Title:
Integral contractors box for a submersible turbine pump
Kind Code:
A1


Abstract:
The present invention provides a submersible turbine pump (STP) comprised of a manifold comprising an electrical cavity, a port above the electrical cavity, and a field wiring conduit through which electrical field wiring is brought into the electrical cavity and connected to the submersible turbine pump. The STP is further comprised of a removable plug adapted to be inserted into the port. When the removable plug is inserted into the port, the plug seals the electrical cavity. When the removable plug is removed from the port, access is provided to the electrical cavity.



Inventors:
Dolson, Richard (Collinsville, CT, US)
Application Number:
10/959705
Publication Date:
04/14/2005
Filing Date:
10/06/2004
Assignee:
VEEDER-ROOT COMPANY (Simsbury, CT, US)
Primary Class:
Other Classes:
417/423.1, 417/423.3, 417/423.7
International Classes:
B67D7/04; F04D13/06; F04D13/08; F04D15/00; F04D29/08; F04D29/40; F04D29/42; (IPC1-7): F04B17/00; F04B35/04
View Patent Images:
Related US Applications:
20090252623RECIPROCATING MOTOR AND A RECIPROCATING COMPRESSOR HAVING THE SAMEOctober, 2009Choi et al.
20080197731Brushless motor and pump mounted with brushless motorAugust, 2008Kusano
20100061869CRYOGENIC FLUID CIRCULATION PUMPMarch, 2010Kwon et al.
20080283010CAM SHAFT PHASE SETTER AND VACUUM PUMP FOR AN INTERNAL COMBUSTION ENGINENovember, 2008Bohner et al.
20080267788Multiple power tire inflatorOctober, 2008Yen
20100098555Submersible Water Pump DeviceApril, 2010He
20080025852Economical tide/wave/swell/wind/solar powered high pressure fluid pumpJanuary, 2008Davis
20080131293Electro hydro dynamics pump (EHD pump)June, 2008Hanaoka et al.
20070065294Vacuum pump systemMarch, 2007Losch et al.
20040208754Speed regulated oil delivery systemOctober, 2004Mcfadden et al.
20080036321MAGNETIC FLOATING SHAFT SET AND APPARATUS USING SAMEFebruary, 2008Yu



Primary Examiner:
DWIVEDI, VIKANSHA S
Attorney, Agent or Firm:
WITHROW & TERRANOVA, P.L.L.C. (Cary, NC, US)
Claims:
1. A submersible turbine pump, comprising: a manifold, comprising: an electrical cavity; a port above the electrical cavity; and a field wiring conduit through which electrical field wiring is brought into the electrical cavity and connected to the submersible turbine pump; and a removable plug adapted to be inserted into the port, thereby sealing the port when inserted into the port and allowing access to the electrical cavity when removed from the port.

2. The submersible turbine pump of claim 1 further comprising an o-ring located between the port and the removable plug and sealing the port when the removable plug is inserted into the port.

3. The submersible turbine pump of claim 1 wherein the port is a female threaded port and the removable plug is a male threaded plug.

4. The submersible turbine pump of claim 1 further comprising: a rubber bushing located within the field wiring conduit wherein the electrical field wiring passes through the rubber bushing before entering the electrical cavity; and top and bottom plates adapted to adjustably compress the rubber bushing to provide strain relief to the electrical field wiring.

5. The submersible turbine pump of claim 4 further comprising a screw connected to the top and bottom plates such that rotating the screw controls a distance between the top and bottom plates, wherein the distance between the plates decreases when the screw is rotated in a first direction thereby compressing the rubber bushing and the distance between the plates increases when the screw is rotated in a second direction thereby uncompressing the rubber bushing.

6. The submersible turbine pump of claim 1 wherein the field wiring conduit is sealed.

7. The submersible turbine pump of claim 1 wherein the electrical cavity is explosion proof.

8. The submersible turbine pump of claim 1 wherein the manifold further comprises a second port above the electrical cavity, and the submersible turbine pump further comprises a second removable plug adapted to be inserted into the second port, thereby sealing the second port when inserted into the second port and allowing access to the electrical cavity when removed from the second port.

9. The submersible turbine pump of claim 8 further comprising a capacitor located within the electrical cavity and the capacitor is accessible when the second removable plug is removed from the second port.

10. The submersible turbine pump of claim 1 wherein the manifold further comprises: at least one additional electrical cavities; at least one additional port above the at least one additional electrical cavity; and at least one additional field wiring conduit through which additional electrical field wiring is brought into the at least one additional electrical cavity and connected to the submersible turbine pump.

11. The submersible turbine pump of claim 10 further comprising at least one additional removable plug adapted to be inserted into the at least one additional port, thereby sealing the at least one additional port when inserted into the at least one additional port and allowing access to the at least one additional electrical cavity when removed from the at least one additional port.

Description:

RELATED APPLICATIONS

This application claims priority to Provisional Patent Application Ser. No. 60/510,735 filed on Oct. 11, 2003, which is hereby incorporated by reference in its entirety.

This application is related to the following commonly owned U.S. patent applications, which are hereby incorporated by reference in their entireties:

    • i) U.S. patent application Ser. No., ______, entitled “Spring Loaded Submersible Turbine Pump”, filed on ______,
    • ii) U.S. patent application Ser. No., ______, entitled “Yoke Assembly For A Submersible Turbine Pump That Pumps Fuel From An Underground Storage Tank”, filed on ______,
    • iii) U.S. patent application Ser. No. ______, entitled “Check Valve for a Submersible Turbine Pump”, filed on ______, and
    • iv) U.S. patent application Ser. No. ______, entitled “Siphon System For A Submersible Turbine Pump That Pumps Fuel From An Underground Storage Tank”, filed on ______.

FIELD OF THE INVENTION

The present invention relates to a submersible turbine pump, and more particularly relates to a submersible turbine pump having an integral contractors box.

BACKGROUND OF THE INVENTION

In service station environments, fuel is delivered to fuel dispensers from underground storage tanks (UST), sometimes referred to as fuel storage tanks. USTs are large containers located beneath the ground that contain fuel. A separate UST is provided for each fuel type, such as low octane gasoline, high-octane gasoline, and diesel fuel. In order to deliver the fuel from the USTs to the fuel dispensers, a submersible turbine pump (STP) is provided that pumps fuel out of the UST and delivers the fuel to fuel dispensers through a main fuel piping conduit that runs beneath the ground in the service station.

A typical STP is illustrated in U.S. Pat. No. 6,223,765. As illustrated in FIG. 4 of U.S. Pat. No. 6,223,765, the STP includes a casing body 12 and a removable top 22 secured to the casing body 12. A contractors box 274, also called a junction box, is removably mounted within the casing body 12. The contractors box 274 has an externally threaded neck 286 that passes through an opening in the casing body. The contractors box 274 is attached to the casing body 12 by securing a nut 290 onto the externally threaded neck 286. An electrical conduit 294 is threading into the neck 286. The electrical conduit 294 contains wires 296 such as wires from an external power source. Within the contractors box 274, the electrical field wires extend upwardly through a tube 298 that extends into a yoke 300. The yoke 300 is secured to the casing body 12 partly above the contractors box 274 by a bolt 302 extending through the yoke 300 and threaded into a lug 304 extending from the contractors box 274. Part of the yoke 300 is secured on top of the contractors box 274 and another part of the yoke 300 is secured on top of a wing 306 of a power head 40 of the STP. The wires 296 extend from the contractors box 274 , through the yoke 300, and into the power head 40. From the power head 40, the wires 296 extend into conduit 318 (FIG. 3) and eventually connected to an electric pump 36 (FIG. 3) within the UST 18 (FIG. 3).

To service the STP, the contractors box 274 must be accessed. To access the wiring 296 within the tube 298 of the contractors box 274, the removable top 22 and the plug 278 must be removed from the casing body 12. The top 22 is removed by removing the bolts 34, and the packer is removed by removing the bolt 302 from the lug 304. However, due to the contractors box 274 being a separate component rather than integral to the manifold or casing body 12 of the STP, there is more potential for misalignment of the yoke 300 with the contractors box 274 during manufacturing, and all of the aforementioned with respect to the manifold 12. Therefore, it would be advantageous for manufacturing reliability and quality reasons to provide a contractors box that is integral to the STP and its manifold 12

SUMMARY OF THE INVENTION

The present invention provides a submersible turbine pump (STP) comprised of a manifold comprising an electrical cavity, a port above the electrical cavity, and a field wiring conduit through which electrical field wiring is brought into the electrical cavity and connected to the submersible turbine pump. The STP is further comprised of a removable plug adapted to be inserted into the port. When the removable plug is inserted into the port, the plug seals the electrical cavity. When the removable plug is removed from the port, access is provided to the electrical cavity.

The STP may further comprise a rubber bushing within the field wiring conduit and through which the field wiring passes before entering the electrical cavity. Plates are located above and below the rubber bushing that adjustably compress the rubber bushing to provide strain relief to the electrical field wiring. One or more screws pass through the plates such that when the screws are tightened, the plates compress the rubber bushing. When the screws are loosened, the compression of the rubber busing is relieved.

The STP may also comprise an O-ring between the removable plug and the port. The O-ring operating to further seal the port when the plug is inserted into the port. When the plug is inserted into the port, the electrical cavity forms an explosion proof area for connection of the electrical field wiring to the submersible turbine pump.

In one embodiment, the port is a female threaded port, and the plug is a male threaded plug. Accordingly, the plug is inserted into the port by rotating the plug in a first rotational direction, and the plug is removed from the port by rotating the plug in a second rotational direction.

Those skilled in the art will appreciate the scope of the present invention and realize additional aspects thereof after reading the following detailed description of the invention in association with the accompanying drawing figures.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the invention, and together with the description serve to explain the principles of the invention.

FIG. 1 is a schematic diagram of the submersible turbine pump (STP) according to the present invention;

FIG. 2 is a cross sectional diagram of the STP illustrated in FIG. 1;

FIG. 3 is a schematic diagram of a yoke design integral to the manifold of the STP;

FIG. 4 is a schematic diagram of the STP illustrated in FIG. 1 with field wiring access electrical contractors boxes open and illustrated;

FIG. 5 is a schematic diagram of the electrical cavities inside the STP that are accessible via the electrical contractors box;

FIG. 6 is a schematic diagram of a check valve in the fuel piping inside the STP;

FIG. 7 is a more detailed schematic diagram of the check valve illustrated in FIG. 6 and a c-spring extraction device;

FIG. 8 is a schematic diagram of a nozzle in the STP that is used to generate an external vacuum source siphon;

FIG. 9 is a schematic diagram of the siphon cartridge designed to couple to a siphon connection.

DETAILED DESCRIPTION OF THE INVENTION

The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the invention and illustrate the best mode of practicing the invention. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the invention and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.

FIG. 1 illustrates a submersible turbine pump (STP) 10 that embodies various inventive aspects that are the subject of this provisional patent application. The STP 10 is comprised of a casing that contains a body 12 which is generally cylindrical. A riser pipe 14 is coupled to the manifold 19. The riser pipe 14 is designed to be secured on the top of an underground storage tank (not shown), and contains fuel piping that carries fuel pumped by the STP 10 to be delivered to one or more fuel dispensers (not shown). The riser pipe 14 typically rests on the underground storage tank at the tank opening, and the weight of the casing body 12 and the components is borne by the underground storage tank. More information on the general operation of a STP 10 in a service station environment can be found in U.S. Pat. No. 6,223,765 B1, entitled “Casing Construction for Fuel Dispensing System,” in FIGS. 3 and 10 in particular. U.S. Pat. No. 6,223,765 B1 is incorporated hereby by reference in its entirety.

Before describing the particular inventive aspects of the STP 10 contained in this patent application in detail, a continued overview of the various components of the STP 10 is illustrated in FIG. 1 follows.

The casing body 12 has a top 18, also called a “packer,” that is normally closed. The casing body 12 is also comprised of a manifold 19. The packer 18 fits on top of the manifold 19 to form a tight seal when the STP 10 is its normal configuration. The packer 18 can be removed if the STP 10 needs to be serviced. If the STP 10 needs to be serviced by gaining access to the internal hydraulics cavity 20 (illustrated in FIG. 2) of the STP 10, the packer 18 is removed from the manifold 19. The packer 18 is secured to the casing 12 and manifold 19 [gs] by a plurality of fasteners, also called “nuts” 22 [gs for “nuts”] that fit into studs 23 (illustrated in FIG. 2) which are tightened down to secure the packer 18 to the manifold 19. Typically, the nuts 22 can be loosened by applying a socket or wrench to the nuts 22 and rotating the nuts 22 counterclockwise.

After the nuts 22 are loosened by rotating them counterclockwise, the packer 18 can be removed from the manifold 19 by applying a pulling force to a handle 24 that is secured to the packer 18. The handle 24 has a curly shaped head 26 that is designed to allow a rope or chain to be placed inside an orifice 28 formed by the head 26 to apply such force. When the packer 18 is placed on body 12 on top of the manifold 18 and the nuts 22 are tightened, the casing 12 is fluid tight. The packer 18 is removable so that access can be obtained to the internal hydraulics cavity 20 of the STP 10.

The manifold 19 contains an integral contractors box 29 that allow a service personnel to gain access to electrical cavity 30 (illustrated in FIGS. 4 and 5) inside the STP 10 for performing field wiring in the STP 10 without breaching the hydraulic cavity 20 of the STP 10. The integral contractor box 29 is comprised of one or more plugs 32 that each contain an integral hexagon fastener 34 on top. Each of the plugs 32 are threaded as male connections underneath (not shown) such that they fasten with female threaded ports 37 (illustrated in FIG. 4 below) on the inside walls of the cavities 30. An o-ring is provided between the plugs 32 and the cavities 30 so that a fluid tight seal is made between the plugs 32 and the cavities 30 when the plugs 32 are screwed tightly into the female threads of the cavities 30. More detail about the integral contractor box 29 on the STP 10 is discussed below and illustrated in FIGS. 4 and 5, below.

The STP 10 also contains a check valve extraction housing 36 that allows extraction of a check valve 38 (illustrated in FIGS. 6 and 7 below) located in the manifold 19. The check valve extraction housing 36 is comprised of a lock down screw 92 (see FIG. 6) that is rotated clockwise to attach to the check valve 38 for extraction and depressurization of fuel inside the STP 10. The check valve 38 generally prevents fuel pumped by the STP 10 from the underground storage tank (not shown) from flowing back to the underground storage tank 10 and generally allows fuel to only flow in one direction within the STP 10. When the STP 10 is serviced, it is necessary to relieve the pressure differential between the inlet 86 and outlet side 88 (illustrated in FIG. 6, below) of the check valve 38 so that fuel inside the STP 10 is not pressurized when service personnel obtains access to the hydraulics cavity 90 by removing the check valve housing 36. More detail about the check valve extraction is discussed in more detail below and is illustrated in FIGS. 6-7, below

The manifold 19 contains two siphon connections 42 that provide a siphon system. The siphon connections 42 are designed to receive a siphon cartridge 44 to provide coupling to a vacuum created inside the STP 10 via a nozzle 102 (illustrated in FIG. 8). In FIG. 1, only one siphon cartridge 44 is included. The other siphon connection 42 is unused and contains a dummy plug 46. The siphon system allows the STP 10 to generate a vacuum internally from fuel flow through a venturi to pull a separate vacuum on other systems as will be later described in this patent application.

FIG. 2 illustrates a cross sectional view of the STP 10 illustrated in FIG. 1 to illustrate die springs 50 that are included in the manifold 19 of the STP 10. If the STP 10 is required to be serviced by service personnel, the service personnel may need to remove the packer 18 from the manifold 19 to access the hydraulic cavity 20 of the STP 10. Three sets of o-rings 49 are included between the packer 18 and the manifold 19 to provide sealing for three different pressure zones within the hydraulic cavity 20. Each of the three pressure zones are labeled as pressure zone 1 (P1), pressure zone 2 (P2), and pressure zone 3 (P3) in FIG. 2. Pressure zone 3 is at the same pressure as inside the underground storage tank (not shown). Pressure zone 2 is where the pump is developing pressure inside the fuel supply piping that is coupled to fuel dispensers and receives the fuel from the STP 10. Pressure zone 1 returns fuel from the nozzle 102 inside the STP 10 back to the underground storage tank.

After a while, the o-rings 49 swell when exposed to fuel inside the manifold 19 thereby increasing the friction between the packer 18 and the manifold 19 if separated. Before the present invention, this causes a great deal of force to have to be exerted on the handle 24 to remove the packer 18 from the manifold 19 to gain access to the hydraulic cavity 20.

In the present invention, the manifold 19 includes two female pockets 50 that are located directly beneath the nuts 22 that secure the packer 18 to the manifold 19. Die springs 52 are placed inside each of the two female pockets 50 while the packer 18 is removed during manufacturing or servicing of the STP 10. Springs 52 are selected so that the springs 52 extend beyond the top of upper plane 54 of the manifold 19 when not under any compression. When the packer 18 is placed on top of the manifold 19, and the nuts 22 are tightened to seal the packer 18 to the manifold 19, the springs 52 are compressed inside the pockets 50 causing the springs 52 to store energy. When service personnel desires to remove the packer 18 from the manifold 19, the service personnel applies a pulling force to the packer 18, usually via the handle 24 after the nuts 22 are loosened. The die springs 52, under compression, are exerting a force against the packer 18 so that less pulling force is required to be applied to the handle 24. In essence, as the packer 18 is pulled upward, the energy stored in the springs 52 is also exerting force upward against the packer 18 thereby aiding in the removal of the packer 18 from the manifold 19.

The inclusion of die springs 52 in the manifold 19 is an improvement over prior STP 10 designs that provide the ability to remove a packer 18 from the manifold 19. Depending on the springs 52 selected and the amount of energy stored in the springs 52 when compressed, when the packer 18 is sealed onto the manifold 19, the springs 52 may even contain enough stored energy to separate the packer 18 from the manifold 19 after the nuts 22 are loosened without any pulling force being applied on the handle 24. Before inclusion of the die springs 52, a larger amount of force had to be applied to the packer 18 to remove it from the manifold 19 especially since the o-ring seals 49 provide a pressurized seal between the packer 18 and the manifold 19 requiring high extraction/separation forces to remove the packer 18 from the manifold 19 for servicing.

Any type of spring may be used as the springs 52. Further, even though the current design of the STP 10 includes two springs 52, only one spring 52 and pocket 50 combination may be used, or more than two springs 52 and pocket 50 combinations may be used. It may be more advantageous to provide only one spring 52 for space conservation so long as a single spring 52 can store enough energy to aid in the extraction of the packer 18 from the manifold 19. According to one embodiment of the present invention, the springs 52 are Raymond® die springs manufactured by Associated Spring.

Another aspect of the STP 10 that is a subject of this application is an improved yoke assembly 56 illustrated in FIG. 3. An example of a yoke assembly in the prior art is illustrated and described in detail in FIGS. 3 and 10 of U.S. Pat. No. 6,223,765 B1, previously reference above.

Turning to FIG. 3, electrical wires 58 include electrical lead wires. The yoke assembly 56 design according to the present invention includes a yoke sleeve 60 that is an integral part of the manifold 19 unlike prior art systems where the yoke is a separate device that is bolted onto the packer 18. The yoke sleeve 60 is hollow and forms a conduit 62 for the electrical wires 58 that bring electricity from the STP 10 to the turbine pump inside the underground storage tank (not shown). The yoke sleeve 60 is held into place into the manifold 19 using a set screw 64 that is bored into the outer side of the manifold 19. The set screw 64 may extend outside of the manifold 12 and is designed to fit into a groove 66 located in the outer wall 68 of the yoke assembly 60. Removal of the set screw 64 allows the yoke sleeve 60 to be removed if servicing and/or replacement of the yoke sleeve 60 is required. However, during normal operation and servicing, the yoke sleeve 60 is not removed and it forms an integral part of the manifold 19 unlike prior art STP systems.

It is necessary for safety reasons to ensure that the electrical wires 58 that connect to the turbine pump (not shown) are disconnected from the electrical wires 58 that run inside the conduit 62 in the yoke sleeve 60 if the packer 18 is removed from the manifold 19. When the packer 18 is removed, the electrical wires 58 are broken at the critical point 70. In prior art systems, the yoke assembly was a separate device from the STP 10, like in aforementioned U.S. Pat. No. 6,223,765 B1. The yoke was provided in an explosion proof housing in case a spark were to occur at the joint where an electrical connection is made between the yoke and packer. In this prior art system, service personnel had to first remove the yoke assembly separately before gaining access to the hydraulics cavity 20 to remove the pump via removal of the packer. Now with the present invention, service personnel only need to remove the packer 18 to automatically sever the electrical wires 58 when the packer 18 is removed from the manifold 19 since the yoke assembly 60 is integral with the manifold 19 and not the packer 18.

The STP 10 also contains an integral contractors box 29 comprised of one or more electrical cavities 30. In the example illustrated in FIG. 4, there is only one electrical cavity 30. This electrical cavity 30 is provided to provide access to field wires that are brought into the cavity 30 from underneath the STP 10 through the field wiring conduit 74 (illustrated in FIG. 5). The electrical cavity 30, when sealed, serves as an explosion proof area where field wiring connections can be made for the STP 10 for a device that contains a Class 1, Division 1 area due to fuel handling.

When service personnel make wiring connections necessary to put the STP 10 into service in the field, the service personnel bring the wiring into the electrical cavities 30 via the field wiring conduit 74 in FIG. 5. The pump wires that are connected to the turbine pump (not shown) come over from the yoke assembly 60. After the service personnel runs the field wiring into the field wiring conduit 74, a seal is made by placing a piece of rigid conduit in the field wiring conduit 74 to seal off the electrical cavities 30 from its environment including the underground storage tank and any vapors that may be proximate to the field wiring conduit 74. The field wiring is brought into the electrical cavity 30 by running the wiring through a rubber bushing 82 that is compressed between two steel plates 80 on the top and bottom of the rubber bushing 82. The screws 84 are tightened and the bushing is compressed to provide strain relief to the wiring in case the wiring is pulled from the field wiring conduit 74.

When service personnel later want to access the field wiring without breaking the seal formed at the field wiring conduit 74 underneath the manifold 19, the service personnel can loosen the plugs 34 to gain access to the electrical cavity 30. The plugs 34 seal the electrical cavity 30 off and o-rings 76 are provided between the plugs 34 and the threaded ports 37 to form a tight seal when the plugs 34 are tightened.

One reason that an electrical cavity 30 is provided that contains two plugs 34 for access in the STP 10 is that a capacitor 78 is included inside the electrical cavity 30 in this example. A capacitor 78 may be used to store energy to assist the motor (not shown) in the STP 10 when a fuel dispenser is activated to dispense fuel. Please note that the capacitor 78 is an optional component and is not required.

FIG. 6 illustrates another aspect of the present invention where a check valve 38 is provided in the hydraulics cavity 90 of the STP 10. The check valve 38 is provided in a check valve housing 36. As fuel is pumped from the turbine pump (not shown) through a column pipe 16 (not illustrated in FIG. 6) and into the STP 10, the fuel flow encounters the inlet side 86 of the check valve 38. The check valve 38 is designed so that fuel can flow from the inlet side 86 to the outlet side 88 of the check valve 38. The force exerted by the fuel flow pushes up on the check valve 38 on its inlet side 86 and allows fuel to flow around the outsides of the check valve 38 and through the hydraulic cavity 90 to the right of the check valve 38. The check valve 38 prevents fuel from back flowing to the underground storage tank.

When the STP 10 is serviced, the STP 10 is shut off and the service personnel must remove the packer 18 to pull out the pump in the hydraulic cavity 20 for servicing. However, after the STP 10 is turned off, there is still residual pressure trapped in the pipeline when the check valve 38 is closed since fuel will no longer flow to keep the check valve 38 opened. There is a differential pressure between the outlet side 88 of the check valve 38, which is hydraulic cavity 90, and atmosphere. If the check valve housing 36 is removed by service personnel to gain access to the check valve 38, the pressure build up on the outlet side 88 of the check valve 38 will equalize with atmosphere (or the pressure on the outside the STP 10) and fuel will possibly spill outside of the manifold 19 and STP 10 to the environment and possibly make contact with the service personnel. The present invention provides the ability to depressurize the outlet side 88 of the check valve 38 before the check valve 38 is serviced by actuation of a lock down screw 92, which has not been done before the present invention.

Depressurization of the check valve 38 is accomplished by placing a tool inside receptacle 94 and rotating the receptacle 94 which lowers the lock down screw 92 on the check valve stem 98 illustrated in FIG. 6. Specifically, it is the c-spring retainer 96 as part of the lock down screw 92 that engages the check valve stem 98.

FIG. 7 illustrates a more detailed view of the check valve 38 and how the present invention provides for depressurization of the check valve 38. The c-spring retainer 96 contains a c-spring 100 that grabs onto the stem 98 of the check valve 38 and forms a secure fit to the stem 98. After the lock down screw 92 is fully engaged, the screw 92 can be rotationally reversed to pull up on the stem 98 of the check valve 38. This pulls up the check valve 38 and couples the inlet side 86 to the outlet side 88 of the check valve 38 together so that the pressure between the two sides equalizes and pressure on fuel contained on the outlet side 88 of the check valve 38 is relieved.

The lock down screw 92 also allows the check valve 38 to be locked into position when fuel supply piping is checked for leaks during installation and on service calls. When the check valve 38 is locked into a closed position, the STP 10 effectively cannot release pressure. This effectively isolates the STP 10 from the fuel supply piping that connects the STP 10 to the fuel dispensers for delivery of fuel. It may be desired for service personnel to pressurize and test the fuel supply piping to ensure that no leaks are present. With the present invention, service personnel can use the STP 10 to lock down the check valve 38 to isolate the STP 10 from the fuel supply piping. In this manner, if a leak is detected when pressurizing and testing the fuel supply piping for leaks, the STP 10 can be eliminated as the source of the leak since it is isolated from the fuel supply piping.

FIGS. 8-9 illustrate another aspect of the present invention relating to a siphon system. In FIG. 8, siphon cartridge 44 is shown as being installed in the manifold 19. The siphon cartridge 44 is comprised of a nozzle 102. The nozzle 102 directs fuel from the STP 10 when the siphon cartridge 44 is installed through a venturi 103 (illustrated in FIG. 9) and a vacuum is created as a result in a chamber 104 perpendicular to the axis of the nozzle 102. This vacuum can be applied against other components and systems independent of the STP 10 for purposes that will be described herein. The siphon cartridge 44 contains a check valve 106 that maintains vacuum in whatever component is connected to the siphon connection 42 when the pump is de-energized. Thus, when the pump is de-energized, the pressure in the chamber 104 returns to the pressure that is resident in zone P1, and check valve 104 operates to maintain the vacuum in whatever component is connected to the siphon connection 42.

FIG. 9 illustrates a more detailed view of siphon cartridge 44. Once the siphon cartridge 44 is connected to the siphon connection 42, the check valve 106 is forced to be opened and the chamber 104 is fluidly coupled to whatever component is connected to the siphon cartridge at connection point 108. The siphon cartridge 44 is designed to be inserted into the manifold 19 of the STP 10 so that a service personnel can simply connect a siphon cartridge 44 to a siphon connection 42 to use the STP 10 to generated a vacuum inside the nozzle 102. The STP 10 illustrated in the drawings contains two siphon connections 42, but the STP 10 could only contain only one siphon connection 42 or could contain more than two siphon connections 42, which is simply a design choice. If the siphon connection 42 is not to be used, a dummy plug 46 illustrated in FIG. 1 can be used to seal up the siphon connection 42.

The vacuum created by the siphon connection cartridge 44 may be used for a number of purposes. For instance, the vacuum may be used to siphon two underground storage tanks together, as is shown and described in U.S. Pat. No. 5,544,518 entitled “Apparatus and Method for Calibrating Manifolded Tanks,” incorporated herein by reference in its entirety. The vacuum may also be used to generate a vacuum in a defined space for leak detection purposes. For example, pending patent application Ser. No. 10/238,822 entitled “Secondary Containment System and Method;” Ser. No. 10/430,890 entitled “Secondary Containment Leak Prevention and Detection System and Method;” and Ser. No. 10/390,346 entitled “Fuel Storage Tank Leak Prevention and Detection,” all of which are incorporated herein by reference herein in their entireties, and disclose pressure monitoring and leak detection systems where a vacuum generated by the STP 10 is used to generate a vacuum in an interstitial space, including but not limited to a double-walled underground storage tank interstitial space, the interstitial space of double-walled fuel piping.

Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present invention. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.