063526003840

1The Melt Index values are obtained according to ASTM D-1238, at 190° C.

Due to the high molecular weight of the Primacor® 5981 grade of the ethylene-acrylic acid copolymer, this copolymer is the more preferred grade utilized in the invention.

The metal cation salts utilized in the invention are those salts which provide the metal cations capable of neutralizing, to various extents, the carboxylic acid groups of the high acid copolymer. These include acetate, oxide or hydroxide salts of lithium, calcium, zinc, sodium, potassium, nickel, magnesium, and manganese.

Examples of such lithium ion sources are lithium hydroxide monohydrate, lithium hydroxide, lithium oxide and lithium acetate. Sources for the calcium ion include calcium hydroxide, calcium acetate and calcium oxide. Suitable zinc ion sources are zinc acetate dihydrate and zinc acetate, a blend of zinc oxide and acetic acid. Examples of sodium ion sources are sodium hydroxide and sodium acetate. Sources for the potassium ion include potassium hydroxide and potassium acetate. Suitable nickel ion sources are nickel acetate, nickel oxide and nickel hydroxide. Sources of magnesium include magnesium oxide, magnesium hydroxide, magnesium acetate. Sources of manganese include manganese acetate and manganese oxide.

The new metal cation neutralized high acid ionomer resins are produced by reacting the high acid base copolymer with various amounts of the metal cation salts above the crystalline melting point of the copolymer, such as at a temperature from about 200° F., to about 500° F., preferably from about 250° F. to about 350° F. under high shear conditions at a pressure of from about 10 psi to 10,000 psi. Other well known blending techniques may also be used. The amount of metal cation salt utilized to produce the new metal cation neutralized high acid based ionomer resins is the quantity which provides a sufficient amount of the metal cations to neutralize the desired percentage of the carboxylic acid groups in the high acid copolymer. The extent of neutralization is generally from about 10% to about 90%.

As indicated below in Table 4 and more specifically in Example 1 in U.S. application Ser. No. 08/493,089, now U.S. Pat. No. 5,688,869, a number of new types of metal cation neutralized high acid ionomers can be obtained from the above indicated process. These include new high acid ionomer resins neutralized to various extents with manganese, lithium, potassium, calcium and nickel cations. In addition, when a high acid ethylene/acrylic acid copolymer is utilized as the base copolymer component of the invention and this component is subsequently neutralized to various extents with the metal cation salts producing acrylic acid based high acid ionomer resins neutralized with cations such as sodium, potassium, lithium, zinc, magnesium, manganese, calcium and nickel, several new cation neutralized acrylic acid based high acid ionomer resins are produced.

TABLE 4
Metal Cation Neutralized High Acid Ionomers
FormulationWt-%Wt-%MeltShore D
No.Cation SaltNeutralizationIndexC.O.R.Hardness
 1(NaOH)6.9867.50.9.80471
 2(NaOH)5.6654.02.4.80873
 3(NaOH)3.8435.912.2.81269
 4(NaOH)2.9127.017.5.812(brittle)
 5(MnAc)19.671.77.5.80973
 6(MnAc)23.188.33.5.81477
 7(MnAc)15.353.07.5.81072
 8(MnAc)26.51060.7.813(brittle)
 9(LiOH)4.5471.30.6.81074
10(LiOH)3.3852.54.2.81872
11(LiOH)2.3435.918.6.81572
12(KOH)5.3036.019.3Broke70
13(KOH)8.2657.97.18.80470
14(KOH)10.777.04.3.80167
15(ZnAc)17.971.50.2.80671
16(ZnAc)13.953.00.9.79769
17(ZnAc)9.9136.13.4.79367
18(MgAc)17.470.72.8.81474
19(MgAc)20.687.11.5.81576
20(MgAc)13.853.84.1.81474
21(CaAc)13.269.21.1.81374
22(CaAc)7.1234.910.1.80870
Controls: 50/50 Blend of Ioteks ® 8000/7030 C.O.R. = .810/65 Shore D
Hardness
DuPont High Acid Surlyn ® 8422 (Na) C.O.R. = .811/70 Shore D
Hardness
DuPont High Acid Surlyn ® 8162 (Zn) C.O.R. = .807/65 Shore D
Hardness
Exxon High Acid Iotek ® EX-960 (Zn) C.O.R. = .796/65 Shore D
Hardness
23(MgO)2.9153.52.5.813
24(MgO)3.8571.52.8.808
25(MgO)4.7689.31.1.809
26(MgO)1.9635.77.5.815
Control for Formulations 23-26 is 50/50 Iotek 8000/7030, C.O.R. =
.814, Formulation 26 C.O.R. was normalized to that control accordingly
27(NiAc)13.0461.10.2.80271
28(NiAc)10.7148.90.5.79972
29(NiAc)8.2636.71.8.79669
30(NiAc)5.6624.47.5.78664
Control for Formulation Nos. 27-30 is 50/50 Iotek 8000/7030, C.O.R. =
.807

When compared to low acid versions of similar cation neutralized ionomer resins, the new metal cation neutralized high acid ionomer resins exhibit enhanced hardness, modulus and resilience characteristics. These are properties that are particularly desirable in a number of thermoplastic fields, including the field of golf ball manufacturing.

When utilized in the construction of the inner layer of a multi-layered golf ball, it has been found that the new acrylic acid based high acid ionomers extend the range of hardness beyond that previously obtainable while maintaining the beneficial properties (i.e. durability, click, feel, etc.) of the softer low acid ionomer covered balls, such as balls produced utilizing the low acid ionomers disclosed in U.S. Pat. Nos. 4,884,814 and 4,911,451.

Moreover, as a result of the development of a number of new acrylic acid based high acid ionomer resins neutralized to various extents by several different types of metal cations, such as manganese, lithium, potassium, calcium and nickel cations, several new ionomers or ionomer blends are now available for production of an inner cover layer of a multi-layered golf ball. By using these high acid ionomer resins, harder, stiffer inner cover layers having higher C.O.R.s, and thus longer distance, can be obtained.

More preferably, it has been found that when two or more of the above-indicated high acid ionomers, particularly blends of sodium and zinc high

More preferably, it has been found that when two or more of the above-indicated high acid ionomers, particularly blends of sodium and zinc high acid ionomers, are processed to produce the covers of multi-layered golf balls, (i.e., the inner cover layer herein) the resulting golf balls will travel further than previously known multi-layered golf balls produced with low acid ionomer resin covers due to the balls' enhanced coefficient of restitution values.

The low acid ionomers which may be suitable for use in formulating the inner layer compositions of several of the embodiments of the subject invention are ionic copolymers which are the metal, i.e., sodium, zinc, magnesium, etc., salts of the reaction product of an olefin having from about 2 to 8 carbon atoms and an unsaturated monocarboxylic acid having from about 3 to 8 carbon atoms. Preferably, the ionomeric resins are copolymers of ethylene and either acrylic or methacrylic acid. In some circumstances, an additional comonomer such as an acrylate ester (i.e., iso- or n-butylacrylate, etc.) can also be included to produce a softer terpolymer. The carboxylic acid groups of the copolymer are partially neutralized (i.e., approximately 10-100%, preferably 30-70%) by the metal ions. Each of the low acid ionomer resins which may be included in the inner layer cover compositions of the invention contains 16% by weight of less of a carboxylic acid.

The inner layer compositions include the low acid ionomers such as those developed and sold by E.I. DuPont de Nemours & Company under the trademark Surlyn® and by Exxon Corporation under the trademark Escor® or tradename lotek®, or blends thereof.

The low acid ionomer resins available from Exxon under the designation Escor® and/or lotek®, are somewhat similar to the low acid ionomeric resins available under the Surlyn® trademark. However, since the Escor®/lotek® ionomeric resins are sodium or zinc salts of poly(ethylene-acrylic acid) and the Surlyn® resins are zinc, sodium, magnesium, etc. salts of poly(ethylene-methacrylic acid), distinct differences in properties exist.

When utilized in the construction of the inner layer of a multi-layered golf ball, it has been found that the low acid ionomer blends extend the range of compression and spin rates beyond that previously obtainable. More preferably, it has been found that when two or more low acid ionomers, particularly blends of sodium and zinc ionomers, are processed to produce the covers of multi-layered golf balls, (i.e., the inner cover layer herein) the resulting golf balls will travel further and at an enhanced spin rate than previously known multi-layered golf balls. Such an improvement is particularly noticeable in enlarged or oversized golf balls.

The use of an inner layer formulated from blends of lower acid ionomers produces multi-layer golf balls having enhanced compression and spin rates. These are the properties desired by the more skilled golfer.

In yet another embodiment of the inner cover layer, a blend of high and low acid ionomer resins is used. These can be the ionomer resins described above, combined in a weight ratio which preferably is within the range of 10:90 to 90:10 parts of high and low acid ionomer resins.

A further additional embodiment of the inner cover layer is primarily based upon the use of a fully non-ionomeric thermoplastic material. Suitable non-ionomeric materials include metallocene catalyzed polyolefins or polyamides, polyamide/ionomer blends, polyphenylene ether/ionomer blends, etc., which have a shore D hardness of ≧60 and a flex modulus of greater than about 30,000 psi, or other hardness and flex modulus values which are comparable to the properties of the ionomers described above. Other suitable materials include, but are not limited to, thermoplastic or thermosetting polyurethanes, a polyester elastomer such as that marketed by DuPont under the trademark Hytrel®, or a polyester amide such as that marketed by Elf Atochem S.A. under the trademark Pebax®, a blend of two or more non-ionomeric thermoplastic elastomers, or a blend of one or more ionomers and one or more non-ionomeric thermoplastic elastomers. These materials can be blended with the ionomers described above in order to reduce cost relative to the use of higher quantities of ionomer.

Outer Cover Layer

While the dual core component described below, and the hard inner cover layer formed thereon, provide the multi-layer golf ball with power and distance, the outer cover layer 16 is comparatively softer than the inner cover layer. The softness provides for the feel and playability characteristics typically associated with balata or balata-blend balls. The outer cover layer or ply is comprised of a relatively soft, low modulus (about 1,000 psi to about 10,100 psi) and, in an alternate embodiment, low acid (less than 16 weight percent acid) ionomer, an ionomer blend, a non-ionomeric thermoplastic or thermosetting material such as, but not limited to, a metallocene catalyzed polyolefin such as Exact® material available from Exxon®, a polyurethane, a polyester elastomer such as that marketed by DuPont under the trademark Hytrel®, or a polyester amide such as that marketed by Elf Atochem S.A. under the trademark Pebax®, a blend of two or more non-ionomeric thermoplastic or thermosetting materials, or a blend of one or more ionomers and one or more non-ionomeric thermoplastic materials. The outer layer is fairly thin (i.e. from about 0.010 to about 0.10 inches in thickness, more desirably 0.03 to 0.06 inches in thickness for a 1.680 inch ball and 0.04 to 0.07 inches in thickness for a 1.72 inch or more ball), but thick enough to achieve desired playability characteristics while minimizing expense. Thickness is defined as the average thickness of the non-dimpled areas of the outer cover layer. The outer cover layer, such as layer 16, 16 has a Shore D hardness of 55 or less, and more preferably 50 or less.

In one embodiment, the outer cover layer preferably is formed from an ionomer which constitutes at least 75 weight % of an acrylate ester-containing ionic copolymer or blend of acrylate ester-containing ionic copolymers. This type of outer cover layer in combination with the core and inner cover layer described above results in golf ball covers having a favorable combination of durability and spin rate. The one or more acrylate ester-containing ionic copolymers each contain an olefin, an acrylate ester, and an acid. In a blend of two or more acrylate ester-containing ionic copolymers, each copolymer may contain the same or a different olefin, acrylate ester and acid than are contained in the other copolymers. Preferably, the acrylate ester-containing ionic copolymer or copolymers are terpolymers, but additional monomers can be combined into the copolymers if the monomers do not substantially reduce the scuff resistance or other good playability properties of the cover.

For a given copolymer, the olefin is selected from the group consisting of olefins having 2 to 8 carbon atoms, including, as non-limiting examples, ethylene, propylene, butene-1, hexene-1 and the like. Preferably the olefin is ethylene.

The acrylate ester is an unsaturated monomer having from 1 to 21 carbon atoms which serves as a softening comonomer. The acrylate ester preferably is methyl, ethyl, n-propyl, n-butyl, n-octyl, 2-ethylhexyl, or 2-methoxyethyl 1-acrylate, and most preferably is methyl acrylate or n-butyl acrylate. Another suitable type of softening comonomer is an alkyl vinyl ether selected from the group consisting of n-butyl, n-hexyl, 2-ethylhexyl, and 2-methoxyethyl vinyl ethers.

The acid is a mono- or dicarboxylic acid and preferably is selected from the group consisting of methacrylic, acrylic, ethacrylic, α-chloroacrylic, crotonic, maleic, fumaric, and itaconic acid, or the like, and half esters of maleic, fumaric and itaconic acid, or the like. The acid group of the copolymer is 10-100% neutralized with any suitable cation, for example, zinc, sodium, magnesium, lithium, potassium, calcium, manganese, nickel, chromium, tin, aluminum, or the like. It has been found that particularly good results are obtained when the neutralization level is about 50-100%.

The one or more acrylate ester-containing ionic copolymers each has an individual Shore D hardness of about 5-64. The overall Shore D hardness of the outer cover is 55 or less, and generally is 40-55. It is preferred that the overall Shore D hardness of the outer cover is in the range of 40-50 in order to impart particularly good playability characteristics to the ball.

The outer cover layer of the invention is formed over a core to result in a golf ball having a coefficient of restitution of at least 0.770, more preferably at least 0.780, and most preferably at least 0.790. The coefficient of restitution of the ball will depend upon the properties of both the core and the cover. The PGA compression of the golf ball is 100 or less, and preferably is 90 or less.

The acrylate ester-containing ionic copolymer or copolymers used in the outer cover layer can be obtained by neutralizing commercially available acrylate ester-containing acid copolymers such as polyethylene-methyl acrylate-acrylic acid terpolymers, including Escor® ATX (Exxon Chemical Company) or poly (ethylene-butyl acrylate-methacrylic acid) terpolymers, including Nucrel® (DuPont Chemical Company). Particularly preferred commercially available materials include ATX 320, ATX 325, ATX 310, ATX 350, and blends of these materials with Nucrel® 010 and Nucrel® 035. The acid groups of these materials and blends are neutralized with one or more of various cation salts including zinc, sodium, magnesium, lithium, potassium, calcium, manganese, nickel, etc. The degree of neutralization ranges from 10-100%. Generally, a higher degree of neutralization results in a harder and tougher cover material. The properties of non-limiting examples of commercially available un-neutralized acid terpolymers which can be used to form the golf ball outer cover layers of the invention are provided below in Table 5.

TABLE 5
Properties of Un-Neutralized Acid Terpolymers
Flex
Melt IndexModulus
dg/minAcid No.MPaHardness
Trade NameASTM D 1238% KOH/g(ASTM D790)(Shore D)
ATX 3106458044
ATX 3205455034
ATX 3252045930
ATX 3506152028
Nucrel ® 01011604040
Nucrel ® 03535605940

The ionomer resins used to form the outer cover layers can be produced by reacting the acrylate ester-containing acid copolymer with various amounts of the metal cation salts at a temperature above the crystalline melting point of the copolymer, such as a temperature from about 200° F. to about 500° F., preferably from about 250° F. to about 350° F., under high shear conditions at a pressure of from about 100 psi to 10,000 psi. Other well known blending techniques may also be used. The amount of metal cation salt utilized to produce the neutralized ionic copolymers is the quantity which provides a sufficient amount of the metal cations to neutralize the desired percentage of the carboxylic acid groups in the high acid copolymer. When two or more different copolymers are to be used, the copolymers can be blended before or after neutralization. Generally, it is preferable to blend the copolymers before they are neutralized to provide for optimal mixing.

The compatibility of the acrylate ester-containing copolymers with each other in a copolymer blend produces a golf ball outer cover layer having a surprisingly good scuff resistance for a given hardness of the outer cover layer. The golf ball according to the invention has a scuff resistance of no higher than 3.0. It is preferred that the golf ball has a scuff resistance of no higher than about 2.5 to ensure that the golf ball is scuff resistant when used in conjunction with a variety of types of clubs, including sharp-grooved irons, which are particularly inclined to result in scuffing of golf ball covers. The best results according to the invention are obtained when the outer cover layer has a scuff resistance of no more than about 2.0.

Additional materials may also be added to the inner and outer cover layer of the present invention as long as they do not substantially reduce the playability properties of the ball. Such materials include dyes (for example, Ultramarine Blue™ sold by Whitaker, Clark, and Daniels of South Plainsfield, N.J.) (see U.S. Pat. No. 4,679,795), pigments such as titanium dioxide, zinc oxide, barium sulfate and zinc sulfate; UV absorbers; antioxidants; antistatic agents; optical brighteners; and stabilizers. Moreover, the cover compositions of the present invention may also contain softening agents such as those disclosed in U.S. Pat. Nos. 5,312,857 and 5,306,760, including plasticizers, metal stearates, processing acids, etc., and reinforcing materials such as glass fibers and inorganic fillers, as long as the desired properties produced by the golf ball covers of the invention are not impaired.

The outer layer in another embodiment of the invention includes a blend of a soft (low acid) ionomer resin with a small amount of a hard (high acid) ionomer resin. A low modulus ionomer suitable for use in the outer layer blend has a flexural modulus measuring from about 1,000 to about 10,000 psi, with a hardness of about 20 to about 40 on the Shore D scale. A high modulus ionomer herein is one which measures from about 15,000 to about 70,000 psi as measured in accordance with ASTM method D-790. The hardness may be defined as at least 50 on the Shore D scale as measured in accordance with ASTM method D-2240.

Soft ionomers primarily are used in formulating the hard/soft blends of the cover compositions. These ionomers include acrylic acid and methacrylic acid based soft ionomers. They are generally characterized as comprising sodium, zinc, or other mono- or divalent metal cation salts of a terpolymer of an olefin having from about 2 to 8 carbon atoms, methacrylic acid, acrylic acid, or another, alpha, beta-unsaturated carboxylic acid, and an unsaturated monomer of the acrylate ester class having from 1 to 21 carbon atoms. The soft ionomer is preferably made from an acrylic acid base polymer is an unsaturated monomer of the acrylate ester class.

Certain ethylene-acrylic acid based soft ionomer resins developed by the Exxon Corporation under the designation lotek® 7520 (referred to experimentally by differences in neutralization and melt indexes as LDX 195, LDX 196, LDX 218 and LDX 219) may be combined with known hard ionomers such as those indicated above to produce the inner and outer cover layers. The combination produces higher C.O.R.s at equal or softer hardness, higher melt flow (which corresponds to improved, more efficient molding, i.e., fewer rejects] as well as significant cost savings versus the outer layer of multi-layer balls produced by other known hard-soft ionomer blends as a result of the lower overall raw materials cost and improved yields.

While the exact chemical composition of the resins to be sold by Exxon under the designation lotek® 7520 is considered by Exxon to be confidential and proprietary information, Exxon's experimental product data sheet lists the following physical properties of the ethylene acrylic acid zinc ionomer developed by Exxon:

TABLE 6
ASTMTypical
PropertyMethodUnitsValue
Physical Properties of Iotek ® 7520
Melt IndexD-1238g/10 min.2
DensityD-1505kg/m30.962
CationZinc
Melting PointD-3417° C.66
CrystallizationD-3417° C.49
Point
Vicat SofteningD-1525° C.42
Point
Plaque Properties (2 mm thick Compression Molded Plaques)
Tensile at BreakD-638MPa10
Yield PointD-638MPaNone
Elongation at BreakD-638%760
1% Secant ModulusD-638MPa22
Shore D HardnessD-224032
Flexural ModulusD-790MPa26
Zwick ReboundISO 4862%52
De Mattia FlexD-430Cycles>5000
Resistance

In addition, lotek® 7520 resins have Shore D hardnesses of about 32 to 36 (per ASTM D-2240), melt flow indexes of 3±0.5 g/10 min (at 190° C. per ASTM D-1288), and a flexural modulus of about 2500-3500 psi (per ASTM D-790). Furthermore, testing by an independent testing laboratory by pyrolysis mass spectrometry indicates that lotek® 7520 resins are generally zinc salts of a terpolymer of ethylene, acrylic acid, and methyl acrylate.

Furthermore, a grade of an acrylic acid based soft ionomer available from the Exxon Corporation under the designation lotek® 7510 is also effective when combined with the hard ionomers indicated above in producing golf ball covers exhibiting higher C.O.R. values at equal or softer hardness than those produced by known hard-soft ionomer blends. In this regard, lotek® 7510 has the advantages (i.e. improved flow, higher C.O.R. values at equal hardness, increased clarity, etc.) produced by the lotek® 7520 resin when compared to the methacrylic acid base soft ionomers known in the art (such as the Surlyn® 8625 and Surlyn® 8629 combinations disclosed in U.S. Pat. No. 4,8884,814).

In addition, lotek® 7510, when compared to lotek® 7520, produces slightly higher C.O.R. values at equal softness/hardness due to the lotek® 7510's higher hardness and neutralization. Similarly, lotek® 7510 produces better release properties (from the mold cavities) due to its slightly higher stiffness and lower flow rate than lotek® 7520. This is important in production where the soft covered balls tend to have lower yields caused by sticking in the molds and subsequent punched pin marks from the knockouts.

According to Exxon, lotek® 7510 is of similar chemical composition as lotek® 7520 (i.e. a zinc salt of a terpolymer of ethylene, acrylic acid, and methyl acrylate) but is more highly neutralized. Based upon FTIR analysis, lotek® 7520 is estimated to be about 30-40 wt. % neutralized and lotek® 7510 is estimated to be about 40-60 wt. % neutralized. The typical properties of lotek® 7510 in comparison of those of lotek® 7520 in comparison of those of lotek® 7520 are set forth below:

TABLE 7
Physical Properties of Iotek ® 7510
in Comparison to Iotek ® 7520
IOTEK ® 7520IOTEK ® 7510
MI, g/10 min2.00.8
Density, g/cc0.960.97
Melting Point, ° F.151149
Vicat Softening108109
Point, ° F.
Flex Modulus, psi38005300
Tensile Strength, psi14501750
Elongation, %760690
Hardness, Shore D3235

The hard ionomer resins utilized to produce the outer cover layer composition hard/soft blends include ionic copolymers which are the sodium, zinc, magnesium, lithium, etc. salts of the reaction product of an olefin having from 2 to 8 carbon atoms and an unsaturated monocarboxylic acid having from 3 to 8 carbon atoms. The carboxylic acid groups of the copolymer may be totally or partially (i.e. approximately 15-75 percent) neutralized.

The hard ionomeric resins are likely copolymers of ethylene and acrylic and/or methacrylic acid, with copolymers of ethylene and acrylic acid being the most preferred. Two or more types of hard ionomeric resins may be blended into the outer cover layer compositions in order to produce the desired properties of the resulting golf balls.

As discussed earlier herein, the hard ionomeric resins introduced under the designation Escor® and sold under the designation lotek® are somewhat similar to the hard ionomeric resins sold under the Surlyn® trademark. However, since the lotek® ionomeric resins are sodium or zinc salts of poly(ethylene-acrylic acid) and the Surlyn® resins are zinc or sodium salts of poly(ethylene-methacrylic acid) some distinct differences in properties exist. As more specifically indicated in the data set forth below, the hard lotek® resins (i.e., the acrylic acid based hard ionomer resins) are the more preferred hard resins for use in formulating the outer layer blends for use in the present invention. In addition, various blends of lotek® and Surlyn® hard ionomeric resins, as well as other available ionomeric resins, may be utilized in the present invention in a similar manner.

Examples of commercially available hard ionomeric resins which may be used in the present invention in formulating the outer cover blends include the hard sodium ionic copolymer sold under the trademark Surlyn® 8940 and the hard zinc ionic copolymer sold under the trademark Surlyn® 9910. Surlyn® 8940 is a copolymer of ethylene with methacrylic acid and about 15 weight percent acid which is about 29 percent neutralized with sodium ions. This resin has an average melt flow index of about 2.8. Surlyn® 9910 is a copolymer of ethylene and methacrylic acid with about 15 weight percent acid which is about 58 percent neutralized with zinc ions. The average melt flow index of Surlyn® 9910 is about 0.7. The typical properties of Surlyn® 9910 and 8940 are set forth below in Table 8:

TABLE 8
Typical Properties of Commercially Available Hard
Surlyn ® Resins Suitable for Use in the Outer Layer Blends of the
Present Invention
ASTM D894099108920852899709730
Cation TypeSodiumZincSodiumSodiumZincZinc
Melt flow index,D-12382.80.70.91.314.01.6
gms/10 min.
Specific Gravity,D-7920.950.970.950.940.950.95
g/cm3
Hardness, Shore DD-2240666466606263
Tensile Strength,D-638(4.8)(3.6)(5.4)(4.2)(3.2)(4.1)
(kpsi), MPa33.124.837.229.022.028.0
Elongation, %D-638470290350450460460
Flexural Modulus,D-790(51) 350(48) 330(55) 380(32) 220(28) 190(30) 210
(kpsi) MPa
Tensile Impact (23° C.)D-1822S1020 (485)1020 (485)865 (410)1160 (550)760 (360)1240 (590)
KJ/m2 (ft.-lbs./in2)
Vicat Temperature, ° C.D-1525636258736173

Examples of the more pertinent acrylic acid based hard ionomer resin suitable for use in the present outer cover composition sold under the lotek® trade name by the Exxon Corporation include lotek® 8000, 8010, 8020, 8030, 7030, 7010, 7020, 1002, 1003, 959 and 960. The physical properties of lotek® 959 and 960 are shown above. The typical properties of the remainder of these and other lotek® hard ionomers suited for use in formulating the outer layer cover composition are set forth below in Table 9:

TABLE 9
Typical Properties of lotek ® lonomers
ASTM
MethodUnits40004010800080208030
Resin
Properties
Cation typezinczincsodiumsodiumsodium
Melt indexD-1238g/10 min.2.51.50.81.62.8
DensityD-1505kg/M3963963954960960
Melting PointD-3417° C.90909087.587.5
Crystallization PointD-3417° C.6264565355
Vicat Softening PointD-1525° C.6263616467
% Weight Acrylic Acid1611
% of Acid Groups3040
cation neutralized
Plaque
Properties
(3 mm thick,
compression molded)
Tensile at breakD-638MPa24263631.528
Yield pointD-638MPanonenone212123
Elongation at breakD-638%395420350410395
1% Secant modulusD-638MPa160160300350390
Shore Hardness DD-22405555615859
Film Properties
(50 micron film 2.2:1
Blow-up ratio)
Tensile at BreakMDD-882MPa4139425247.4
TDD-882MPa3738383840.5
Yield pointMDD-882MPa1517172321.6
TDD-882MPa1415152120.7
Elongation at BreakMDD-882%310270260295305
TDD-882%360340280340345
1% Secant modulusMDD-882MPa210215390380380
TDD-882MPa200225380350345
Dart Drop ImpactD-1709g/micron12.412.520.3
ASTM
MethodUnits701070207030
Resin
Properties
Cation typezinczinczinc
Melt IndexD-1238g/10 min.0.81.52.5
DensityD-1505kg/m3960960960
Melting PointD-3417° C.909090
Vicat SofteningD-1525° C.606362.5
Point
Plaque
Properties
(3 mm thick,
compression molded)
Tensile at breakD-638MPa383838
Yield PointD-638MPanonenonenone
Elongation at breakD-638%500420395
Shore Hardness DD-2240575555

It has been determined that when hard/soft ionomer blends are used for the outer cover layer, good results are achieved when the relative combination is in a range of about 3-25 percent hard ionomer and about 75-97 percent soft ionomer.

Moreover, in alternative embodiments, the outer cover layer formulation may also comprise up to 100 wt % of a soft, low modulus non-ionomeric thermoplastic material including a polyester polyurethane such as B.F. Goodrich Company's Estane® polyester polyurethane X-4517. The non-ionomeric thermoplastic material may be blended with a soft ionomer. For example, polyamides blend well with soft ionomer. According to B.F. Goodrich, Estane® X-4517 has the following properties:

Properties of Estane ® X-4517
Tensile1430
100%815
200%1024
300%1193
Elongation641
Youngs Modulus1826
Hardness A/D88/39
Bayshore Rebound59
Solubility in WaterInsoluble
Melt processing temperature>350° F. (>I77° C.)
Specific Gravity (H2O = 1)1.1-1.3

Other soft, relatively low modulus non-ionomeric thermoplastic elastomers may also be utilized to produce the outer cover layer as long as the non-ionomeric thermoplastic elastomers produce the playability and durability characteristics desired without adversely effecting the enhanced travel distance characteristic produced by the high acid ionomer resin composition. These include, but are not limited to thermoplastic polyurethanes such as Texin® thermoplastic polyurethanes from Mobay Chemical Co. and the Pellethane® thermoplastic polyurethanes from Dow Chemical Co.; non-ionomeric thermoset polyurethanes including but not limited to those disclosed in U.S. Pat. No. 5,334,673; cross-linked metallocene catalyzed polyolefins; ionomer/rubber blends such as those in Spalding U.S. Pat. Nos. 4,986,545; 5,098,105 and 5,187,013; and, Hytrel® polyester elastomers from DuPont and Pebax® polyesteramides from Elf Atochem S.A.

Dual Core

As noted, the present invention golf balls utilize a unique dual core configuration. Preferably, the cores comprise (i) an interior spherical center component formed from a thermoset material, a thermoplastic material, or combinations thereof and (ii) a core layer disposed about the spherical center component, the core layer formed from a thermoset material, a thermoplastic material, or combinations thereof. Most preferably, the core layer is disposed immediately adjacent to, and in intimate contact with the center component. The cores may further comprise (iii) an optional outer core layer disposed about the core layer. Most preferably, the outer core layer is disposed immediately adjacent to, and in intimate contact with the core layer. The outer core layer may be formed from a thermoset material, a thermoplastic material, or combinations thereof.

The present invention provides several additionally preferred embodiment golf balls utilizing the unique dual core configuration and the previously described cover layers. Referring to FIG. 3, a preferred embodiment golf ball 35 is illustrated comprising a core 30 formed from a thermoset material surrounded by a core layer 32 formed from a thermoplastic material. A multi-layer cover 34 surrounds the core 30 and the core layer 32. The multi-layer cover 34 preferably corresponds to the previously described multi-layer cover 12.

As illustrated in FIG. 4, another preferred embodiment golf ball 45 in accordance with the present invention is depicted. The preferred embodiment golf ball 45 comprises a core 40 formed from a thermoplastic material surrounded by a core layer 42. The core layer 42 is formed from a thermoset material. A multi-layer cover 44 surrounds the core 40 and the core layer 42. Again, the multi-layer cover 44 preferably corresponds to the previously described multi-layer cover 12.

FIG. 5 illustrates yet another preferred embodiment golf ball 55 in accordance with the present invention. The preferred embodiment golf ball 55 comprises a core 50 formed from a thermoplastic material. A core layer 52 surrounds the core 50. The core layer 52 is formed from a thermoplastic material which may be the same as the material utilized for the core 50, or one or more other or different thermoplastic materials. The preferred embodiment golf ball 55 utilizes an optional outer core layer 54 that surrounds the core component 50 and the core layer 52. The outer core layer 54 is formed from a thermoplastic material which may be the same or different than any of the thermoplastic materials utilized for the core 50 and the core layer 52. The golf ball 55 further comprises a multi-layer cover 56 that is preferably similar to the previously described multi-layer cover 12.

FIG. 6 illustrates yet another preferred embodiment golf ball 65 in accordance with the present invention. The preferred embodiment golf ball 65 comprises a core 60 formed from a thermoplastic, thermoset material, or any combination of a thermoset and thermoplastic material. A core layer 62 surrounds the core 60. The core layer 62 is formed from a thermoset material. The preferred embodiment golf ball 65 also comprises an optional outer core layer 64 formed from a thermoplastic material. A multi-layer cover 66, preferably similar to the previously described multi-layer cover 12, is disposed about, and generally surrounds, the core 60, the core layer 62 and the outer core 64.

A wide array of thermoset materials can be utilized in the present invention dual cores. Examples of suitable thermoset materials include butadiene or any natural or synthetic elastomer, including metallocene polyolefins, polyurethanes, silicones, polyamides, polyureas, or virtually any irreversibly cross-linked resin system. It is also contemplated that epoxy, phenolic, and an array of unsaturated polyester resins could be utilized.

The thermoplastic material utilized in the present invention golf balls and, particularly their dual cores, may be nearly any thermoplastic material. Examples of typical thermoplastic materials for incorporation in the golf balls of the present invention include, but are not limited to, ionomers, polyurethane thermoplastic elastomers, and combinations thereof. It is also contemplated that a wide array of other thermoplastic materials could be utilized, such as polysulfones, fluoropolymers, polyamide-imides, polyarylates, polyaryletherketones, polyaryl sulfones/polyether sulfones, polybenzimidazoles, polyether-imides, polyimides, liquid crystal polymers, polyphenylene sulfides; and specialty high-performance resins, which would include fluoropolymers, polybenzimidazole, and ultrahigh molecular weight polyethylenes.

Additional examples of suitable thermoplastics include metallocenes, polyvinyl chlorides, acrylonitrile-butadiene-styrenes, acrylics, styrene-acrylonitriles, styrene-maleic anhydrides, polyamides (nylons), polycarbonates, polybutylene terephthalates, polyethylene terephthalates, polyphenylene ethers/polyphenylene oxides, reinforced polypropylenes, and high-impact polystyrenes.

Preferably, the thermoplastic materials have relatively high melting points, such as a melting point of at least about 300° F. Several examples of these preferred thermoplastic materials and which are commercially available include, but are not limited to, Capron® (a blend of nylon and ionomer), Lexan® polycarbonate, Pebax®, and Hytrel®. The polymers or resin system may be cross-linked by a variety of means such as by peroxide agents, sulphur agents, radiation or other cross-linking techniques.

Any or all of the previously described components in the cores of the golf balls of the present invention may be formed in such a manner, or have suitable fillers added, so that their resulting density is decreased or increased. For example, any of the components in the dual cores could be formed or otherwise produced to be light in weight. For instance, the components could be foamed, either separately or in-situ. Related to this, a foamed light weight filler agent may be added. In contrast, any of these components could be mixed with, or otherwise receive, various high density filler agents or other weighting components such as relatively high density fibers or particulate agents in order to increase their mass or weight.

The following commercially available thermoplastic resins are particularly preferred for use in the noted dual cores employed in the golf balls of the present invention: Capron® 8351 (available from Allied Signal Plastics), Lexan® ML5776 (from General Electric), Pebax® 3533 (a polyether block amide from Elf Atochem), and Hytrel® G4074 (from DuPont). Properties of these four preferred thermoplastics are set forth below in Tables 10-13. When forming a golf ball in accordance with the present invention, if the interior center component of the dual core is to comprise a thermoplastic material, it is most preferred to utilize Pebax® thermoplastic resin.

TABLE 10
CAPRON ® 8351
ASTM
DAMTest
MECHANICAL
Tensile Strength, Yield, psi (MPa)7,800 (54)D-638
Flexural Strength, psi (MPa)9,500 (65)D-790
Flexural Modulus, psi (MPa) 230,000 (1,585)D-790
Ultimate Elongation, %200  D-638
Notched Izod Impact, ft-lbs/in (J/M)No BreakD-256
Drop Weight Impact, ft-lbs (J)  150 (200)D-3029
Drop Weight Impact, @ −40° F., ft-lbs (J)  150 (200)D-3029
PHYSICAL
Specific Gravity1.07D-792
THERMAL
Melting Point, ° F. (° C.)  420 (215)D-789
Heat Deflection @ 264 psi ° F. (° C.)  140 (60)D-648

TABLE 11
Lexan ® ML5776
TYPICAL
PROPERTYDATAUNITMETHOD
MECHANICAL
Tensile Strength, yield,8500psiASTM D 638
Type I, 0.125″
Tensile Strength, break,9500psiASTM D 638
Type I, 0.125″
Tensile Elongation, yield,110.0%ASTM D 638
Type I, 0.125″
Flexural Strength, yield,12000psiASTM D 790
0.125″
Flexural Modulus,310000psiASTM D 790
0.125″
IMPACT
Izod Impact, unnotched,60.0ft-lb/inASTM D 4812
73 F.
Izod Impact, notched,15.5ft-lb/inASTM D 256
73 F.
Izod Impact, notches,12.0ft-lb/inASTM D 256
73 F., 0.250″
Instrumented Impact48.0ft-lbsASTM D 3763
Energy @ Peak, 73 F.
THERMAL
HDT, 264 psi, 0.250″,257deg F.ASTM D 648
unannealed
Thermal Index,80deg C.UL 7468
Elec Prop
Thermal Index,80deg C.UL 7468
Mech Prop with impact
Thermal Index,80deg C.UL 7468
Mech Prop without
impact
PHYSICAL
Specific Gravity, solid1.19ASTM D 792
Water Absorption,0.150%ASTM D 570
24 hours @ 73 F.
Mold Shrinkage,5.7in/in E-3ASTM D 955
flow, 0.125″
Melt Flow Rate, nom'l,7.5g/10 minASTM D 123
300 C./1.2 kgf (0)
FLAME
CHARACTERISTICS
UL File Number, USAE121562
94HB Rated (tested0.060inchUL 94
thickness)

TABLE 12
PEBAX ® 3533 RESIN
ASTM
TEST
PROPERTYMETHODUNITS3533
Specific GravityD792
Water Absorption0.5
Equilibrium
(20° C., 50% R.H.>)
24 Hr. ImmersionD5701.2
HardnessD224035D
Tensile Strength,D638psi5600
Ultimate
Elongation, UltimateD638%580
Flexural ModulusD790psi2800
Izod Impact, NotchedD256ft-
20° C.lb./in.NB
−40° C.NB
Abrasion ResistanceD1044Mg/1000104
H18/1000 gCycles
Tear Resistance NotchedD624Clb./in.260
Melting PointD3418° F.306
Vicat Softening PointD1525° F.165
HDT 66 psiD648° F.115
Compression SetD395A%54
(24 hr., 160° F.)

TABLE 13
HYTREL ® G4074
Thermoplastic Elastomer
PHYSICAL
Dens/Sp GrASTM D7921.1800 sp gr 23/23C
Melt FlowASTM D12385.20 @E −190 C./2.16 kg g/10/min
Wat AbsASTM D5702.100%
MECHANICAL
Elong@BrkASTM D638230.0%
Flex ModASTM D7909500 psi
TnStr@BrkASTM D6382000 psi
IMPACT
Notch IzodASTM D256No Break @
73.0 F. @0.2500 inft-lb/in
0.50 @ −40.0 F. @0.2500 inft-lb/in
HARDNESS
ShoreASTM D224040 Shore D
THERMAL
DTUL@66ASTM D648122 F.
Melt Point338.0 F.
Vicat SoftASTM D1525248 F.
Melt Point

The cores of the inventive golf balls typically have a coefficient of restitution of about 0.750 or more, more preferably 0.770 or more and a PGA compression of about 90 or less, and more preferably 70 or less. The cores have a weight of 25-40 grams and preferably 30-40 grams. The core can be compression molded from a slug of uncured or lightly cured elastomer composition comprising a high cis content polybutadiene and a metal salt of an alpha, beta-ethylenically unsaturated carboxylic acid such as zinc mono- or diacrylate or methacrylate. To achieve higher coefficients of restitution and/or to increase hardness in the core, the manufacturer may include a small amount of a metal oxide such as zinc oxide. In addition, larger amounts of metal oxide than are needed to achieve the desired coefficient may be included in order to increase the core weight so that the finished ball more closely approaches the U.S.G.A. upper weight limit of 1.620 ounces. Non-limiting examples of other materials which may be used in the core composition including compatible rubbers or ionomers, and low molecular weight fatty acids such as stearic acid. Free radical initiator catalysts such as peroxides are admixed with the core composition so that on the application of heat and pressure, a curing or cross-linking reaction takes place.

Wound cores are generally produced by winding a very long elastic thread around a solid or liquid filled balloon center. The elastic thread is wound around the center to produce a finished core of about 1.4 to 1.6 inches in diameter, generally. However, the preferred embodiment golf balls of the present invention preferably utilize a solid core, or rather a solid dual core configuration, as opposed to a wound core.

Method of Making Golf Balls

In preparing preferred embodiment golf balls in accordance with the present invention, a hard inner cover layer is molded (by injection molding or by compression molding) about a core (preferably a solid core, and most preferably a dual core). A comparatively softer outer layer is molded over the inner cover layer.

The dual cores of the present invention are preferably formed by compression molding techniques. However, it is fully contemplated that liquid injection molding or transfer molding techniques could be utilized.

For purposes of example, a preferred method of making the golf ball 45 depicted in FIG. 4 is as follows. Specifically, a thermoset material, i.e. a core layer 42, is formed about an inner core component 40 comprising a thermoplastic material as follows. Referring to FIG. 7, preforms 75 of a thermoset material, i.e. utilized to form the core layer 42, are preheated in an oven for one-half hour at 170° F. and placed in the bottom 73 of a molding assembly 70. A Teflon-coated plate 76 with two hemispheres 77 and 78, each about 0.840 inches in diameter, is placed on top of the preforms. Additional preforms, preheated as described above, are placed in the corresponding cavities of a top mold 72. The bottom mold 73 is engaged with the top mold 72 and the assembly flipped or otherwise inverted. The bottom one half of the mold assembly 70 then becomes the top one half of the mold assembly. The mold assembly 70 is then placed in a press and cold formed at room temperature using approximately 10 tons of pressure in a steam press. The molding assembly 70 is closed for approximately two minutes and pressure released. The molding assembly 70 is then opened and the Teflon plate 76 is removed thereby leaving one or more essentially perfectly formed one-half shells or cavities in the thermoset material. Previously formed thermoplastic core centers are then placed in the bottom cavities and the top portion 72 of the molding assembly 70 is placed on the bottom 73 and the materials disposed therebetween cured. The golf ball produced by this method had an inner core diameter of 0.840 inches in diameter. The outer core diameter had a final diameter of 1.470 inches, and a pre-mold diameter of 1.490 inches. A relatively hard inner cover layer is then molded about the resulting dual core component. The diameter of the inner cover was 1.570 inches. A comparatively softer outer cover layer is then molded about the inner cover layer. The outer cover diameter was 1.680 inches. Details of molding the inner and outer covers are set forth below.

Four golf balls in accordance with the present invention were formed, each using a preferred and commercially available high melting point thermoplastic material as an inner core component. Table 14, set forth below, summarizes these balls.

TABLE 14
Capron ®Lexan ®Pebax ®Hytre ® IControl
8351ML 5776-75393533G-4074(Single Core)
Inner Coresize (inches)0.8350.8540.8400.831
weight (grams)5.336.145.085.81
rebound %(100″)78836561
Shore C (surface)5773
Shore D (surface)75833647
Outer CoreCis 1,4 Polybutadiene100100100100100
FormulationZinc oxide2726282125
Zinc stearate1616161615
Zinc diacrylate2020242418
231 × L0.90.90.90.90.9
163.9162.9168.9161.9158.9
Double Coresize (inches)1.5611.5601.5621.5631.562
Propertiesweight (grams)37.737.837.837.537.8
compression (riehle)79809993114
COR.689.603.756.729.761
Molded Ballsize (inches1.6851.6831.6821.6831.685
Propertiesweight (grams)45.345.545.545.245.4
compression (riehle)78808987102
COR.750.667.785.761.788
Cover StockSurlyn ® 894022*T.B. MB lotek ® 703075.35
(used on allSurlyn ® 991054.5Unitane ™ 0-11023.9
above balls)Surlyn ® 832010Ultra Marine Blue ™0.46
Surlyn ® 81204Easto brite ® OB-10.26
T.B. MB*9.5Santonox ® R0.038
100.0100.00

Generally, the inner cover layer which is molded over the core, or preferably a dual core component, is about 0.01 inches to about 0.10 inches in thickness, preferably about 0.03-0.07 inches thick. The inner ball which includes the core and inner cover layer preferably has a diameter in the range of 1.25 to 1.60 inches. The outer cover layer is about 0.01 inches to about 0.10 inches in thickness. Together, the core, the inner cover layer and the outer cover layer combine to form a ball having a diameter of 1.680 inches or more, the minimum diameter permitted by the rules of the United States Golf Association and weighing no more than 1.62 ounces.

Most preferably, the resulting golf balls in accordance with the present invention have the following dimensions:

Size Specifications:PreferredMost Preferred
Inner Core
Max.1.250″1.00″
Min.0.500″0.70″
Outer Core
Max.1.600″1.570″
Min.1.500″1.550″
Cover Thickness
(Total)
Max.0.090″0.065″
Min.0.040″0.055″

In a particularly preferred embodiment of the invention, the golf ball has a dimple pattern which provides coverage of 65% or more. The golf ball typically is coated with a durable, abrasion-resistant, relatively non-yellowing finish coat.

The various cover composition layers of the present invention may be produced according to conventional melt blending procedures. Generally, the copolymer resins are blended in a Banbury® type mixer, two-roll mill, or extruder prior to neutralization. After blending, neutralization then occurs in the melt or molten states in the Banbury® mixer. Mixing problems are minimal because preferably more than 75 wt %, and more preferably at least 80 wt % of the ionic copolymers in the mixture contain acrylate esters and, in this respect, most of the polymer chains in the mixture are similar to each other. The blended composition is then formed into slabs, pellets, etc., and maintained in such a state until molding is desired. Alternatively, a simple dry blend of the pelletized or granulated resins which have previously been neutralized to a desired extent and colored masterbatch may be prepared and fed directly into the injection molding machine where homogenization occurs in the mixing section of the barrel prior to injection into the mold. If necessary, further additives such as an inorganic filler, etc., may be added and uniformly mixed before initiation of the molding process. A similar process is utilized to formulate the high acid ionomer resin compositions used to produce the inner cover layer. In one embodiment of the invention, a masterbatch of non-acrylate ester-containing ionomer with pigments and other additives incorporated therein is mixed with the acrylate ester-containing copolymers in a ratio of about 1-7 weight % masterbatch and 93-99 weight % acrylate ester-containing copolymer.

The golf balls of the present invention can be produced by molding processes which include but are not limited to those which are currently well known in the golf ball art. For example, the golf balls can be produced by injection molding or compression molding the novel cover compositions around a wound or solid molded core to produce an inner ball which typically has a diameter of about 1.50 to 1.67 inches. The core, preferably of a dual core configuration, may be formed as previously described. The outer layer is subsequently molded over the inner layer to produce a golf ball having a diameter of 1.620 inches or more, preferably about 1.680 inches or more. Although either solid cores or wound cores can be used in the present invention, as a result of their lower cost and superior performance solid molded cores are preferred over wound cores. The standards for both the minimum diameter and maximum weight of the balls are established by the United States Golf Association (U.S.G.A.).

In compression molding, the inner cover composition is formed via injection at about 380° F. to about 450° F. into smooth surfaced hemispherical shells which are then positioned around the core in a mold having the desired inner cover thickness and subjected to compression molding at 200° to 300° F. for about 2 to 10 minutes, followed by cooling at 50° to 70° F. for about 2 to 7 minutes to fuse the shells together to form a unitary intermediate ball. In addition, the intermediate balls may be produced by injection molding wherein the inner cover layer is injected directly around the core placed at the center of an intermediate ball mold for a period of time in a mold temperature of from 50° to about 100° F. Subsequently, the outer cover layer is molded around the core and the inner layer by similar compression or injection molding techniques to form a dimpled golf ball of a diameter of 1.680 inches or more.

After molding, the golf balls produced may undergo various further processing steps such as buffing, painting and marking as disclosed in U.S. Pat. No. 4,911,451.

The resulting golf ball produced from the hard inner layer and the relatively softer, low flexural modulus outer layer provide for an improved multi-layer golf ball having a unique dual core configuration which provides for desirable coefficient of restitution and durability properties while at the same time offering the feel and spin characteristics associated with soft balata and balata-like covers of the prior art.

The invention has been described with reference to the preferred embodiments. Obviously, modifications and alterations will occur to others upon a reading and understanding the preceding detailed description. It is intended that the invention be construed as including all such modifications and alterations in so far as they come within the scope of the appended claims or the equivalents thereof.