Title:
Water repellant fiberglass binder comprising a fluorinated polymer
Kind Code:
A1


Abstract:
Provided is a fiberglass binder composition which comprises a polycarboxy polymer, a polyol and a fluorinated polymer. The binder also preferably includes a catalyst which is an alkali metal salt of a phosphorus-containing organic acid. The resultant binder provides minimal processing difficulties and a fiberglass product which exhibits minimal water absorption.



Inventors:
Miele, Philip Francis (Highlands Ranch, CO, US)
Application Number:
10/960617
Publication Date:
04/13/2006
Filing Date:
10/07/2004
Primary Class:
International Classes:
D04H3/00
View Patent Images:
Related US Applications:
20080070060Hot-Dip Galvanized Sheet and Method for Manufacturing SameMarch, 2008Suzuki et al.
20050100710Flameproof environmentally friendly artificial leather and process for making the sameMay, 2005Feng et al.
20050020161Garment made from composite fabric for weather protectionJanuary, 2005Dummer
20050064112Artificial turf backingMarch, 2005Nicholls et al.
20040213981Stretched and voided polymeric filmOctober, 2004Clark et al.
20080138574WEB HAVING APERTURES WITH CONVEX SIDESJune, 2008Maschino et al.
20090075043MULTILAYERED EROSION RESISTANT COATING FOR GAS TURBINESMarch, 2009Rice et al.
20090092773STAR-SHAPED DECORATIVE OBJECTApril, 2009Thomas
20080152889Nano-LabelingJune, 2008Brand
20080003383REPOSITIONABLE PHOTO PAPERJanuary, 2008Kitchin et al.
20040191483Foldable freezer compartment matSeptember, 2004Cartier



Primary Examiner:
GRAY, JILL M
Attorney, Agent or Firm:
Robert D. Touslee (Littleton, CO, US)
Claims:
What is claimed is:

1. A fiberglass binder, comprising an aqueous solution of a polycarboxy polymer, a polyol and a fluorinated polymer.

2. The fiberglass binder of claim 1, wherein the molecular weight of the polycarboxy polymer is less than 5000.

3. The fiberglass binder of claim 1, wherein the molecular weight of the polycarboxy polymer is less than 3000.

4. The fiberglass binder of claim 1, wherein the binder further comprises a catalyst which comprises an alkali metal salt of a phosphorus-containing organic acid.

5. The fiberglass binder of claim 4, wherein the catalyst is sodium hydophosphite, sodium phosphite, or a mixture thereof.

6. The fiberglass binder of claim 1, wherein the polyol is triethanolamine.

7. The fiberglass binder of claim 1, wherein the polycarboxy polymer comprises homopolymers and/or copolymers of polyacrylic acid.

8. The fiberglass binder of claim 1, wherein the amount of polycarboxy polymer and polyol in the binder is such that the ratio of carboxy group equivalents to hydroxyl group equivalents is in the range of from about 1/0.65 to 1/0.75.

9. The fiberglass binder of claim 1, wherein the fluorinated polymer is a fluorinated acrylate copolymer.

10. A fiberglass binder, comprising an aqueous solution of a homopolymer and/or copolymer of polyacrylic acid, where the polyacrylic acid polymer has a molecular weight of 5000 or less, triethanolamine and a fluorinated polymer.

11. The fiberglass binder of claim 10, wherein the binder further contains a catalyst which comprises an alkali metal salt of a phosphorus-containing organic acid.

12. The fiberglass binder of claim 10, wherein the amount of polyacrylic acid polymer and triethanolamine in the binder is such that the ratio of carboxy group equivalents to hydroxyl group equivalents is in the range of from about 1/0.65 to 1/0.75.

13. A fiberglass product comprising a mat of glass fibers containing the binder of claim 1.

14. The fiberglass product of claim 13, wherein the product is building insulation.

15. The fiberglass product of claim 13, wherein the product is reinforcing mat for roofing or flooring.

16. The fiberglass product of claim 13, wherein the product is a microglass-based substrate useful for printed circuit boards or battery separators, filter stock, tape stock or reinforcement scrim.

17. The fiberglass product of claim 13, wherein the product is filter stock.

18. A fiberglass product prepared by using a binder comprised of a polycarboxy polymer and a polyol, and spraying onto the product a fluorinated polymer.

19. The fiberglass product of claim 18, wherein the product is thermal or sound insulation, or filtration media for air or liquids.

Description:

BACKGROUND OF THE INVENTION

1. Field of the Invention

The subject invention pertains to polycarboxy polymer binding resins having improved water repellancy properties. More particularly, the subject invention pertains to thermosetting, acrylic acid-based binder resins which cure by crosslinking with a poly-functional, hydroxyl group-reactive curing agent, which binders containing such resins exhibit minimal water absorption. Such binders are useful as replacements for formaldehyde-based binders in non-woven fiberglass goods.

2. Description of the Related Art

Fiberglass binders have a variety of uses ranging from stiffening applications where the binder is applied to woven or non-woven fiberglass sheet goods and cured, producing a stiffer product; thermo-forming applications wherein the binder resin is applied to a sheet or lofty fibrous product, following which it is dried and optionally B-staged to form an intermediate but yet curable product; and to fully cured systems such as building insulation.

Fibrous glass insulation products generally comprise matted glass fibers bonded together by a cured thermoset polymeric material. Molten streams of glass are drawn into fibers of random lengths and blown into a forming chamber where they are randomly deposited as a mat onto a traveling conveyor. The fibers, while in transit in the forming chamber and while still hot from the drawing operation, are sprayed with an aqueous binder. A phenol-formaldehyde binder has been used throughout the fibrous glass insulation industry. The residual heat from the glass fibers and the flow of air through the fibrous mat during the forming operation are generally sufficient to volatilize the majority to all of the water from the binder, thereby leaving the remaining components of the binder on the fibers as a viscous or semi-viscous high solids liquid. The coated fibrous mat is transferred to a curing oven where heated air, for example, is blown through the mat to cure the binder and rigidly bond the glass fibers together.

Fiberglass binders used in the present sense should not be confused with matrix resins which are an entirely different and non-analogous field of art. While sometimes termed “binders”, matrix resins act to fill the entire interstitial space between fibers, resulting in a dense, fiber reinforced product where the matrix must translate the fiber strength properties to the composite, whereas “binder resins” as used herein are not space-filling, but rather coat only the fibers, and particularly the junctions of fibers. Fiberglass binders also cannot be equated with paper or wood product “binders” where the adhesive properties are tailored to the chemical nature of the cellulosic substrates. Many such resins are not suitable for use as fiberglass binders. One skilled in the art of fiberglass binders would not look to cellulosic binders to solve any of the known problems associated with fiberglass binders.

Binders useful in fiberglass insulation products generally require a low viscosity in the uncured state, yet characteristics so as to form a rigid thermoset polymeric mat for the glass fibers when cured. A low binder viscosity in the uncured state is required to allow the mat to be sized correctly. Also, viscous binders tend to be tacky or sticky and hence they lead to accumulation of fiber on the forming chamber walls. This accumulated fiber may later fall onto the mat causing dense areas and product problems. A binder which forms a rigid matrix when cured is required so that a finished fiberglass thermal insulation product, when compressed for packaging and shipping, will recover to its as-made vertical dimension when installed in a building.

From among the many thermosetting polymers, numerous candidates for suitable thermosetting fiberglass binder resins exist. However, binder-coated fiberglass products are often of the commodity type, and thus cost becomes a driving factor, generally ruling out such resins as thermosetting polyurethanes, epoxies, and others. Due to their excellent cost/performance ratio, the resins of choice in the past have been phenol/formaldehyde resins. Phenol/formaldehyde resins can be economically produced, and can be extended with urea prior to use as a binder in many applications. Such urea-extended phenol/formaldehyde binders have been the mainstay of the fiberglass insulation industry for years, for example.

Over the past several decades however, minimization of volatile organic compound emissions (VOCs) both on the part of the industry desiring to provide a cleaner environment, as well as by Federal regulation, has led to extensive investigations into not only reducing emissions from the current formaldehyde-based binders, but also into candidate replacement binders. For example, subtle changes in the ratios of phenol to formaldehyde in the preparation of the basic phenol/formaldehyde resole resins, changes in catalysts, and addition of different and multiple formaldehyde scavengers, has resulted in considerable improvement in emissions from phenol/formaldehyde binders as compared with the binders previously used. However, with increasingly stringent Federal regulations, more and more attention has been paid to alternative binder systems which are free from formaldehyde.

One such candidate binder system employs polymers of acrylic acid as a first component, and a polyol such as glycerine or a modestly oxyalkylated glycerine as a curing or “crosslinking” component. The preparation and properties of such poly(acrylic acid)-based binders, including information relative to the VOC emissions, and a comparison of binder properties versus urea formaldehyde binders is presented in “Formaldehyde-Free Crosslinking Binders For Non-Wovens”, Charles T. Arkins et al., TAPPI JOURNAL, Vol. 78, No.11, pages 161-168, November 1995. The binders disclosed by the Arkins article, appear to be B-stageable as well as being able to provide physical properties similar to those of urea/formaldehyde resins.

U.S. Pat. No. 5,340,868 discloses fiberglass insulation products cured with a combination of a polycarboxy polymer, a-hydroxyalkylamide, and an at least one trifunctional monomeric carboxylic acid such as citric acid. The specific polycarboxy polymers disclosed are poly(acrylic acid) polymers. See also, U.S. Pat. No. 5,143,582

U.S. Pat. No. 5,318,990 discloses a fibrous glass binder which comprises a polycarboxy polymer, a monomeric trihydric alcohol and a catalyst comprising an alkali metal salt of a phosphorous-containing organic acid.

Published European Patent Application EP 0 583 086 Al appears to provide details of polyacrylic acid binders whose cure is catalyzed by a phosphorus-containing catalyst system as discussed in the Arkins article previously cited. Higher molecular weight poly(acrylic acids) are stated to provide polymers exhibiting more complete cure. See also U.S. Pat. Nos. 5,661,213; 5,427,587; 6,136,916; and 6,221,973.

Some polycarboxy polymers have been found useful for making fiberglass insulation products. Problems of clumping or sticking of the glass fibers to the inside of the forming chambers during the processing, as well as providing a final product that exhibits the recovery and rigidity necessary to provide a commercially acceptable fiberglass insulation product, have been overcome. See, for example, U.S. Pat. No. 6,331,350. The thermosetting acrylic resins have been found to be more hydrophilic than the traditional phenolic binders, however. This hydrophilicity can result in fiberglass insulation that is more prone to absorb iiquid water, thereby possibly compromising the integrity of the product. Also, the thermosetting acrylic resins now being used as binding agents for fiberglass have been found to not react as effectively with silane coupling agents of the type traditionally used by the industry. The addition of silicone as a hydrophobing agent results in problems when abatement devices are used that are based on incineration. Also, the presence of silicone in the manufacturing process can interfere with the adhesion of certain facing substrates to the finished fiberglass material. Overcoming these problems will help to better utilize polycarboxy polymers in fiberglass binders.

Accordingly, it is an objective of the present invention to provide a novel, non-phenol/formaldehyde binder.

Yet another object of the present invention is to provide such a binder which allows one to prepare fiberglass insulation products which are more water repellent and less prone to absorb liquid water.

Still another object of the present invention is to provide a fiberglass insulation product which exhibits good recovery and rigidity, is formaldehyde-free, and is more water-proof.

These and other objects of the present invention will become apparent to the skilled artisan upon a review of the following description and the claims appended hereto.

SUMMARY OF THE INVENTION

In accordance with the foregoing objectives, there is provided by the present invention a novel fiberglass binder. The binder composition of the present invention comprises a polycarboxy polymer, a polyol, and a fluorinated polymer. It is also preferred that the binder comprise a catalyst, such as an alkaline metal salt of a phosphorus-containing organic acid.

An important aspect of the binder of the present invention is that the binder composition, in addition to the polycarboxy polymer and the polyol, contains a fluorinated polymer. The presence of the fluorinated polymer in the binder is believed to render the binder, and hence the fiberglass mat to which the binder is applied, essentially waterproof. As a result, fiberglass insulation made with the binder of the present invention avoids the possible problem of coming apart when subjected to water, as the binder of the present invention has been found to repel the water and maintain the integrity of the bond with the fiberglass.

Among other things, it has been discovered that by including a fluorinated polymer in a formaldehyde free binder for glass fibers, and in particular a polycarboxy/polyol binder, water repellency for the fiberglass mats prepared are achieved without adversely effecting performance or processing. The glass fiber mats can be used as thermal or sound insulation, as well as filtration media in filtering air or liquids.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The binder of interest with regard to the present invention is a formaldehyde free binder useful for glass fibers. Of particular interest is a binder composition compound of a polycarboxy polymer and a polyol. Such binder compositions are described, for example, in U.S. Pat. No.6,331,350, which is hereby expressly incorporated by reference in its entirety.

The polycarboxy polymer used in the preferred binder of the present invention comprises an organic polymer or oligomer containing more than one pendant carboxy group. The polycarboxy polymer may be a homopolymer or copolymer prepared from unsaturated carboxylic acids including but not necessarily limited to, acrylic acid, methacrylic acid, crotonic acid, isocrotonic acid, maleic acid, cinnamic acid, 2-methylmaleic acid, itaconic acid, 2-methylitaconic acid, -methyleneglutaric acid, and the like. Alternatively, the polycarboxy polymer may be prepared from unsaturated anhydrides including, but not necessarily limited to, maleic anhydride, methacrylic anhydride, and the like, as well as mixtures thereof. Methods for polymerizing these acids and anhydrides are well-known in the chemical art.

The polycarboxy polymer of the present invention may additionally comprise a copolymer of one or more of the aforementioned unsaturated carboxylic acids or anhydrides and one or more vinyl compounds including, but not necessarily limited to, styrene, -methylstyrene, acrylonitrile, methacrylonitrile, methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, methyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, glycidyl methacrylate, vinyl methyl ether, vinyl acetate, and the like. Methods for preparing these copolymers are well-known in the art.

Preferred polycarboxy polymers comprise homopolymers and copolymers of polyacrylic acid. It is particularly preferred that the molecular weight of the polycarboxy polymer, and in particular polyacrylic acid polymer, is less than 10000, more preferably less than 5000, and most preferably about 3000 or less. The low molecular weight polycarboxy polymer results in a final product which exhibits excellent recovery and rigidity.

The formaldehyde-free curable aqueous binder composition of the present invention also contains a polyol containing at least two hydroxyl groups. The polyol must be sufficiently nonvolatile such that it will substantially remain available for reaction with the polyacid in the composition during heating and curing operations. The polyol may be a compound with a molecular weight less than about 1000 bearing at least two hydroxyl groups such as, for example, ethylene glycol, glycerol, pentaerythritol, trimethylol propane, sorbitol, sucrose, glucose, resorcinol, catechol, pyrogallol, glycollated ureas, 1,4-cyclohexane diol, diethanolamine, triethanolamine, and certain reactive polyols such as, for example, -hydroxyalkylamides such as, for example, bis[N,N-di(-hydroxyethyl)]adipamide, as may be prepared according to the teachings of U.S. Pat. No. 4,076,917, hereby incorporated herein by reference in its entirety, or it may be an addition polymer containing at least two hydroxyl groups such as, for example, polyvinyl alcohol, partially hydrolyzed polyvinyl acetate, and homopolymers or copolymers of hydroxyethyl (meth) acrylate, hydroxypropyl(meth) acrylate, and the like. The most preferred polyol for the purposes of the present invention is triethanolamine (TEA).

The ratio of the number of equivalents of carboxy, anhydride, or salts thereof of the polyacid to the number of equivalents of hydroxyl in the polyol is from about 1/0.01 to about ⅓. An excess of equivalents of carboxy, anhydride, or salts thereof of the polyacid to the equivalents of hydroxyl in the polyol is preferred, however, thus, a more preferred ratio of the number of equivalents of carboxy, anhydride, or salts thereof in the polyacid to the number of equivalents of hydroxyl in the polyol is from about 1/0.2 to about 1/0.95, more preferably from 1/0.6 to 1/0.8, and most preferably from 1/0.65 to 1/0.75. A low ratio, approaching 1/0.7 has been found to be of particular advantage especially when combined with a low molecular weight polycarboxy polymer as described above, and also preferably with a lower pH binder.

It is most preferred that the pH of the binder of the present invention also be low, i.e., no greater than 4.5, and preferably less than 3.5, for it has been found that the combination of low molecular weight polycarboxy polymer with a lowered pH provides a binder exhibiting minimal processing difficulties and a final product with excellent recovery and rigidity. Maintaining the pH in the range of from 3.5 to 4.5 allows one to avoid serious problems with corrosion of the equipment while still realizing the benefits of the low pH. However, a lower pH can also be used, e.g., less than 3.5, and is actually preferred due to beneficial results, with appropriate handling precautions.

An important aspect of the present invention is that the binder of the present invention also contains a fluorinated polymer, as an additive. The presence of the fluorinated polymer has been found to render the polycarboxy/polyol binder of the present invention less prone to absorb water, while still allowing excellent products and good processing of those products, e.g., thermal and sound insulation products and filtration media in filtering air or liquids. As a result, its presence may better maintain the integrity of the bond between the binder and glass fiber, and hence the integrity of the entire mat product, when exposed to liquid water. The binder bond, and hence the overall product, is more water-proof.

The preferred fluorinated polymer is a copolymer prepared from a fluorine containing acrylate monomer with styrene or some other commonly used acrylate comonomer. Such fluorinated polymers are available, for example, under the trademark ParaChem RD-F25™. Generally, any suitable fluorine-containing polymer in which fluorine has been substituted for hydrogen in an organic polymer can be employed. This would include the vinyl fluoride polymers and the tetrafluoroethylene polymers. Among the tetrafluoroethylene polymers, the homopolymers of tetrafluoroethylene, as well as its copolymers with hexafluoropropylene, perfluorovinylether and ethylene can also be used to impart hydrophobicity to the polycarboxy/polyol binder of the present invention.

The fluorinated polymers employed are generally added to the polycarboxy/polyol binder as a dispersion or emulsion, and can be added directly to the binder composition which is then employed in the formation of the fiberglass products. Alternatively, the fluorinated polymer can be sprayed onto the fiberglass product itself once it has been formed and cured. A combination of these two events can also be employed. It is preferred, however, that the fluorinated polymer be added directly to the binder composition used in the formation of the fiberglass product.

The amount of fluorinated polymer employed is generally such that the final fiberglass product contains from 0.005 to 0.5 wt. % of the fluorine-containing polymer. More preferably, the amount of fluorine-containing polymer in the final product can generally range from about 0.01 to about 0.3 wt. %, even more preferably from about 0.04 to 0.1 wt. %, and most preferably in the range of about 0.05 to 0.09 wt. %. It has been found that the use of the fluorine-containing polymer can be at levels much lower than silicone materials to achieve similar water repellency, while also overcoming the problems often inherent in using silicone hydrophobing agents. Use of the more preferred ranges, e.g., from 0.05 to 0.09 wt. % of the fluorine-containing polymer, offers excellent water repellency while using only a small amount of the additive, thus making the use economical as well.

It is preferred that the formaldehyde-free curable aqueous binder composition of the present invention also contain a catalyst. Most preferably, the catalyst is a phosphorous-containing accelerator which may be a compound with a molecular weight less than about 1000 such as, for example, an alkali metal polyphosphate, an alkali metal dihydrogen phosphate, a polyphosphoric acid, and an alkyl phosphinic acid or it may be an oligomer or polymer bearing phosphorous-containing groups such as, for example, addition polymers of acrylic and/or maleic acids formed in the presence of sodium hypophosphite, addition polymers prepared from ethylenically unsaturated monomers in the presence of phosphorous salt chain transfer agents or terminators, and addition polymers containing acid-functional monomer residues such as, for example, copolymerized phosphoethyl methacrylate, and like phosphonic acid esters, and copolymerized vinyl sulfonic acid monomers, and their salts. The phosphorous-containing accelerator may be used at a level of from about 1% to about 40%, by weight based on the combined weight of the polyacid and the polyol. Preferred is a level of phosphorous-containing accelerator of from about 2.5% to about 10%, by weight based on the combined weight of the polyacid and the polyol.

The formaldehyde-free curable aqueous binder composition may contain, in addition, conventional treatment components such as, for example, emulsifiers, pigments, filler, anti-migration aids, curing agents, coalescents, wetting agents, biocides, plasticizers, organosilanes, anti-foaming agents, colorants, waxes, and anti-oxidants.

The formaldehyde-free curable aqueous binder composition may be prepared by admixing the polyacid of the present invention, the polyol, and the phosphorous-containing accelerator using conventional mixing techniques. In another embodiment, a carboxyl- or anhydride-containing addition polymer and a polyol may be present in the same addition polymer, which addition polymer would contain both carboxyl, anhydride, or salts thereof functionality and hydroxyl functionality. In another embodiment, the salts of the carboxy-group are salts of functional alkanolamines with at least two hydroxyl groups such as, for example, diethanolamine, triethanolamine, dipropanolamine, and di-isopropanolamine. In an additional embodiment, the polyol and the phosphorous-containing accelerator may be present in the same addition polymer, which addition polymer may be mixed with the modified polyacid of the present invention. In yet another embodiment the carboxyl- or anhydride-containing addition polymer, the polyol, and the phosphorous-containing accelerator may be present in the same addition polymer. Other embodiments will be apparent to one skilled in the art. As disclosed herein-above, the carboxyl groups of the polyacid may be neutralized to an extent of less than about 35% with a fixed base before, during, or after the mixing to provide the aqueous composition. Neutralization may be partially effected during the formation of the polyacid.

Once the composition of the polyacid, the polyol and the fluorinated polymer has been prepared, in a preferred embodiment, other additives, can then be mixed in with the composition to form the final composition to be sprayed on the fiberglass. As molten streams of glass are drawn into fibers of random lengths and blown into a forming chamber where they are randomly deposited as a mat onto a traveling conveyor, the fibers, while in transit in the forming chamber, are sprayed with the aqueous binder composition of the present invention, which includes the modified polyacid.

More particularly, in the preparation of fiberglass insulation products, the products can be prepared using conventional techniques. As is well known, a porous mat of fibrous glass can be produced by fiberizing molten glass and immediately forming a fibrous glass mat on a moving conveyor. The expanded mat is then conveyed to and through a curing oven wherein heated air is passed through the mat to cure the resin. The mat is slightly compressed to give the finished product a predetermined thickness and surface finish. Typically, the curing oven is operated at a temperature from about 150□C to about 325□C. Preferably, the temperature ranges from about 180□ to about 225□C. Generally, the mat resides within the oven for a period of time from about ½ minute to about 3 minutes. For the manufacture of conventional thermal or acoustical insulation products, the time ranges from about ¾ minute to about 1½ minutes. The fibrous glass having a cured, rigid binder matrix emerges from the oven in the form of a bat which may be compressed for packaging and shipping and which will thereafter substantially recover its vertical dimension when unconstrained.

The formaldehyde-free curable aqueous composition may also be applied to an already formed nonwoven by conventional techniques such as, for example, air or airless spraying, padding, saturating, roll coating, curtain coating, beater deposition, coagulation, or the like.

The waterborne formaldehyde-free composition of the present invention, after it is applied to a nonwoven, is heated to effect drying and curing. The duration and temperature of heating will affect the rate of drying, processability and handleability, and property development of the treated substrate. Heat treatment at about 120□C, to about 400□C, for a period of time between about 3 seconds to about 15 minutes may be carried out; treatment at about 150□C, to about 250□C, is preferred. The drying and curing functions may be effected in two or more distinct steps, if desired. For example, the composition may be first heated at a temperature and for a time sufficient to substantially dry but not to substantially cure the composition and then heated for a second time at a higher temperature and/or for a longer period of time to effect curing. Such a procedure, referred to as “B-staging”, may be used to provide binder-treated nonwoven, for example, in roll form, which may at a later stage be cured, with or without forming or molding into a particular configuration, concurrent with the curing process.

The heat-resistant nonwovens may be used for applications such as, for example, insulation batts or rolls, as reinforcing mat for roofing or flooring applications, as roving, as microglass-based substrate for printed circuit boards or battery separators, as filter stock, as tape stock, as tape board for office petitions, in duct liners or duct board, and as reinforcement scrim in cementitious and non-cementitious coatings for masonry. Most preferably, the products are useful as thermal or sound insulation. The nonwovens can also be used as filtration media for air and liquids.

The present invention will be further illustrated by the following example, which is in no manner meant to be limiting in scope.

EXAMPLE

An emulsified copolymer of fluorine-containing acrylate monomer with styrene, available under the trademark ParaChem RD-F25™, was added to a polyacrylic acid/polyol binder in a fiberglass building product manufacturing process, where the final insulation product contained approximately 5% binder content by weight. The fluorine-containing polymer was added to the binder in several levels to produce samples of R19 insulation containing various levels of the fluorine-containing polymer additive. A run was also made where a silicone hydophobing agent was added such that the final product contained 0.09 wt. % of the silicone additive. All of the samples were tested for water repellency by measuring water pickup by weight. This was achieved by taking a 6-inch by 6-inch square of the fiberglass product and placing it into a bath of water for five minutes. After that time, the fiberglass was removed and suspended for 30 seconds from one corner to allow draining. After the 30 seconds, the fiberglass sample was then weighed. The weight gain was recorded as a percent of the original weight. The results are shown below:

Additive Percent
Sample(based on final product)Weight Gain Percent
control0.0970
(silicone additive)
10.0938
20.0663
30.04245
401900

The foregoing results with regard to samples 1, 2 and 3, as compared to the control and sample 4 (which contained no additive) demonstrate that the fluorinated additive of the present invention can achieve water repellency, even at reduced levels compared to that of silicone.

While the invention has been described with preferred embodiments, it is to be understood that variations and modifications may be resorted to as will be apparent to those skilled in the art. Such variations and modifications are to be considered within the purview and the scope of the claims appended hereto.