Title:
Wind turbine with vertical axis
Kind Code:
A1


Abstract:
A wind turbine having a rotor which rotates in a horizontal plane about a vertical axis to produce power to an electric generator, a propeller driven boat, or other mechanical apparatus. The turbine mounted on a vertical shaft has a plurality of vanes attached to the shaft either directly or through a hub surrounding the shaft. The vanes extend radially outwardly from the shaft and are spaced at equal distances from each other around the shaft. Each vane has a wind responsive flange mounted at its radially outer edge and extending substantially perpendicular to a surface of the vane. Each flange of each vane extends in the same circumferential direction around the rotor. As wind blows against any vane when the flange is facing in the windward direction, the vane tends to contain wind striking that vane and create a greater force than the wind striking the vanes with the flanges facing away from the wind. The different amounts of force striking different vanes causes the rotor to turn either clockwise or counterclockwise, depending upon which circumferential direction the wind responsive flanges are positioned on the vanes. The turning of the rotor also turns the shaft which provides power to a generator or to any other device it is connected to.



Inventors:
Pierson, Robert M. (Hudson, OH, US)
Application Number:
10/631513
Publication Date:
02/03/2005
Filing Date:
07/31/2003
Assignee:
PIERSON ROBERT M.
Primary Class:
International Classes:
B63H13/00; F03D3/06; F03D11/04; (IPC1-7): B63H1/14
View Patent Images:
Related US Applications:
20100061854Turbine blade damper arrangementMarch, 2010Townes et al.
20090314698Combined Axial-Radial Intake Impeller With Circular RakeDecember, 2009Higbee
20040096327Method of increasing wind farm energy productionMay, 2004Appa et al.
20080226458TURBOMACHINE FANSeptember, 2008Pierrot et al.
20090257872Reduced-Impedance Cooling System With Variable Pitch Blade And Hot-Swappable SpareOctober, 2009June et al.
20070014702Track light fanJanuary, 2007Cruz et al.
20080213099Ni-Fe BASED FORGING SUPERALLOY EXCELLENT IN HIGH-TEMPERATURE STRENGTH AND HIGH-TEMPERATURE DUCTILITY, METHOD OF MANUFACTURING THE SAME, AND STEAM TURBINE ROTORSeptember, 2008Imano et al.
20100054943TURBINE ROTOR AND TURBINE HAVING THE SAMEMarch, 2010Ichiryu
20090047132DURABLE BLADEFebruary, 2009Riley et al.
20090263249Welded Low-Pressure Turbine ShaftOctober, 2009Kern
20090022598Wind turbine rotor blade and wind turbine rotorJanuary, 2009Enevoldsen et al.



Primary Examiner:
EDGAR, RICHARD A
Attorney, Agent or Firm:
PAUL E MILLIKEN (MASSILLON, OH, US)
Claims:
1. A wind turbine having a rotor which rotates in a horizontal plane about a vertical axis comprising: a vertical shaft rotatably attached to a fixed support means; at least one pair of substantially planar vanes, each vane of each pair having a radially inner edge, a radially outer edge, and a top and bottom edge, each vane having its radially inner edge secured to the shaft and extending radially outwardly therefrom in opposite directions from the other vane; a wind responsive flange at the radially outer edge of each vane and extending from one face of each vane at a substantially right angle thereto, the flange of one of each pair of vanes extending in an opposite direction to the other flange of the same pair of vanes; the flange of each vane partially confining the wind flow against its respective vane when the flange is facing in the windward direction and thereby causing a greater wind force concentration against that vane than against the opposite vane in which its flange is facing away from the wind, thereby causing the rotor and shaft to rotate in a given horizontal direction due to the difference in wind force against each vane of each pair.

2. A wind turbine as claimed in claim 1 wherein the radially inner edge of each vane is fastened to a hub which is mounted on the vertical shaft to rotate therewith.

3. A wind turbine as claimed in claim 1 wherein there are two pairs of vanes with each pair being at a 900 angle to the other pair.

4. A wind turbine as claimed in claim 1 wherein there are three pairs of vanes with each pair of vanes being at a 60° angle to the next adjacent pair of vanes on either side.

5. A wind turbine as claimed in claim 1 including a wind responsive flange at the radially inner edge of each vane extending at substantially right angles to the vane in the same direction from the respective vane as the wind responsive flange at the radially outer edge of the vane.

6. A wind turbine as claimed in claim 1 including a wind responsive flange at both the top and bottom edge of each vane extending at substantially right angles to the vane in the same direction from the respective vane as the wind responsive flange at the radially outer edge of the vane.

7. A wind turbine as claimed in claim 1 wherein the vanes are concave on one side and convex on the other side and wherein one vane of each pair of vanes has its concave and convex sides facing in the opposite direction from the concave and convex sides on the other vane of the pair.

8. A wind turbine as claimed in claim 1 wherein each vane curves around a radius at its radially outer edge to merge into the wind responsive flange.

9. A wind turbine as claimed in claim 1 wherein the vertical shaft is operatively connected to an electrical generator.

10. A wind turbine as claimed in claim 1 wherein the vertical shaft is operatively connected to a propeller shaft of a boat

11. A wind turbine having a rotor which rotates in a horizontal plane about a vertical axis comprising: a vertical shaft rotatably attached to a fixed support means; at least one pair of substantially rectangular vanes, each vane of each pair having a radially inner end and a radially outer end, each vane having its radially inner end secured to the shaft and extending radially outwardly therefrom in opposite directions from the other vane; a portion of each radially outer end of each flange being folded along a vertical line to form a wind responsive flange at the radially outer end of each vane and extending from one face of each vane at a substantially right angle thereto, the flange of one of each pair of vanes extending in an opposite direction to the other flange of the same pair of vanes; the flange of each vane partially confining the wind flow against its respective vane when the flange is facing in the windward direction and thereby causing a greater wind force concentration against that vane than against the opposite vane in which its flange is facing away from the wind, thereby causing the rotor and shaft to rotate in a given horizontal direction due to the difference in wind force against each vane of each pair.

12. A wind turbine as claimed in claim 11 wherein the radially inner end of each vane is fastened to a hub which is mounted on the vertical shaft to rotate therewith.

13. A wind turbine as claimed in claim 11 wherein there are two pairs of vanes with each pair being at a 900 angle to the other pair.

14. A wind turbine as claimed in claim 11 wherein there are three pairs of vanes with each pair of vanes being at a 600 angle to the next adjacent pair of vanes on either side.

15. A wind turbine as claimed in claim 11 wherein each vane is longer in the vertical direction than in the horizontal direction.

16. A wind turbine as claimed in claim 11 wherein the vertical shaft is operatively connected to an electrical generator.

17. A wind turbine as claimed in claim 11 wherein the vertical shaft is operatively connected to a propeller shaft of a boat.

18. A wind turbine having a rotor which rotates in a horizontal plane about a vertical axis comprising: a vertical shaft rotatably attached to a fixed support means; a plurality of substantially planar vanes, each vane having a radially inner edge, a radially outer edge, and a top and bottom edge, each vane having its radially inner edge secured to the shaft and extending radially outwardly therefrom in different directions from the other vanes; a wind responsive flange at the radially outer edge of each vane and extending from one face of each vane at a substantially right angle thereto, the flange of each of vanes extending in the same circumferential direction as the flanges of the other vanes; the flange of each vane partially confining the wind flow against its respective vane when the flange is facing in the windward direction and thereby causing a greater wind force concentration against that vane than against the other vanes when their flanges are facing away from the wind, thereby causing the rotor and shaft to rotate in a given horizontal direction due to the difference in wind force against each of the vanes.

19. A wind turbine as claimed in claim 18 wherein the radially inner edge of each vane is fastened to a hub which is mounted on the vertical shaft to rotate therewith.

20. A wind turbine as claimed in claim 18 wherein there are three vanes with each vane being at a 120° angle to the other vanes.

21. A wind turbine as claimed in claim 18 wherein the vertical shaft is operatively connected to an electrical generator.

22. A wind turbine as claimed in claim 18 wherein the vertical shaft is operatively connected to a propeller shaft of a boat.

Description:

FIELD OF THE INVENTION

This invention relates to a wind turbine having a rotor which rotates in a horizontal plane about a vertical axis to provide power for driving an electric generator or a drive shaft of a propeller of a boat.

BACKGROUND OF THE INVENTION

Windmills of various designs are well known in the prior art. Windmills having vertical shafts and having horizontally rotating vanes are also well known, however many such windmills are rather complex and require the use of louvers or flaps which open to allow the wind to pass through the vanes when they are in one position with respect to the direction of wind flow and which close to prevent the wind from passing through the vanes when they are in the opposite position with respect to the direction of wind flow.

Typical examples of such windmills or water driven flow motors are shown in U.S. Pat. No. 3,920,354 (Decker), U.S. Pat. No. 4,134,710 (Atherton) and U.S. Pat. No. 4,684,817 (Goldwater) all of which show various types of flaps or louvers to control the wind-flow through the vanes depending upon their relative location with respect to the direction of the wind acting upon the vanes or in the case of the Atherton patent the flaps control the water flow through the vanes.

The present invention provides a simpler construction without the need for louvers or other moving parts on the vanes.

The wind turbine of this invention can be used to provide power to drive electric generators or other types of machinery as well as a source of power to drive the propeller of a boat. This wind rotor when coupled to a boat propeller replaces the various kinds of conventional sails which are normally used on sailboats while enabling the boat to travel directly into the wind or in more different directions than the conventional sailboat. Conventional sailboats require a series of 45 degree tacks which nearly double the time of travel as compared to the time needed when using a wind rotor rather than a conventional sail. Furthermore since this wind rotor turns when receiving the force of the wind it does not cause the boat to tip over as in the case of a conventional sail when the wind is blowing sideways against the sail.

SUMMARY OF THE INVENTION

The invention as claimed herein is a wind turbine having a rotor which rotates in a horizontal plane about a vertical axis to provide power to an electric generator, a propeller driven boat or other mechanical apparatus, the turbine comprising: a vertical shaft rotatably attached to a fixed support means; a plurality of substantially planar vanes, each vane having a radially inner edge, a radially outer edge, and a top and bottom edge, each vane having its radially inner edge secured to the shaft and extending radially outwardly therefrom in different directions from the other vanes; a wind responsive flange at the radially outer edge of each vane and extending from one face of each vane at a substantially right angle thereto, the flange of each vane extending in the same circumferential direction as the flanges of the other vanes; the flange of each vane partially confining the wind flow against its respective vane when the flange is facing in the windward direction and thereby causing a greater wind force concentration against that vane than against the other vanes when their flanges are facing away from the wind, thereby causing the rotor and shaft to rotate in a given horizontal direction due to the difference in wind force against each of the vanes.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simple perspective view of one embodiment the invention;

FIG. 2 is a perspective view of another embodiment of a rotor of the invention;

FIG. 3 is a perspective view of still another embodiment of a rotor of the invention;

FIG. 4 is a perspective view of a rotor similar to the embodiment shown in FIG. 1 but being longer in the vertical direction than in the horizontal direction;

FIG. 5 is a top plan view of the rotor shown in FIG. 1;

FIGS. 6 through 10 are top plan views of other embodiments of rotors each having a different number of vanes from the other rotors; and

FIG. 11 is a diagrammatic side view of a rotor similar to that shown in FIG. 4 used to generate power to drive a boat by means of a propeller.

DETAILED DESCRIPTION OF THE INVENTION

Referring to FIGS. 1 and 5 of the drawings, a complete wind turbine assembly is indicated by the numeral 10. The turbine 10 has a rotor 12, having a hub 14 mounted on a vertical shaft 16 to rotate therewith.

The rotor 12 has a pair of vanes 18a and 18b extending in radially opposite directions from the hub 14. The vanes 18a and 18b respectively have radially inner edges 20a and 20b, radially outer edges 22a and 22b, upper edges 24a and 24b, and lower edges 26a and 26b.

A flange 28a substantially perpendicular to the vane 18a extends from the radially outer edge 22a. Likewise a flange 28b substantially perpendicular to the vane 18b extends from the radially outer edge 22b.

The rotor 12 can be made of metal molded plastic or any other suitable material and is fixedly attached on the shaft 16 so that it rotates with the shaft as previously mentioned.

The lower end of the shaft extends through sleeves or bearings 30 which are mounted on a support frame 32, having elongated frame members 34 which are attached to base anchors 36 which are securely attached to the ground or other base surface by any known fastening means (not shown).

The shaft 16 has an output end which is attached to an electric generator 38 to turn the generator and produce electric power. The shaft 16 can be connected either directly to the rotor of the generator as show or can be connected through conventional gearing and/or an on/off clutch to control the operation of the generator regardless of the rotation of the shaft 16.

Arrows 40a shows the direction of the wind flow against the vane 18a where it is partially confined by the flange 28a. Since the flange 28b faces away from the windward direction, the wind flow against van 18b shown by arrows 40b is not contained in the same way as the wind flow against vane 18a. This partial containment of the wind flow causes a greater build up of force against vane 18a and thereby causes the rotor 12 and shaft 16 to rotate in a counterclockwise direction as shown by arrows 42. It can be recognized that if the flanges 28a and 28b extend in the opposite circumferential direction from that shown in FIG. 1, the rotor will instead rotate in the clockwise direction. The choice of direction of rotation may vary depending upon the apparatus that the rotor is to be used with.

Referring now to FIG. 2, it can be seen that the embodiment in FIG. 1 may be further modified by placing an additional flange 28ax or 28bx on the radially inner end of each vane 18a and 18b which is substantially identical to the flanges 28a and 28b on the outer end of the vanes.

As shown in FIG. 3, flanges 28a, 28ax, 28ay and 28z or 28b, 28bx, 28by and 28bz can extend from all four edges of the vanes 18a and 18b. When four flanges are used as shown, this in effect, forms a box in conjunction with each vane.

The variations shown in FIGS. 2 and 3 may tend to further confine the wind striking the surface of the vane and provide greater driving force against the vanes to turn the rotor.

FIG. 4 shows a rotor 12′ similar to the rotor 12 in FIG. 1, except that the vanes 18a′ and 18b′ are longer in the vertical direction than in the horizontal direction. The vanes 18a′ and 18b′ are attached to a hub 14′ which in turn is mounted in a fixed position on a shaft 16′ to rotate therewith. The rotor 12′ can be mounted on a support from similar to that shown in FIG. 1 or it can be mounted on a boat as will later be described in and shown in FIG. 11. As can be seen from the arrows 40a′ and 40b′ the flow of the wind striking the vanes 18a′ and 18b′ and the reaction with the flanges 28a′ and 28b′ is similar to that show in FIG. 1, except that the vanes 18a′ and 18b′ present a larger reaction surface than those in FIG. 1.

FIG. 6 is a modification of FIG. 5 wherein the vanes 18a″ and 18b″ curve into the flanges 28a″ and 28b″ instead of meeting a right angle corners such as those shown in FIG. 5. The reaction of the wind striking the vanes and flanges are essentially the same as that in the version shown in FIG. 5.

FIG. 7 shows a rotor 44 having a hub 14 mounted on a shaft 16. Mounted on the hub 14 are three vanes 46a, 46b and 46c which are located at 120 degree angles from each other. The three vanes respectively have flanges 48a, 48b and 48c extending form the radially outer edge of it respective vane with all three vanes extending in the same circumferential direction.

FIG. 8 shows a rotor 50 similar to the rotor 44, except that it has four vanes 52a, 52b, 52c, and 52d instead of three vanes. Each of these vanes are at 90 degree angles from the next adjacent vanes on either side. The vanes are mounted on a hub 14 which in turn is mounted on a shaft 16. Connected to the respective vanes are flanges 54a, 54b, 54c and 54d.

FIG. 9 shows a rotor 56 having six vanes 58a, 58b, 58c, 58d, 58e and 58f connected to a hub 14 mounted on a shaft 16. These six vanes are at sixty degree angles to the next adjacent vane on either side. Each of the respective vanes has a respective flange 60a, 60b, 60c, 60d, 60e and 60f.

FIGS. 7 through 9 are similar to the embodiment in FIG. 1 except that a different number of vanes are shown in each of these embodiments. Depending upon the application the rotor is being used for, in some instances it may be more effective to use a small number of vanes and in some applications a larger number of vanes may be preferable.

FIG. 10 shows a different embodiment in which a rotor 62 has a pair of vanes 64a and 64b mounted on a hub 14 which is mounted on a shaft 16. Instead of having a flange at the radially outer end of the vanes, the vanes are each concave on one face and convex on the opposite face. The concave side of the vane which faces the windward side tends to confine the wind blowing against the vane 64a, whereas the wind striking the convex side of the vane 64b tends to deflect the wind thereby causing a greater pressure on vane 64a and causing the rotor 62 to rotate in a clockwise direction. This tends to provide the same result as using a flange at the radially outer end of the vane.

FIG. 11 shows a diagrammatic view of a boat 66 driven by a rotor 12′ similar to that shown in FIG. 4. The rotor 12′ is mounted on a shaft 16′ which is rotatably mounted in a sleeve or gear 68 mounted on a support frame 70 which in turn is fastened to the boat 66. The lower end of the shaft 16′ carries a bevel gear 72 which meshes with a bevel gear 74 mounted on the inner end of a propeller shaft 76 carrying a propeller 78 on its outer end. As the rotor 12′ is turned by the wind, it turns bevel gears 72 and 74, thereby turning the propeller shaft 76 and the propeller 78 and moving the boat forward.

It can be recognized that by including conventional clutches and additional gearing, the propeller can be caused to move the boat forward or in reverse or stop the propeller or change the propeller speed without regard to the speed of rotation of the rotor 12′.

As long a there is any wind blowing, the rotor will turn regardless of the direction of the wind in relation to the direction the boat is heading. Unlike a conventional sail boat there is no need to use 45 degree angle tacks to compensate for the difference between the wind direction and the direction which the boat is heading. Furthermore the since the rotor does not respond to the wind in the same way as a conventional sail, there is less likelihood of the boat being capsized by being struck sideways by the wind. The rotor, instead of resisting the wind as would a conventional sail, is turned by the wind and allows the wind to pass around the rotor with less sideways pressure acting against the shaft to tend to capsize the boat.

It should be recognized that the particular configuration of the rotor including the size and the number of vanes used will depend upon the particular type and size of boat or other mechanical apparatus that is being powered by the rotor.

Various other modification can be made herein without departing from the scope of the invention.