Title:
Method and apparatus for treating textile goods in rope form
Kind Code:
A1


Abstract:
In a method for treating textile goods in rope form in a closed treatment tank, the textile goods are joined at the ends to form an endless rope. By means of a gaseous stream of feeder medium, made to act on the rope via feed nozzle means, a rotational motion inside the treatment tank is imparted to the rope. The rope emerging from the feed nozzle means is lapped, on entering a J-box located in the treatment tank, by the feed nozzle means itself, which execute a reciprocating motion.



Inventors:
Christ, Wilhelm (Michelbach/Bilz, DE)
Korner, Peter (Schwabisch Hall, DE)
Application Number:
11/433124
Publication Date:
11/16/2006
Filing Date:
05/12/2006
Assignee:
THEN Machinen GmbH (Schwabisch Hall, DE)
Primary Class:
Other Classes:
68/147, 68/175
International Classes:
D06B3/00
View Patent Images:



Primary Examiner:
CORMIER, DAVID G
Attorney, Agent or Firm:
HOLTZ, HOLTZ & VOLEK PC (NEW YORK, NY, US)
Claims:
1. A method for treating textile goods in rope form in a closed treatment tank which includes at least one J-box for receiving textile goods during at least part of the treatment period, in which the textile goods are joined at the ends to form an endless rope, and by means of a gaseous stream of feeder medium made to act on the rope via feed nozzle means, a rotational motion is imparted to the rope over a rotational path, containing the feed nozzle means and the J-box, inside the treatment tank; and in which the rope emerging from the feed nozzle means, upon entering the J-box, is laid in place by means of a reciprocating motion of the feed nozzle means.

2. The method as defined by claim 1, wherein the feed nozzle means are pivoted about a vertical axis in the treatment tank.

3. The method as defined by claim 1 wherein the rope upon entering the J-box is moved back and forth in the passage direction of the rope by the feed nozzle means.

4. The method as defined by claim 1 wherein when a treatment tank is used that contains more than one J-box, separate feed nozzle means are used for each J-box.

5. The method as defined by claim 1 wherein the gaseous stream of feeder medium is generated by blower means, which are mounted on the treatment tank and are moved at least in part jointly with the feed nozzle means.

6. An apparatus for treating textile goods in the form of at least one endless rope, having a closable treatment tank; at least one J-box, located in the treatment tank, for receiving the rope at least during part of the treatment period; feeding means for feeding the rope, which have feed nozzle means through which the rope passes, with a rope inlet and a rope outlet, which are capable of being acted upon by a gaseous feeder medium, lending a forward motion in a rotational direction to the rope, and which are located entirely inside the treatment tank; devices for causing a treatment agent to act on the rope in the treatment tank; and steering and guiding devices for the rope in the treatment tank, by which the rotating endless rope is guided over a rotational path located in the treatment tank and including the feed nozzle means and the J-box; wherein the feed nozzle means are movably supported in the treatment tank, and associated with them are adjusting means by which a motion causing the rope, emerging from their rope outlet, to be laid in place can be imparted upon entry into the downstream J-box.

7. The apparatus as defined by claim 6, wherein the feed nozzle means are pivotably supported in the treatment tank about a vertical axis.

8. The apparatus as defined by claim 6 wherein the feed nozzle means are assigned their own blower, which is mounted on the treatment tank in the region of its top.

9. The apparatus as defined by claim 8, wherein the blower is located with an essentially vertical blower impeller axis.

10. The apparatus as defined by claim 8 wherein the blower has a suction stub, discharging into the treatment tank, and a compression stub, coaxial to the suction stub, that communicates with the feed nozzle means.

11. The apparatus as defined by claim 10, wherein the suction stub and/or the compression stub is pivotably supported relative to the treatment tank.

12. The apparatus as defined by claim 6 wherein each of the feed nozzle means has a feeding segment for the rope, which segment ends in the rope outlet and is movable jointly with the feed nozzle means.

13. The apparatus as defined by claim 7 wherein the adjusting device has a pivoting device, which is coupled to the feed nozzle means and by which the feed nozzle means are pivotable about the vertical axis.

14. The apparatus as defined by claim 12, wherein the feeding segment has an outlet part, having the rope outlet, which is supported on the feed nozzle means displaceably in the passage direction of the rope through the feed nozzle means.

15. The apparatus as defined by claim 14, wherein the outlet part is coupled to an adjusting device of the adjusting means that imparts a reciprocating axial motion to the outlet part.

16. The apparatus as defined by claim 13 wherein the pivoting device and the adjusting device are coupled to one another by a control unit, by which the pivoting device and the adjusting device are triggerable jointly or separately to generate a motion of the rope outlet.

17. The apparatus as defined by claim 6 wherein it has filter means, located in the treatment tank, which are connected upstream of the suction stub of the blower.

18. The apparatus as defined by claim 17, wherein the filter means are located in the treatment tank removably through at least one opening in the treatment tank.

19. The apparatus as defined by claim 6 wherein deflection means that deflect the rope are located in the region between the rope inlet and the J-box.

20. The apparatus as defined by claim 19, wherein the deflection means have at least one deflection roller, supported rotatably in the treatment tank, over which the rope is guided.

21. The apparatus as defined by claim 20, wherein the rope is deflectable by the deflection roller by an angle that is greater than approximately 90°.

22. The apparatus as defined by claim 20, wherein the rope can be introduced, essentially parallel to the inner wall of the rope inlet part, by the deflection roller into a rope inlet part which has the rope inlet.

23. The apparatus as defined by claim 20 wherein the deflection roller is assigned an adjustable guide means, by which the wrap angle of the deflection roller by the rope can be varied.

24. The apparatus as defined by claim 23, wherein the guide means has a guide roller, which can be adjusted in the direction toward and away from the deflection roller by an adjusting device.

25. The apparatus as defined by claim 20 wherein the deflection roller and the guide means are covered against the interior of the treatment tank.

26. The apparatus as defined by claim 20 wherein the feed nozzle means are located, with a horizontal orientation of their longitudinal axis, in the upper region of the treatment tank.

Description:

The invention relates to a method and an apparatus for treating textile goods in rope form in a closed treatment tank that includes at least one J-box for receiving textile goods during at least a portion of the treatment period. The textile goods, joined at the ends to form an endless rope, are set into rotation along a rotational path, which includes the feed nozzle means and the J-box, by means of a gaseous feeder medium that is made to act on the rope via feed nozzle means.

Jet treatment systems, such as jet or nozzle dyeing machines, that operated by this so-called aerodynamic system are used in the industry in manifold versions. They are distinguished in principle from hydraulic jet treatment machines in that the stream of feeder medium that acts on the feed nozzle means is formed not by the treatment liquid but rather by a gaseous feeding means, in particular air and/or steam, inert gas, or the like. Accordingly, the conditions in hydraulic jet treatment machines cannot readily be adopted for jet or nozzle treatment systems that operate on the aerodynamic principle. Examples of jet treatment machines operating on the aerodynamic principle are described for instance in European Patent Disclosure EP 0 133 897 and German Patent DE 198 13 593 C2, to name only some. In the treatment apparatus found in German Patent DE 198 13 593 C2, at least two J-boxes located axially side by side are provided in the closable treatment tank, and each of them is intended to receive its own endless rope, which is set into rotation by nozzle feeding means associated with the J-box and is cuttled, or in other words flat-folded, at the outlet from the nozzle feeding means, or in other words at the entrance to the J-box. The feed nozzles of the J-boxes, the J-boxes operating in parallel, are in communication with the compression side of a common blower, which aspirates a mixture of steam and air from the treatment tank and feeds it as a feeder medium into the feed nozzles.

It is a common feature of the jet treatment apparatuses described in the two references that the endless rope is carried from the J-box out of the treatment tank to a roller located above the treatment tank, and from the roller, which causes a deflection of approximately 180° of the rope, it passes out of a downstream feed nozzle, which is likewise located outside the treatment tank and which brings about the reintroduction of the rope into the treatment tank. The parts of the rotational path of the endless rope that are located outside the treatment tank extend through corresponding housing parts, which also enclose the deflection roller and the feed nozzle and are mounted on the treatment tank and communicate with it in gas-tight fashion. This construction principle necessitates locating the gas circulation system, which carries the gaseous stream of feeder medium of the feed nozzle or nozzles, along with at least one blower, the distributor lines, and the connection line leading to the respective feed nozzle, outside the treatment tank as well; thus because of these parts, the surface area of the machine and hence the heat emission area are increased. In addition, the gas circulation system located on the outside makes for flow losses, which are expressed in correspondingly high electrical energy consumption during machine operation.

Because of the loading capacities of the J-boxes and the attendant larger J-box width, for proper goods passage, the rope emerging from the respective feed nozzle must be lapped in, that is, flat-folded as it enters the J-box. In a flow circulation of the gaseous feeder medium, located outside the treatment tank, structural factors dictate a comparatively long travel path for the rope, which is found to be disadvantageous under certain conditions. In DE 198 13 593 C2, for instance, a substantially vertically oriented cuttler is provided that adjoins a feeding segment for the rope, which together with the feed nozzle forms feed nozzle means and executes a reciprocating pivoting motion.

In an apparatus for wet-treating textile material, known from German Patent DE 41 19 152 C2, which also operates on the aerodynamic principle, a plurality of J-boxes may be located side by side in the cylindrical treatment tank, in the axial direction of the tank, so that a corresponding number of ropes can be treated independently of one another. Each J-box is assigned a feed nozzle, which is located inside the treatment tank with a horizontal orientation, and into which the respective rope, on the rope outlet side of the J-box, is introduced via a deflection roller, also located inside the treatment tank, which deflects the rope 90° out of the vertical travel direction into the horizontal travel direction. The feed nozzle communicates, via a line segment located in the treatment tank, with the compression side of a radial blower, which is inserted into the tank interior through a top opening in the jacket of the treatment tank with a vertical orientation of the axis of rotation of the blower impeller. The radial blower has a housing, which is connected to the inside of the treatment tank and is provided with a suction opening, by way of which air is aspirated out of the interior of the treatment tank. The blower motor is mounted on an annular flange that surrounds the top opening and is joined to the tank jacket; the motor shaft is introduced, by means of a bush surrounding it, into the tank interior in pressure-tight fashion. The rope outlet side of the feed nozzle is adjoined by a guide tube, which can be pivoted about a vertical axis by a crank drive in the horizontal plane and which is in the form of a flattened funnel that protrudes into the conduitlike J-box on the rope inlet side, and diametrically opposite it is a wall face of the J-box that is provided with perforations. This wall face is inclined in such a way that the rope striking it is deflected downward into the J-box; the reciprocating motion of the guide tube lays the rope, entering the J-box, appropriately for the cuttling.

In cooperation with the perforated impact wall of the J-box, the cuttler, formed by the guide tube that executes a reciprocating pivoting motion, results in a more or less abrupt change of direction of the rope as it enters the J-box. Depending on the type of goods, however, such deflections may have adverse effects on the surface of the rope. In certain types of goods, proper cuttling of the rope is not assured either, so that as the package of goods formed in the J-box by the cuttled rope cannot be prevented from tipping over when the rope is lapped in, and tangling or other problems in rope travel can occur as the rope is being drawn from the J-box.

Based on this prior art, it is therefore the object of the invention to create a method and an apparatus for treating textile goods in rope form, of the type defined at the outset, which even at relatively large J-box capacities assure unimpeded rope travel, while at the same time, economical operation of the apparatus with the least possible consumption of current and heat is possible.

To attain this object, the method of the invention has the characteristics of claim 1, while the apparatus of the invention is the subject of claim 6.

In the novel method, the textile goods are first connected at the end to form an endless rope. By means of a gaseous stream of feeder medium made to act on the rope via feed nozzle means, a rotational motion is then imparted to the rope along a rotational path that extends entirely inside the treatment tank and contains the feed nozzle means and the J-box. The rope emerging from the feed nozzle means, on entering the J-box, is laid in place by a reciprocating motion of the feed nozzle means itself for the purpose of cuttling it, or in other words flat-folding it.

First, because along its rotational path the rope is not brought to a deflection roller located above the treatment tank and introduced into the treatment tank again by means of a downstream feed nozzle, a substantial reduction in flow losses is attained, and hence less consumption of electrical energy for operating the blower, because of the elimination of an external circulation of feeder medium. Second, the direct motion of the feed nozzle means itself furnishes highly variable conditions for proper travel of the rope, even if the J-box is wide, and in particular it results in very stable conditions as the rope is being lapped into the J-box; as a consequence, even with a wide J-box, which has a loading capacity of up to about 275 kg or more, for instance, proper rope travel is assured, and in particular, the package of goods is prevented from tipping over on lapping-in, and difficulties in drawing the rope out of the J-box are also avoided. Adverse effects on the surface of the traveling rope, as can be caused by deflections of the rope associated with abrupt changes of direction, are precluded, which is of substantial significance in treating vulnerable textile goods.

Especially expedient conditions result if the feed nozzle means are pivoted about a vertical axis in the treatment tank. On entering the J-box, the rope can additionally be moved back and forth in the passage direction of the rope by the feed nozzle means, so that on entering the J-box, the rope executes a combined motion, made up of the aforementioned pivoting motion of the feed nozzle means about its vertical pivot axis and a motion of the rope, emerging from the nozzle feeding means, in the longitudinal direction of the nozzle feeding means and thus into the depth of the J-box. These two motion components can be combined with one another in such a way that on entering the J-box, the rope executes a motion parallel to the longitudinal axis of the treatment tank, across the width of the J-box, which makes it possible to optimize the lapping-in operation. If necessary, both motions can be generated separately from one another instead, in chronological succession.

A treatment apparatus, operating by the described method, for textile goods in the form of at least one endless rope, has a closable treatment tank with at least one J-box, located in the treatment tank, for receiving the rope, during at least a portion of the treatment period; in a preferred embodiment, the rope is oriented perpendicular to the longitudinal axis of the preferably cylindrical treatment tank. The feeding means for feeding the rope has feed nozzle means through which the rope passes, with a rope inlet and a rope outlet that can be subjected to a gaseous feeder medium that imparts a forward motion in a rotational direction to the rope. These feeding means are located entirely inside the treatment tank. Any housing parts and the like for the feed nozzle means and for the stream of feeder medium serving to act on them, located outside the treatment tank and communicating with it, are eliminated. Devices for causing a treatment agent to act on the rope and steering and guiding devices for the rope are also contained in the treatment tank, and by means of them the rotating endless rope is guided in the treatment tank along a rotational path that includes the feed nozzle means and the J-box. The feed nozzle means are supported movably in the treatment tank. They are assigned adjusting means, by which a motion that causes the rope, emerging from its rope outlet, to be laid in place as it enters the downstream J-box is attainable.

In a preferred embodiment, the feed nozzle means are pivotably supported in the treatment tank about a vertical axis. They are assigned their own blower, which is mounted on the treatment tank in the region of its top, with a substantially vertical blower impeller axis, which can simultaneously form the pivot axis of the feed nozzle means. The blower expediently has a suction stub, discharging into the treatment tank, and a compression stub, coaxial to the suction stub, that communicates with the feed nozzle means. The arrangement may be made such that the suction stub and/or the compression stub is supported pivotably relative to the tank, preferably about the pivot axis of the blower impeller. This results in a maximum spacing between the pivot axis of the feed nozzle means, in the region of their rope inlet and their rope outlet, located above the rope inlet, with the consequence that the pivot angle range needed for lapping-in the rope as it is laid in place in the J-box, can be kept relatively small even with wide J-boxes.

In an advantageous embodiment, the feed nozzle means each have a feeding segment for the rope, and this segment ends in the rope outlet and is movable jointly with the feed nozzle means. The feeding segment may have an outlet part, having the rope outlet, which is supported on the feed nozzle means displaceably in telescoping fashion in the passage direction of the rope through the feed nozzle means. The outlet part is coupled to an adjusting device of the adjusting means that imparts a reciprocating axial motion to it, and thus the rope outlet can execute a combined motion that results from the pivoting motion of the feed nozzle means about the pivot axis and the telescoping reciprocation in the direction of the rope, passing through the feeding means, of the outlet part. The pivoting device and the adjusting device may be coupled to one another by a control unit, by which the pivoting device and the adjusting device can be triggered jointly to generate this combined motion of the rope outlet. Alternatively, they can also be triggered separately in chronological succession.

Further advantageous characteristics and modifications of the novel method and apparatus are the subject of dependent claims.

In the drawing, exemplary embodiments of the subject of the invention are shown; shown are:

FIG. 1, an apparatus according to the invention, in a version as a high-temperature piece dyeing apparatus, shown schematically, illustrating the treatment tank in a cross section through the impeller pivot axis of the blower, along the line III-III in FIG. 2;

FIG. 2, the treatment tank of the apparatus of FIG. 1, in a schematic top view in detail showing a J-box;

FIG. 3, the treatment tank of the apparatus of FIG. 1, in a corresponding sectional view taken along the line III-III of FIG. 2, on a different scale, showing larger details;

FIG. 4, a detail of the arrangement of FIG. 3, showing a top view on the blower as seen from the impeller side of the blower;

FIG. 5, in a side view, the treatment tank of an apparatus according to the invention, embodied as a high-temperature piece dyeing machine, with six J-boxes, similar to the high-temperature piece dyeing machine of FIG. 1, but leaving out the parts located outside the treatment tank;

FIG. 6, in a top view, the arrangement of FIG. 5;

FIG. 7, in a top view and on a different scale, a detail of the arrangement of FIG. 3, showing the rope inlet into the feed nozzle, with axial positioning of the freewheeling deflection roller by means of friction with the rope located above it and showing a coupling, actuatable upon a stoppage of goods, with a toothed belt pulley and a flanged-on electric motor;

FIG. 8, in a side view similar to FIG. 7, the arrangement of FIG. 7, showing the rope inlet into the feed nozzle, with guide baffles located on both sides; and

FIG. 9, a detail of the arrangement of FIG. 5, showing an inside view on the driven deflection roller embodied in split form because of the length of the tank.

The drawing figures show embodiments of an apparatus according to the invention, in the form of a high-temperature piece dyeing machine, with a treatment tank 1 embodied as a cylindrical vessel, which is closed on its two face ends in pressure-tight fashion by welded-on torispherical ends 2. In the treatment tank 1, in the exemplary embodiment of FIGS. 5 and 6, six J-boxes are provided, identified as I-VI; of these, in the detail of the piece dyeing machine shown in FIG. 2, only one J-box, for instance J-box III, is shown. Each J-box I-VI is defined by two parallel side walls 3 and one bottom wall 4, which is joined to the side walls 3, as can be seen for instance from FIGS. 1 and 3. The bottom wall 4 is embodied as a sliding bottom, by means of parallel-arranged FTFE rods or by being designed with PTFE tiles in a known manner, in a manner known per se; both versions permit an outflow of excess treatment liquid into the space, marked 5 in FIG. 3, below the bottom wall 4 into the treatment tank 1. The side walls 3, also called boundary walls of the goods, are each embodied on their inside with a PTFE coating or in the form of solid plate parts, such that, as in the case of the bottom wall 4, the result is a friction-reducing arrangement. An inner cover 6 (FIG. 3) is joined to the side walls 3, so that the J-box has a substantially U-shaped design, with a rope inlet opening 7 and a rope outlet opening 8. The J-boxes I-VI, in the embodiment shown, each have the same axial width, which for a treatment-tank diameter of approximately 2250 mm can typically amount to 800 mm and more.

The side walls 3 of each of the J-boxes I-VI are located extending perpendicular to the longitudinal axis, shown at 9 in FIG. 2, of the treatment tank, but in particular individual cases they may form equal angles, other than 90°, with the treatment tank longitudinal axis 9. One of the torispherical ends 2 has a manhole 10, which is coaxial with the longitudinal axis of the treatment tank and is closed in pressure-tight fashion by a removable lid 11.

A loading and unloading opening, which is closed with a removable pressure-tight closure 12, leads into each of the J-boxes I-VI and is located approximately at the level of the horizontal diametral plane 13 (FIG. 3) of the treatment tank 1. On the underside of the treatment tank 1, a liquor vessel 14 is provided, which communicates with the tank interior and is intended for holding the treatment agent (liquor) flowing away from the textile goods. The contents of the liquor vessel 14 are dimensioned such that it can contain the total amount of liquor, minus the proportion of liquor carried by the textile goods, yet the goods as they move in the respective J-box will not come into contact with a surface of the liquor located outside the goods themselves.

At a distance above the rope outlet opening 8, located below the diametral plane 13, of each J-box, for each J-box I-VI, a cylindrical tubular stub 15 welded to the jacket of the treatment tank leads into the tank interior and is oriented vertically with its axis and is located in the center plane of symmetry, marked 17 in FIG. 2, of the associated J-box. The tubular stub 15, on its end, has an annular flange 18 on which a blower unit 19 is mounted. The blower unit 19 has an upper housing part 20 with an impeller housing 21 that contains a radial blower impeller 22, which revolves about a vertical pivot axis 16 that is coaxial with the axis of the tubular stub 15, and which is coupled to an electric motor 23 mounted on the upper housing part 20. The electric motor 23 is a three-phase motor whose speed can be governed for inverter operation and is designed for regulating whatever gas feeding flow is required. Its shaft is sealed off from the housing interior by a shaft seal 24. A spiral guide baffle 25 (FIG. 4) is located in the impeller housing 21 and diverts the gaseous medium, pumped by the blower impeller 22, into an outer flow conduit 26 that is coaxial with the pivot axis 16 and that establishes communication on the compression side with the impeller housing 21.

A cylindrical inner jacket 27, forming part of the lower housing part of the blower unit 21 and inserted with slight radial spacing, is rotatably supported in the tubular stub 15 and is oriented coaxially with the pivot axis 16. The inner jacket 27 is sealed off peripherally from the annular flange 18 via a seal 28, embodied for instance as a labyrinth seal or as a slot sleeve, and is radially rotatably supported and axially suspended from the annular flange 18 via a suitable profile section 29. An inner flow conduit 30, provided with a suction cone, extends in the inner jacket 27 coaxially with the pivot axis 16 and leads, as a suction conduit, to the blower impeller inlet and forms the suction stub, and on its diametrically opposed end it discharges into the interior of the treatment tank 1. The inner coaxial flow conduit 30, with the jacket 27 outside it, forms a cylindrical extension 26a of the outer flow conduit 26. Thus two concentric, vertical flow conduits 26, 26a; 30 are embodied in the blower unit 21; the flow conduit 30 that acts as a suction conduit widens conically toward the tank interior and is closed off at the bottom at 31 on the outside against the inner jacket 27.

The entire blower unit 19 can be removed from the annular flange 18 and replaced if needed with a blower unit with a different capacity or with different pumping characteristics. Since the tubular stub 15 and the annular flange 18, embodied as a welded-on flange, remain the same, if a blower unit is replaced, only the blower impeller 22 and the impeller housing 21 need to be available in various sizes.

The tubular rope inlet part 32 of a feed nozzle 33, embodied as a ring nozzle, is connected in a manner fixed against relative rotation to the rotatably supported inner jacket 27 and to the coaxial flow conduit 30 solidly joined to the inner jacket. The rope inlet part 32, embodied essentially as a tube with a 60° bend, is fully lined on its inside with PTFE, in such a way that this lining can be inserted after the lower blower part has been made of stainless steel. The rope inlet part has a rope inlet opening 34, defined so as to extend substantially parallel to the diametral plane 13 of the tank and located at a maximum spacing from the diametral plane 13 of the tank, so as to assure favorable draw-off angle of the endless rope, indicated at 35 in FIG. 1, from the rope outlet opening 8 of the J-box and to create space for rope guiding devices to be described hereinafter. The rope inlet part 32 leads to an inlet nozzle part 35, which with a nozzle part 36 defines an annular gap 37, which is adjoined by a cylindrical nozzle part 38 and a diffuser 39. The annular gap 37 is located in a cylindrical nozzle housing 40, which is welded to the inner jacket 27 and is in communication with the outer flow conduit 26a subjected to pressure by the feeder medium. The diffuser 39 is adjoined by a coaxial feeding tube 41, which may be of PTFE and which in turn discharges into an outlet bend 42 of larger diameter, which together with the feeding tube 41 forms a feeding segment and can introduce the emerging rope into the J-box inlet opening 7. As FIG. 3 shows, the outlet bend 42 opens out at a slight spacing from and above the boundary of the inlet opening 7, to which it is oriented approximately parallel on the opening side.

Injection nozzles 43, distributed annularly about the axis of the cylindrical nozzle housing 40, discharge into that housing and communicate with a treatment agent supply line 45 via a flexible fabric hose 44 of PTFE and stainless steel. The injection nozzles 43 act as atomizer nozzles in the direction of the annular gap 37, so that uniform action by the treatment agent injection stream on the rope 35 passing through the feed nozzle 33 is attained.

The location of the atomizer nozzles 43, in a version in which they are embodied as flat-stream nozzles, is such that the stream direction, represented by arrows in FIG. 3, is virtually identical to the gas flow and thus reinforces the gas flow in its action. By means of both media, specifically the gas flow and the treatment liquor that is atomized in the annular cross section of the feed nozzle, an optimal distribution of the treatment liquor over the rope passing through is achieved. In the cylindrical nozzle part 38 downstream of the annular gap 37, there is a mixing zone, in which a distribution of the gas medium in the liquid treatment liquor fluid is again achieved. The nozzle part 36 that is solidly joined to the cylindrical nozzle part 38 is axially adjustable relative to a closure cap 44 on the nozzle housing 40, so that in this way the annular gap 37 of the nozzle is adjustable.

Compared to the diffuser 39 adjoining the cylindrical nozzle part 38, the cylindrical feeding tube 41 is guided axially displaceably in a slide bearing that is contained in a supporting construction 420, and thus the feeding tube 41, with the PTFE inlet tube bend 42 downstream of it and secured to it, is displaceable by a distance that is represented in FIG. 3 by the double arrows 46.

A cantilevered arm 47 which is pivotably connected to a thrust rod 48 is secured to the underside of the nozzle housing 40, and as can be seen from FIG. 2, for instance, it extends over the axial length of the treatment tank 1 and at 49 is passed in sealed fashion through a torispherical end 2. The thrust rod 48 is connected to a motor drive indicated at 50, which for instance has a threaded spindle and together with the thrust rod 48 forms a pivoting device that is capable of effecting pivoting of the feed nozzle 33 and of the feeding segment 41, 42 about the vertical pivot axis 16 of the blower unit 19. Since in a multi-box version of the piece dyeing machine, as FIG. 6, for instance, shows, the thrust rod 48 is coupled with the cantilevered arms 47 of all the blower units 19, upon actuation of the motor drive 50 of the pivoting device, the feed nozzles 33 and feeding segments for all the J-boxes I-VI are simultaneously pivoted by the same angle about their respective vertical pivot axis 16; they are thus coupled rigidly to one another. The size of the pivot angle, marked at 51 in FIG. 2, between the end positions, each represented in dashed lines, of the feed nozzle 33 and the feeding segment 41, 42 can be appreciated to depend on the width of the respective J-box. Typically, it is on the order of magnitude of 30°.

A support bearing 510 is mounted nondisplaceably on the feeding tube 41; it is guided longitudinally displaceably on a guide part 52 projecting from the cantilevered arm 47, and it is engaged by a rocker arm mechanism 53, which is coupled with a supported shaft 54, extending parallel to the longitudinal axis 9 of the treatment tank, that is coupled on both sides of the treatment tank 1 via a lever mechanism 55 to a motor drive 56 that together with the shaft 54 and the rocker lever mechanism 53 forms an adjusting device for the feeding segment. Upon actuation of the adjusting device, the outlet bend 42 and the feeding tube 41 are imparted an adjusting motion in the direction of the rope passing through the feed nozzle 33, the magnitude of which motion, as already noted, is represented by the double arrows 46.

The two adjusting motor drives 56 and the pivoting motor drive 50, which are passed in sealed fashion at 57 through the torispherical ends 2, are controlled by a common control unit 58, which is shown schematically in FIG. 2. As can be seen from FIG. 2, the two motor drives 50, 56 can be controlled such that the outlet bend 42, on being pivoted between the end positions shown in dashed lines in FIG. 2, moves with the center point of its rope outlet opening 58, leading into the J-box inlet opening 7, longitudinally along a straight line 59 that is oriented parallel to the longitudinal axis 9 of the treatment tank and extends transversely across the respective J-box. Thus the outlet bend 42 executes two motions, first a pivoting motion about the pivot axis 16 and second a transverse motion in the passage direction of the rope through the feed nozzle 33, or in other words essentially transversely to the longitudinal axis 9 of the treatment tank. As already noted, these two motions may be executed simultaneously, superimposed on one another. They can either be controlled by the control unit 58 or take place successively. Moreover, the two motor drives 50, 56, of which the motor drive 50 determines the pivoting range, represented by the angle 51, of the lower blower part with the feed nozzle 33 and the outlet bend 42, and the motor drives 56 bring about the longitudinal motion of the outlet bend 42 relative to the feed nozzle 33, can also be triggered with different cycle times, so that in this way the course of motion on lapping-in can be defined in accordance with a program, depending on the particular textile product to be treated.

At the same time, the cuttling can be adapted to different J-box widths, without having to change structural details of the lower blower part or the feed nozzle, and so forth. In practice, J-box widths for a load of approximately 275 kg and more are possible; the upper limit is dictated only by the diameter of the treatment tank 1, which with a view to the requirements of container shipping must not exceed approximately 2250 mm.

In the treatment tank 1 below the rope inlet part 32 of the feed nozzle 33, there is a deflection roller 60, supported rotatably about a horizontal axis, which in the multi-box piece dyeing machine shown as an example in FIGS. 5 and 6 can extend continuously across all the J-boxes I-VI in the treatment tank 1. Alternatively, and depending on the model, however, each J-box I-VI or each group of J-boxes may have its own deflection roller 60. This is shown in FIGS. 7 through 9, of which FIGS. 7 and 8 show the arrangement with one deflection roller 60 per J-box, while FIG. 9 shows a version similar to FIGS. 5 and 6, in which two deflection rollers 60 are provided, which extend coaxially to one another over three J-boxes each. In each case the deflection roller 60 is supported in freewheeling fashion in bearings 61 on both sides, and as FIG. 7 in particular shows, the freely extending shaft end 62 is located in a rectangular profile section 63, such that it is shielded off from the interior of the treatment tank 1. A toothed belt pulley 64 is mounted on the shaft end 62, and when the rope stops it is coupled by nonpositive engagement to the shaft end 62 via a coupling detent device. The toothed belt pulley 64 is coupled to a gear motor 67, via a toothed belt 65 extending in the rectangular profile section 63 and via a second toothed belt pulley 66. Because the toothed belt 65 is separated from the interior of the treatment vessel, when the goods stop moving in operation they are not exposed to excessive temperature stress. The second toothed belt pulley 66, with its bearing, is located in the region of the outer contour of the treatment tank 1. The readjustment of the toothed belt can be done for instance by means of a rocker which is joined to the bracket of the gear motor 67.

Alternatively to this arrangement, instead of the deflection roller 60 supported in a freewheeling manner, a driven deflection roller 60 can also be used, as is shown in FIG. 9. Because of the length of the treatment tank, for instance when there are six J-boxes each with a 275 kg load, the deflection roller 60 is split in the middle, as already noted, and a rectangular bearing beam 68 located centrally in the treatment tank 1 is provided for receiving the shaft seal and the ball bearing 61. The two partial deflection rollers 60 are each driven by a respective gear motor 69, whose shaft is passed through the respective torispherical end 2 in sealed fashion at 70.

As can be seen from FIG. 1, the position of the rope inlet opening 34 and of the rope inlet part 32 relative to the feed nozzle 33 and the axial position of the deflection roller 60 are embodied such that as the rope moves upward out of the J-box, the transversely located draw-off angle of the rope 35 does not exceed a permissible amount, so that in the case of knitted goods, for instance, shifting of the loops does not occur. In the embodiment shown, the rope is deflected by an angle of more than 90° by the deflection roller 60, such that on the one hand it enters the rope inlet part 32 substantially parallel to the inner wall of this part that adjoins the inlet opening 34, and on the other is lifted out of the J-box at a favorable angle of approximately 90° with the periphery of the opening 8. The deflection roller 60, in the freewheeling version, is driven by friction with the rope 35 passing over it. The deflection roller 60 may also, as FIG. 8 shows, be assigned guide baffles 600 that guide the incoming rope 35 laterally as well.

Regardless of how the deflection roller 60 is embodied and driven, a guide roller 71 (FIGS. 1 and 3) is rotatably supported in the treatment tank 1 above the deflection roller 60 and is seated on a rocker 72, which can be pivoted toward the deflection roller 60 about a pivot point 74 by a pneumatic adjusting cylinder 73. As a result of this pivoting away of the guide roller 71, represented by dashed lines in FIG. 3, a larger wrap angle of the deflection roller 60 for the rope 35 is attained, and this angle is also associated with separating off of the treatment liquor adhering to the surface inside the rope; the liquor is caught by a separation baffle 76 and carried away via a transversely located outflow channel 76a and channels 76b located to the left and right of the boundary walls 3 of the J-box, without coming into contact with the rope 35 again. Toward the treatment tank interior, the deflection roller 60 and the guide roller 71 are shielded off by a separation baffle 76, which is effective in carrying away splashing treatment liquor as the guide roller 71 is pivoted downward. Cooperating with the separation baffle 76 is a cover baffle 77, located on the rope inlet part 32, that assures partitioning off of the suction chamber of the blower unit 19 from the space surrounding the deflection roller 60 and the guide roller 71, which space is shielded off from the tank interior by the separation baffle 76, among other elements.

The gas aspirated out of the interior of the treatment tank 1 by the blower unit 19, which as a stream of feeder medium acts on the feed nozzle 33 via the nozzle housing 40, is removed by suction through the conical flow conduit 30 in the lower blower part toward the impeller entrance. Since any fluff that may occur, which depending on the type of textile material to be treated can lead to deposits of fibers, should be avoided, a filter surface formed by a rectangular, flat filter element 78 is disposed in the region of the outlet opening 8 of the J-box, extending continuously over the width of the J-box. The filter element 78 is disposed vertically and is supported displaceably in the longitudinal direction of the tank in one upper and one lower guide profile section 79 and 80, respectively. The upper guide profile section 79 is adjoined by a cover baffle 81 extending as far as the inside of the tank jacket, approximately to a center axial line of the cylindrical tubular stub 15.

Because of the displaceability of the filter element 78, easy accessibility to the filter surfaces is possible even when a plurality of J-boxes are disposed in the treatment tank 1; the filter elements 78, which are flexible, are removable through the manhole 10, once the manhole closure 11 has been opened.

As can be seen from FIGS. 1 and 3, the feed nozzle 33 is located in the upper part of the treatment tank 1 and is embodied such that it conforms as closely as possible to the inner contour of the jacket of the treatment tank. In the embodiment shown, the feed nozzle 33 is oriented with a horizontal alignment of its longitudinal axis and of the feeding tube 41. In this arrangement, a very favorable course of the motion of the rope 35 upon lapping-in into the J-box is obtained. However, embodiments are also conceivable in which the feed nozzle 33 and the feeding tube 41 have a slight inclination relative to the diametral plane 13 of the treatment tank. For instance, the axis of the feed nozzle 33 may form an angle of 10 to 30° with the diametral plane 13.

The rope inlet into the feed nozzle 33, in the embodiment shown, is as already noted at an angle of 30° to the plane of symmetry of the tank for the goods. It is separated from the conical suction flow conduit 30 by the baffles 76, 77, which act as air guide baffles, forming a defined chamber between the filter surface of the filter element 78 and the conical suction flow conduit 30.

The cylindrical tubular stub 15 receiving the lower blower part is located laterally next to the vertical longitudinal center plane of the treatment tank 1, such that its upper boundary in the region of the annular flange 18 does not increase the dimensions of the treatment tank 1 in terms of height. It is thus assured that with the blower unit 19 removed, the treatment tank 1 is suitable for container shipping, without requiring additional structural modifications or the like. The treatment tank 1 is smooth-walled on the outside, so that it can readily also be encompassed by a heat insulating layer that leads to further energy savings.

The elements of the high-temperature piece dyeing machine, selected here as an exemplary embodiment, that are located outside the treatment tank 1 are shown schematically in FIG. 1. They essentially comprise a treatment liquor circulation system 82, which contains a liquor recirculating pump 83 and a heat exchanger 84 and leads from the liquor reservoir 14 to the treatment agent supply line 45, from which the feed nozzles 33 of the individual J-boxes I-VI are supplied with treatment agent. The treatment agent circulation system 82 furthermore includes a shutoff valve 85 and a liquor drain valve 86. A secondary tank 87 for the total quantity of liquor, rinse water, and the like, and an attached replenishing tank 88 with a metering pump 89 are connected to the treatment liquor circulation system. A bypass line 90 containing valves and fixtures that are not shown permits a treatment liquor circulation that is separate from the treatment tank 1, as is needed for certain treatment steps. Finally, at 91, the treatment tank 1 can be vented or subjected to steam and so forth.

In closing, it will be noted that in certain applications the feed nozzle 33 in the treatment tank 1 might be pivotable not about the axis 16 but about a different axis or might be supported even displaceably or in some other way movably.