TCCATGTCGGTCCTGATGCT, | (SEQ ID NO:37) | ||
TCCATGCCGGTCCTGATGCT, | (SEQ ID NO:38) | ||
TCCATGGCGGTCCTGATGCT, | (SEQ ID NO:39) | ||
TCCATGACGGTCCTGATGCT, | (SEQ ID NO:40) | ||
TCCATGTCGCTCCTGATGCT, | (SEQ ID NO:42) | ||
TCCATGTCGTTCCTGATGCT, | (SEQ ID NO:43) | ||
TCCATGACGTTCCTGATGCT, | (SEQ ID NO:44) | ||
and | |||
TCCATAACGTTCCTGATGCT. | (SEQ ID NO:45) | ||
[0001] This application is a continuation of U.S. patent application Ser. No. 09/818,918, filed Mar. 27, 2001, which is a divisional of U.S. patent application Ser. No. 08/738,652, filed Oct. 30, 1996 now issued as U.S. Pat. No. 6,207,646 B1, which is a continuation-in-part of U.S. patent application Ser. No. 08/386,063, filed Feb. 7, 1995, now issued as U.S. Pat. No. 6,194,388, which is a continuation-in-part of U.S. patent application Ser. No. 08/276,358, filed Jul. 15, 1994, now abandoned.
[0003] DNA binds to cell membranes and is internalized In the 1970's, several investigators reported the binding of high molecular weight DNA to cell membranes (Lerner, R. A., W. Meinke, and D. A. Goldstein. 1971. “Membrane-associated DNA in the cytoplasm of diploid human lymphocytes”.
[0004] Lymphocyte ODN uptake has been shown to be regulated by cell activation. Spleen cells stimulated with the B cell mitogen LPS had dramatically enhanced ODN uptake in the B cell population, while spleen cells treated with the T cell mitogen Con A showed enhanced ODN uptake by T but not B cells (Krieg, A. M., F. Gmelig-Meyling, M. F. Gourley, W. J. Kisch, L. A. Chrisey, and A. D. Steinberg. 1991. “Uptake of oligodeoxyribonucleotides by lymphoid cells is heterogeneous and inducible”.
[0005] Immune Effects of Nucleic Acids
[0006] Several polynucleotides have been extensively evaluated as biological response modifiers. Perhaps the best example is poly (I,C) which is a potent inducer of IFN production as well as a macrophage activator and inducer of NK activity (Talmadge, J. E., J. Adams, H. Phillips, M. Collins, B. Lenz, M. Schneider, E. Schlick, R. Ruffnann, R. H. Wiltrout, and M. A. Chirigos. 1985. “Immunomodulatory effects in mice of polyinosinic-polycytidylic acid complexed with poly-L-lysine and carboxymethylcellulose”.
[0007] Guanine ribonucleotides substituted at the C8 position with either a bromine or a thiol group are B cell mitogens and may replace “B cell differentiation factors” (Feldbush, T. L., and Z. K. Ballas. 1985. “Lymphokine-like activity of 8-mercaptoguanosine: induction of T and B cell differentiation”.
[0008] Several observations suggest that certain DNA structures may also have the potential to activate lymphocytes. For example, Bell et al. reported that nucleosomal protein-DNA complexes (but not naked DNA) in spleen cell supernatants caused B cell proliferation and immunoglobulin secretion (Bell, D. A., B. Morrison, and P. VandenBygaart. 1990. “Immunogenic DNA-related factors”.
[0009] Several phosphorothioate modified ODN have been reported to induce in vitro or in vivo B cell stimulation (Tanaka, T., C. C. Chu, and W. E. Paul. 1992. “An antisense oligonucleotide complementary to a sequence in Iγ2b increases γ2b germline transcripts, stimulates B cell DNA synthesis, and inhibits immunoglobulin secretion”.
[0010] The CREB/ATF Family of Transcription Factors and their Role in Replication
[0011] The cAMP response element binding protein (CREB) and activating transcription factor (ATF)-or CREB/ATF family of transcription factors is a ubiquitously expressed class of transcription factors of which 11 members have so far been cloned (reviewed in de Groot, R. P., and P. Sassone-Corsi: “Hormonal control of gene expression: Multiplicity and versatility of cyclic adenosine 3′,5′-monophosphate-responsive nuclear regulators?.
[0012] The transcriptional activity of the CRE is increased during B cell activation (Xie, H. T. C. Chiles, and T. L. Rothstein: “Induction of CREB activity via the surface Ig receptor of B cells”.
[0013] The role of protein-protein interactions in transcriptional activation by CREB/ATF proteins appears to be extremely important. There are several published studies reporting direct or indirect interactions between NFκB proteins and CREB/ATF proteins (Whitley, et. al., (1994)
[0014] Aside from their critical role in regulating cellular transcription, it has recently been shown that CREB/ATF proteins are subverted by some infectious viruses and retroviruses, which require them for viral replication. For example, the cytomegalovirus immediate early promoter, one of the strongest known mammalian promoters, contains eleven copies of the CRE which are essential for promoter function (Chang, Y. -N., S. Crawford, J. Stall, D. R. Rawlins, K. -T. Jeang, and G. S. Hayward: “The palindromic series 1 repeats in the simian cytomegalovirus major immediate-early promoter behave as both strong basal enhancers and cyclic AMP response elements”.
[0015] The instant invention is based on the finding that certain nucleic acids containing unmethylated cytosine-guanine (CpG) dinucleotides activate lymphocytes in a subject and redirect a subject's immune response from a Th2 to a Th1 (e.g. by inducing monocytic cells and other cells to produce Th1 cytokines, including L-12, IFN-γ and GM-CSF). Based on this finding, the invention features, in one aspect, novel immunostimulatory nucleic acid compositions.
[0016] In a preferred embodiment, the immunostimulatory nucleic acid contains a consensus mitogenic CpG motif represented by the formula:
[0017] wherein X
[0018] In a particularly preferred embodiment an immunostimulatory nucleic acid molecule contains a consensus mitogenic CpG motif represented by the formula:
[0019] wherein C and G are unmethylated; and X
[0020] Enhanced immunostimulatory activity of human cells occurs where X
[0021] In a second aspect, the invention features useful therapies, which are based on the immunostimulatory activity of the nucleic acid molecules. For example, the immunostimulatory nucleic acid molecules can be used to treat, prevent or ameliorate an immune system deficiency (e.g., a tumor or cancer or a viral, fungal, bacterial or parasitic infection in a subject). In addition, immunostimulatory nucleic acid molecules can be administered to stimulate a subject's response to a vaccine.
[0022] Further, by redirecting a subject's immune response from Th2 to Th1, the instant claimed nucleic acid molecules can be-administered to treat or prevent the symptoms of asthma. In addition, the instant claimed nucleic acid molecules can be administered in conjunction with a particular allergen to a subject as a type of desensitization therapy to treat or prevent the occurrence of an allergic reaction.
[0023] Further, the ability of immunostimulatory nucleic acid molecules to induce leukemic cells to enter the cell cycle supports the use of immunostimulatory nucleic acid molecules in treating leukemia by increasing the sensitivity of chronic leukemia cells and then administering conventional ablative chemotherapy, or combining the immunostimulatory nucleic acid molecules with another immunotherapy.
[0024] Other features and advantages of the invention will become more apparent from the following detailed description and claims.
[0025] FIGS.
[0026]
[0027]
[0028]
[0029]
[0030]
[0031]
[0032]
[0033]
[0034]
[0035]
[0036]
[0037]
[0038]
[0039]
[0040]
[0041]
[0042] Definitions
[0043] As used herein, the following terms and phrases shall have the meanings set forth below:
[0044] An “allergen” refers to a substance that can induce an allergic or asthmatic response in a susceptible subject. The list of allergens is enormous and can include pollens, insect venoms, animal dander, dust, fungal spores and drugs (e.g. penicillin). Examples of natural, animal and plant allergens include proteins specific to the following genera: Canine
[0045] An “allergy” refers to acquired hypersensitivity to a substance (allergen). Allergic conditions include eczema, allergic rhinitis or coryza, hay fever, bronchial asthma, urticaria (hives) and food allergies, and other atopic conditions.
[0046] “Asthma”—refers to a disorder of the respiratory system characterized by inflammation, narrowing of the airways and increased reactivity of the airways to inhaled agents. Asthma is frequently, although not exclusively associated with atopic or allergic symptoms.
[0047] An “immune system deficiency” shall mean a disease or disorder in which the subject's immune system is not functioning in normal capacity or in which it would be useful to boost a subject's immune response for example to eliminate a tumor or cancer (e.g. tumors of the brain, lung (e.g. small cell and non-small cell), ovary, breast, prostate, colon, as well as other carcinomas and sarcomas) or an infection in a subject.
[0048] Examples of infectious virus include: Retroviridae (e.g., human immunodeficiency viruses, such as HIV-I (also referred to as HTLV-III, LAV or HTLV-III/LAV, or HIV-III; and other isolates, such as HIV-LP; Picornaviridae (e.g., polio viruses, hepatitis A virus; enteroviruses, human coxsackie viruses, rhinoviruses, echoviruses); Calciviridae (e.g., strains that cause gastroenteritis); Togaviridae (e.g., equine encephalitis viruses, rubella viruses); Flaviridae (e.g., dengue viruses, encephalitis viruses, yellow fever viruses); Coronaviridae (e.g., coronaviruses); Rhabdoviridae (e.g., vesicular stomatitis viruses, rabies viruses); Filoviridae (e.g., ebola viruses); Paramyxoviridae (e.g., parainfluenza viruses, mumps virus, measles virus, respiratory syncytial virus); Orthomyxoviridae (e.g., influenza viruses); Bungaviridae (e.g., Hantaan viruses, bunga viruses, phleboviruses and Nairo viruses); Arena viridae (hemorrhagic fever viruses); Reoviridae (e.g., reoviruses, orbiviurses and rotaviruses); Birnaviridae; Hepadnaviridae (Hepatitis B virus); Parvoviridae (parvoviruses); Papovaviridae (papilloma viruses, polyoma viruses); Adenoviridae (most adenoviruses); Herpesviridae (herpes simplex virus (HSV) 1 and 2, varicella zoster virus, cytomegalovirus (CMV), herpes viruses'); Poxviridae (variola viruses, vaccinia viruses, pox viruses); and Iridoviridae (e.g., African swine fever virus); and unclassified viruses (e.g., the etiological agents of Spongiform encephalopathies, the agent of delta hepatitis (thought to be a defective satellite of hepatitis B virus), the agents of non-A, non-B hepatitis (class 1=internally transmitted; class 2=parenterally transmitted (i.e., Hepatitis C); Norwalk and related viruses, and astroviruses).
[0049] Examples of infectious bacteria include:
[0050] Examples of infectious fungi include:
[0051] An “immunostimulatory nucleic acid molecule” refers to a nucleic acid molecule, which contains an unmethylated cytosine, guanine dinucleotide sequence (i.e. “CpG DNA” or DNA containing a cytosine followed by guanosine and linked by a phosphate bond) and stimulates (e.g. has a mitogenic effect on, or induces or increases cytokine expression by) a vertebrate lymphocyte. An immunostimulatory nucleic acid molecule can be double-stranded or single-stranded. Generally, double-stranded molecules are more stable in vivo, while single-stranded molecules have increased immune activity.
[0052] In a preferred embodiment, the immunostimulatory nucleic acid contains a consensus mitogenic CpG motif represented by the formula:
[0053] wherein X, is selected from the group consisting of A,G and T; and X
[0054] In a particularly preferred embodiment, immunostimulatory nucleic acid molecules are between 2 to 100 base pairs in size and contain a consensus mitogenic CpG motif represented by the formula:
[0055] wherein C and G are unmethylated, X
[0056] For economic reasons, preferably the immunostimulatory CpG DNA is in the range of between 8 to 40 base pairs in size if it is synthesized as an oligonucleotide. Alternatively, CpG dinucleotides can be produced on a large scale in plasmids, which after being administered to a subject are degraded into oligonucleotides. Preferred immunostimulatory nucleic acid molecules (e.g. for use in increasing the effectiveness of a vaccine or to treat an immune system deficiency by stimulating an antibody [humoral] response in a subject) have a relatively high stimulation index with regard to B cell, monocyte and/or natural killer cell responses (e.g. cytokine, proliferative, lytic or other responses).
[0057] The stimulation index of a particular immunostimulatory CpG DNA can be tested in various immune cell assays. Preferably, the stimulation index of the immunostimulatory CpG DNA with regard to B-cell proliferation is at least about 5, preferably at least about 10, more preferably at least about 15 and most preferably at least about 20 as determined by incorporation of
[0058] Preferred immunostimulatory CpG nucleic acids should effect at least about 500 pg/ml of TNF-α, 15 pg/ml IFN-γ, 70 pg/mI of GM-CSF 275 pg/ml of IL-6, 200 pg/ml IL-12, depending on the therapeutic indication, as determined by the assays described in Example 12. Other preferred immunostimulatory CpG DNAs should effect at least about 10 %, more preferably at least about 15% and most preferably at least about 20% YAC-1 cell specific lysis or at least about 30, more preferably at least about 35 and most preferably at least about 40% 2C11 cell specific lysis as determined by the assay described in detail in Example 4.
[0059] A “nucleic acid” or “DNA” shall mean multiple nucleotides (i.e. molecules comprising a sugar (e.g. ribose or deoxyribose) linked to a phosphate group and to an exchangeable organic base, which is either a substituted pyrimidine (e.g. cytosine (C), thymine (T) or uracil (U)) or a substituted purine (e.g. adenine (A) or guanine (G)). As used herein, the term refers to ribonucleotides as well as oligodeoxyribonucleotides. The term shall also include polynucleosides (i.e. a polynucleotide minus the phosphate) and any other organic base containing polymer. Nucleic acid molecules can be obtained from existing nucleic acid sources (e.g. genomic or cDNA), but are preferably synthetic (e.g. produced by oligonucleotide synthesis).
[0060] A “nucleic acid delivery complex” shall mean a nucleic acid molecule associated with (e.g. ionically or covalently bound to; or encapsulated within) a targeting means (e.g. a molecule that results in higher affinity binding to target cell (e.g. B-cell and natural killer (NK) cell) surfaces and/or increased cellular uptake by target cells). Examples of nucleic acid delivery complexes include nucleic acids associated with: a sterol (e.g. cholesterol), a lipid (e.g. a cationic lipid, virosome or liposome), or a target cell specific binding agent (e.g. a ligand recognized by target cell specific receptor). Preferred complexes must be sufficiently stable in vivo to prevent significant uncoupling prior to internalization by the target cell. However, the complex should be cleavable under appropriate conditions within the cell so that the nucleic acid is released in a functional form.
[0061] “Palindromic sequence” shall mean an inverted repeat (i.e. a sequence such as ABCDEE′D′C′B′A′ in which A and A′ are bases capable of forming the usual Watson-Crick base pairs. In vivo, such sequences may form double stranded structures.
[0062] A “stabilized nucleic acid molecule” shall mean a nucleic acid molecule that is relatively resistant to in vivo degradation (e.g. via an exo- or endo-nuclease). Stabilization can be a function of length or secondary structure. Unmethylated CpG containing nucleic acid molecules that are tens to hundreds of kbs long are relatively resistant to in vivo degradation. For shorter immunostimulatory nucleic acid molecules, secondary structure can stabilize and increase their effect. For example, if the 3′ end of a nucleic acid molecule has self-complementarity to an upstream region, so that it can fold back and forn a sort of stem loop sturcture, then the nucleic acid molecule becomes stabilized and therefore exhibits more activity.
[0063] Preferred stabilized nucleic acid molecules of the instant invention have a modified backbone. For use in immune stimulation, especially preferred stabilized nucleic acid molecules are phosphorothioate modified nucleic acid molecules (i.e. at least one of the phosphate oxygens of the nucleic acid molecule is replaced by sulfur). Preferably the phosphate modification occurs at or near the 5′ and/or 3′ end of the nucleic acid molecule. In addition to stabilizing nucleic acid molecules, as reported further herein, phosphorothioate-modified nucleic acid molecules (including phosphorodithioate-modified) can increase the extent of immune stimulation of the nucleic acid molecule, which contains an unmethylated CpG dinucleotide as shown herein. International Patent Application Publication Number: WO 95/26204 entitled “Immune Stimulation By Phosphorothioate Oligonucleotide Analogs” also reports on the non-sequence specific immunostimulatory effect of phosphorothioate modified oligonucleotides. As reported herein, unmethylated CpG containing nucleic acid molecules having a phosphorothioate backbone have been found to preferentially activate B-cell activity, while unmethylated CpG containing nucleic acid molecules having a phosphodiester backbone have been found to preferentially activate monocytic (macrophages, dendritic cells and monocytes) and NK cells. Phosphorothioate CpG oligonucleotides with preferred human motifs are also strong activators of monocytic and NK cells.
[0064] Other stabilized nucleic acid molecules include: nonionic DNA analogs, such as alkyl- and aryl- phosphonates (in which the charged phosphonate oxygen is replaced by an alkyl or aryl group), phosphodiester and alkylphosphotriesters, in which the charged oxygen moiety is alkylated. Nucleic acid molecules which contain a diol, such as tetraethyleneglycol or hexaethyleneglycol, at either or both termini have also been shown to be substantially resistant to nuclease degradation.
[0065] A “subject” shall mean a human or vertebrate animal including a dog, cat, horse, cow, pig, sheep, goat, chicken, monkey, rat, mouse, etc.
[0066] As used herein, the term “vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. Preferred vectors are those capable of autonomous replication and expression of nucleic acids to which they are linked (e.g., an episome). Vectors capable of directing the expression of genes to which they are operatively linked are referred to herein as “expression vectors.” In general, expression vectors of utility in recombinant DNA techniques are often in the form of “plasmids” which refer generally to circular double stranded DNA loops which, in their vector form, are not bound to the chromosome. In the present specification, “plasmid” and “vector” are used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors which serve equivalent functions and which become known in the art subsequently hereto.
[0067] Certain Unmethylated CpG Containing Nucleic Acids Have B Cell Stimulatory Activity as Shown in Vitro and in Vivo
[0068] In the course of investigating the lymphocyte stimulatory effects of two antisense oligonucleotides specific for endogenous retroviral sequences, using protocols described in the attached Examples 1 and 2, it was surprisingly found that two out of twenty-four “controls” (including various scrambled, sense, and mismatch controls for a panel of “antisense” ODN) also mediated B cell activation and IgM secretion, while the other “controls” had no effect.
[0069] Two observations suggested that the mechanism of this B cell activation by the “control” ODN may not involve antisense effects 1) comparison of vertebrate DNA sequences listed in GenBank showed no greater homology than that seen with non-stimulatory ODN and 2) the two controls showed no hybridization to Northern blots with 10 μg of spleen poly A+RNA. Resynthesis of these ODN on a different synthesizer or extensive purification by polyacrylamide gel electrophoresis or high pressure liquid chromatography gave identical stimulation, eliminating the possibility of an impurity. Similar stimulation was seen using B cells from C3H/HeJ mice, eliminating the possibility that lipopolysaccharide (LPS) contamination could account for the results.
[0070] The fact that two “control” ODN caused B cell activation similar to that of the two “antisense” ODN raised the possibility that all four ODN were stimulating B cells through some non-antisense mechanism involving a sequence motif that was absent in all of the other nonstimulatory control ODN. In comparing these sequences, it was discovered that all of the four stimulatory ODN contained CpG dinucleotides that were in a different sequence context from the nonstimulatory control.
[0071] To determine whether the CpG motif present in the stimulatory ODN was responsible for the observed stimulation, over 300 ODN ranging in length from 5 to 42 bases that contained methylated, unmethylated, or no CpG dinucleotides in various sequence contexts were synthesized. These ODNs, including the two original “controls” (ODN 1 and 2) and two originally synthesized as “antisense” (ODN 3D and 3M; Krieg, A. M.
[0072] Mitogenic ODN sequences uniformly became nonstimulatory if the CpG dinucleotide was mutated (Table 1; compare ODN 1 to 1a; 3D to 3Dc; 3M to 3Ma; and 4 to 4a) or if the cytosine of the CpG dinucleotide was replaced by 5-methylcytosine (Table 1; ODN 1b,2b,3Dd, and 3Mb). Partial methylation of CpG motifs caused a partial loss of stimulatory effect (compare 2a to 2c, Table 1). In contrast, methylation of other cytosines did not reduce ODN activity (ODN 1c, 2d, 3De and 3Mc). These data confirned that a CpG motif is the essential element present in ODN that activate B cells.
[0073] In the course of these studies, it became clear that the bases flanking the CpG dinucleotide played an important role in determining the murine B cell activation induced by an ODN. The optimal stimulatory motif was determined to consist of a CpG flanked by two 5′ purines (preferably a GpA dinucleotide) and two 3′ pyrimidines (preferably a TpT or TpC dinucleotide). Mutations of ODN to bring the CpG motif closer to this ideal improved stimulation (e.g. Table 1, compare ODN 2 to 2e; 3M to 3Md) while mutations that disturbed the motif reduced stimulation (e.g. Table 1, compare ODN 3D to 3Df, 4 to 4b, 4c and 4d). On the other hand, mutations outside the CpG motif did not reduce stimulation (e.g. Table 1, compare ODN 1 to Id; 3D to 3Dg; 3M to 3Me). For activation of human cells, the best flanking bases are slightly different (See Table 5).
[0074] Of those tested, ODNs shorter than 8 bases were non-stimulatory (e.g. Table 1, ODN 4e). Among the forty-eight 8 base ODN tested, the most stimulatory sequence identified was TCAACGTT (ODN 4) which contains the self complementary “palindrome” AACGTT. In further optimizing this motif, it was found that ODN containing Gs at both ends showed increased stimulation, particularly if the ODN were rendered nuclease resistant by phosphorothioate modification of the terminal internucleotide linkages. ODN 1585 (5′ GGGGTCAACGTTGAGGGGGG 3′ (SEQ ID NO:12)), in which the first two and last five internucleotide linkages are phosphorothioate modified caused an average 25.4 fold increase in mouse spleen cell proliferation compared to an average 3.2 fold increase in proliferation induced by ODN 1638, which has the same sequence as ODN 1585 except that the 10 Gs at the two ends are replaced by 10 As. The effect of the G-rich ends is cis; addition of an ODN with poly G ends but no CpG motif to cells along with 1638 gave no increased proliferation. For nucleic acid molecules longer than 8 base pairs, non-palindromic motifs containing an unmethylated CpG were found to be more immunostimulatory.
[0075] Other octamer ODN containing a 6 base palindrome with a TpC dinucleotide at the 5′ end were also active (e.g. Table 1, ODN 4b,4c). Other dinucleotides at the 5′ end gave reduced stimulation (e.g. ODN 4f; all sixteen possible dinucleotides were tested). The presence of a 3′ dinucleotide was insufficient to compensate for the lack of a 5′ dinucleotide (e.g. Table 1, ODN 4g). Disruption of the palindrome eliminated stimulation in octainer ODN (e.g. Table 1, ODN 4h), but palindromes were not required in longer ODN.
TABLE 1 Oligonucleotide Stimulation of Mouse B Cells Stimulation Index' Igm ODN Sequence (5′ to 3′)† Production 1 (SEQ ID NO:13) GCTAGA 6.1 ± 0.8 17.9 ± 3.6 1a (SEQ. ID NO:4) . . . . . .T. . . . . 1.2 ± 0.2 1.7 ± 0.5 1b (SEQ ID NO:14) . . . . . .Z. . . . . 1.2 ± 0.1 1.8 ± 0.0 1c (SEQ ID NO:15) . . . . . . 10.3 ± 4.4 9.5 ± 1.8 1d (SEQ ID NO:16) . .AT. . . 13.0 ± 2.3 18.3 ± 7.5 2 (SEQ ID NO:17) ATGGAAGGTCCAG 2.9 ± 0.2 13.6 ± 2.0 2a (SEQ ID NO:18) . . 7.7 ± 0.8 24.2 ± 3.2 2b (SEQ ID NO:19) . .Z. .CTC.ZG. .Z. . . . . . 1.6 ± 0.5 2.8 ± 2.2 2c (SEQ ID NO:20) . .Z. .CTC. 3.1 ± 0.6 7.3 ± 1.4 2d (SEQ ID NO:21) . . 7.4 ± 1.4 27.7 ± 5.4 2e (SEQ ID NO:22) . . . . . . . . . . . .A 5.6 ± 2.0 ND 3D (SEQ ID NO:23) GAGAA 4.9 ± 0.5 19.9 ± 3.6 3Da (SEQ ID NO:24) . . . . . 6.6 ± 1.5 33.9 ± 6.8 3Db (SEQ ID NO:25) . . . . . 10.1 ± 2.8 25.4 ± 0.8 3Dc (SEQ ID NO:26) . . .C.A. . . . . . . . . . . . . . 1.0 ± 0.1 1.2 ± 0.5 3Dd (SEQ ID NO:27) . . . . .Z. . . . . . . . . . . . . . 1.2 ± 0.2 1.0 ± 0.4 3De (SEQ ID NO:28) . . . . . 4.4 ± 1.2 18.8 ± 4.4 3Df (SEQ ID NO:29) . . . . . 1.6 ± 0.1 7.7 ± 0.4 3Dg (SEQ ID NO:30) . . . . . 6.1 ± 1.5 18.6 ± 1.5 3M (SEQ ID NO:31) TCCATGT 4.1 ± 0.2 23.2 ± 4.9 3Ma (SEQ ID NO:32) . . . . . .CT. . . . . . . . . . . . 0.9 ± 0.1 1.8 ± 0.5 3Mb (SEQ ID NO:33) . . . . . . .Z. . . . . . . . . . . . 1.3 ± 0.3 1.5 ± 0.6 3Mc (SEQ ID NO:34) . . . . . . . 5.4 ± 1.5 8.5 ± 2.6 3Md (SEQ ID NO:35) . . . . . .A 17.2 ± 9.4 ND 3Me (SEQ ID NO:36) . . . . . . 3.6 ± 0.2 14.2 ± 5.2 4 TCAACGTT 6.1 ± 1.4 19.2 ± 5.2 4a . . . .GC. . 1.1 ± 0.2 1.5 ± 1.1 4b . . .G 4.5. ± 0.2 9.6 ± 3.4 4c . . .T 2.7. ± 1.0 ND 4d . .TT 1.3 ± 0.2 ND 4e - . . . 1.3 ± 0.2 1.1 ± 0.5 4f C. . . 3.9 ± 1.4 ND 4g - - . . 1.4 ± 0.3 ND 4h . . . . 1.2 ± 0.2 ND LPS 7.8 ± 2.5 4.8 ± 1.0
[0076]
TABLE 2 Identification of the optimal CpG motif for Murine IL-6 production and B cell activation. IL-6(pg/ml) ODN SEQUENCE (5′-3′) CH12.LX SPLENIC B CELL SI IgM (ng/ml) 512 (SEQ ID TCCATGT 1300 ± 106 627 ± 43 5.8 ± 0.3 7315 ± 1324 NO:37) 1637 (SEQ ID . . . . . .C 136 ± 27 46 ± 6 1.7 ± 0.2 770 ± 72 NO:38) 1615 (SEQ ID . . . . . .G 1201 ± 155 850 ± 202 3.7 ± 0.3 3212 ± 617 NO:39) 1614 (SEQ ID . . . . . .A 1533 ± 321 1812 ± 103 10.8 ± 0.6 7558 ± 414 NO:40) 1636 (SEQ ID . . . . . . . 1181 ± 76 947 ± 132 5.4 ± 0.4 3983 ± 485 NO:41) 1634 (SEQ ID . . . . . . . 1049 ± 223 1671 ± 175 9.2 ± 0.9 6256 ± 261 NO:42) 1619 (SEQ ID . . . . . . . 1555 ± 304 2908 ± 129 12.5 ± 1.0 8243 ± 698 NO:43) 1618 (SEQ ID . . . . . .A 2109 ± 291 2596 ± 166 12.9 ± 0.7 10425 ± 674 NO:44) 1639 (SEQ ID . . . . .AA 1827 ± 83 2012 ± 132 11.5 ± 0.4 9489 ± 103 NO:45) 1707 (SEQ ID . . . . . .A ND 1147 ± 175 4.0 ± 0.2 3534 ± 217 NO:46) 1708 (SEQ ID . . . . .CA ND 59 ± 3 1.5 ± 0.1 466 ± 109 NO:47)
[0077] The kinetics of lymphocyte activation were investigated using mouse spleen cells. When the cells were pulsed at the same time as ODN addition and harvested just four hours later, there was already a two-fold increase in
[0078] Cell cycle analysis was used to determine the proportion of B cells activated by CpG-ODN. CpG-ODN induced cycling in more than 95% of B cells. Splenic B lymphocytes sorted by flow cytometry into CD23− (marginal zone) and CD23+ (follicular) subpopulations were equally responsive to ODN− induced stimulation, as were both resting and activated populations of B cells isolated by fractionation over Percoll gradients. These studies demonstrated that CpG-ODN induce essentially all B cells to enter the cell cycle.
[0079] Immunostimulatory Nucleic Acid Molecules Block Murine B Cell Apoptosis
[0080] Certain B cell lines such as WEHI-231 are induced to undergo growth arrest and/or apoptosis in response to crosslinking of their antigen receptor by anti-IgM (Jakway, J. P. et al., “Growth regulation of the B lymphoma cell line WEHI-231 by anti-immunoglobulin, lipopolysaccharide and other bacterial products”
[0081] Induction of Murine Cytokine Secretion by CpG Motifs in Bacterial DNA or Oligonucleotides.
[0082] As described in Example 9, the amount of IL-6 secreted by spleen cells after CpG DNA stimulation was measured by ELISA. T cell depleted spleen cell cultures rather than whole spleen cells were used for in vitro studies following preliminary studies showing that T cells contribute little or nothing to the LL-6 produced by CpG DNA-stimulated spleen cells. As shown in Table 3, IL-6 production was markedly increased in cells cultured with TABLE 3 Induction of Murine IL-6 secretion by CpG motifs in bacterial DNA or oligonucleotides. Treatment IL-6 (pg/ml) calf thymus DNA ≦10 calf thymus DNA + DNase ≦10 1169.5 ± 94.1 ≦10 CpG methylated ≦10 LPS 280.1 ± 17.1 Media (no DNA) ≦10 ODN 5a SEQ ID ATGGACTCTCCAG 1096.4 ± 372.0 NO:1 5b SEQ ID . . . . .AGG. . . .A 1124.5 ± 126.2 NO:2 5c SEQ ID . . 1783.0 ± 189.5 NO:3 5d SEQ ID. . . . . .AGG. .C. .T. . . . . . ≦10 NO:4 5e SEQ ID . . 851.1 ± 114.4 NO:5 5f SEQ ID . .Z. . . . . .ZG. .Z. . . . . . ≦10 NO:6 5g SEQ ID . . 1862.3 ± 87.26 NO:7
[0083] T cell depleted spleen cells from DBA/2 mice were stimulated with phosphodiester modified oligonucleotides (O-ODN) (20 μM), calf thymus DNA (50 pg/ml) or
[0084] Identification of the Optimal CpG Motiffor Induction of Murine IL-6 and IgM Secretion and B Cell Proliferation.
[0085] To evaluate whether the optimal B cell stimulatory CpG motif was identical with the optimal CpG motif for IL-6 secretion, a panel of ODN in which the bases flanking the CpG dinucleotide were progressively substituted was studied. This ODN panel was analyzed for effects on B cell proliferation, Ig production, and IL-6 secretion, using both splenic B cells and CH12.LX cells. As shown in Table 2, the optimal stimulatory motif is composed of an unmethylated CpG flanked by two 5′ purines and two 3′ pyrimidines. Generally a mutation of either 5′ purine to pyrimidine or 3′ pyrimidine to purine significantly reduced its effects. Changes in 5′ purines to C were especially deleterious, but changes in 5′ purines to T or 3′ pyrimidines to purines had less marked effects. Based on analyses of these and scores of other ODN, it was determined that the optimal CpG motif for induction of 1L-6 secretion is TGACGTT, which is identical with the optimal mitogenic and IgM-inducing CpG motif (Table 2). This motif was more stimulatory than any of the palindrome containing sequences studied (1639, 1707 and 1708).
[0086] Titration of Induction of Murine IL-6 Secretion by CpG Motifs.
[0087] Bacterial DNA and CpG ODN induced IL-6 production in T cell depleted murine spleen cells in a dose-dependent manner, but vertebrate DNA and non-CpG ODN did not (
[0088] Induction of Murine IL-6 Secretion by CpG DNA in Vivo.
[0089] To evaluate the ability of bacterial DNA and CpG S-ODN to induce IL-6 secretion in vivo, BALB/c mice were injected iv. with 100 μg of TABLE 4 Secretion of Murine IL-6 induced by CpG DNA stimulation in vivo. Stimulant IL-6 (pg/ml) PBS <50 13858 ± 3143 Calf Thymus DNA <50 CpG S-ODN 20715 ± 606 non-CpG S-ODN <50
[0090] Mice (2 mice/group) were i.v. injected with 100 μl of PBS, 200 μg of
[0091] Kinetics of Murine IL-6 Secretion after Stimulation by CpG Motifs in Vivo.
[0092] To evaluate the kinetics of induction of IL-6 secretion by CpG DNA in vivo, BALB/c mice were injected iv. with CpG or control non-CpG S-ODN. Serum IL-6 levels were significantly increased within 1 hr and peaked at 2 hr to a level of approximately 9 ng/ml in the CpG S-ODN injected group (
[0093] Tissue Distribution and Kinetics of IL-6 mRNA Expression Induced by CpG Motifs in Vivo.
[0094] As shown in
[0095] Patterns of Murine Cytokine Expression Induced by CpG DNA
[0096] In vivo or in whole spleen cells, no significant increase in the protein levels of the following interleukins: IL-2, IL-3, IL-4, IL-5, or IL-10 was detected within the first six hours (Klinman, D. M. et al., (1996) TABLE 5 Induction of human PBMC cytokine secrtetion by CpG oligos ODN Sequence (5′-3′) IL-6 TNF-α IFN-γ GM-CSF IL-12 512 TCCATGT 500 140 15.6 70 250 SEQ ID NO:37 1637 . . . . . .C 550 16 7.8 15.6 35 SEQ ID NO:38 1615 . . . . . .G 600 145 7.8 45 250 SEQ ID NO:39 1614 . . . . . .A 550 31 0 50 250 SEQ ID NO:40 1636 . . . . . . . 325 250 35 40 0 SEQ ID NO:41 1634 . . . . . . . 300 400 40 85 200 SEQ ID NO:42 1619 . . . . . . . 275 450 200 80 >500 SEQ ID NO:43 1618 . . . . . .A 300 60 15.6 15.6 62 SEQ ID NO:44 1639 . . . . .AA 625 220 15.6 40 60 SEQ ID NO:45 1707 . . . . . .A 300 70 17 0 0 SEQ ID NO:46 1708 . . . . .CA 270 10 17 0 0 SEQ ID NO:47
[0097] dots indicate identity; CpG dinucleotides are underlined
[0098] CpG DNA Induces Cytokine Secretion by Human PBMC, Specifically Monocytes
[0099] The same panels of ODN used for studying mouse cytokine expression were used to determine whether human cells also are induced by CpG motifs to express cytokine (or proliferate), and to identify the CpG motif(s) responsible. Oligonucleotide 1619 (GTCGTT) was the best inducer of TNF-α and IFN-γ secretion, and was closely followed by a nearly identical motif in oligonucleotide 1634 (GTCGCT) (Table 5). The motifs in oligodeoxynucleotides 1637 and 1614 (GCCGGT and GACGGT) led to strong IL-6 secretion with relatively little induction of other cytokines. Thus, it appears that human lymphocytes, like murine lymphocytes, secrete cytokines differentially in response to CpG dinucleotides, depending on the surrounding bases. Moreover, the motifs that stimulate murine cells best differ from those that are most effective with human cells. Certain CpG oligodeoxynucleotides are poor at activating human cells (oligodeoxynucleotides 1707, 1708, which contain the palindrome forming sequences GACGTC and CACGTG respectively).
[0100] The cells responding to the DNA appear to be monocytes, since the cytokine secretion is abolished by treatment of the cells with L-leucyl-L-leucine methyl ester (L-LME), which is selectively toxic to monocytes (but also to cytotoxic T lymphocytes and NK cells), and does not affect B cell Ig secretion (Table 6, and data not shown). The cells surviving L-LME treatment had >95% viability by trypan blue exclusion, indicating that the lack of a cytokine response among these cells did not simply reflect a nonspecific death all all cell types. Cytokine secretion in response to TABLE 6 CpG DNA induces cytokine secretion by human PBMC TNF-α IL-6 IFN-γ RANTES DNA (pg/ml) (pg/ml) (pg/ml) (pg/ml) EC DNA (50 μg/ml) 900 12,000 700 1560 EC DNA (5 μg/ml) 850 11,000 400 750 EC DNA (0.5 μg/ml) 500 ND 200 0 EC DNA (0.05 μg/ml) 62.5 10,000 15.6 0 EC DNA (50 μg/ml) + L-LME 0 ND ND ND EC DNA (10 μg/ml) Methyl. 0 5 ND ND CT DNA (50 μg/ml) 0 600 0 0
[0101] The loss of cytokine production in the PBMC treated with L-LMB suggested that monocytes may be responsible for cytokine production in response to CpG DNA. To test this hypothesis more directly, the effects of CpG DNA on highly purified human monocytes and macrophages was tested. As hypothesized, CpG DNA directly activated production of the cytokines L-6, GM-CSF, and TNF-α by human macrophages, whereas non-CpG DNA did not (Table 7).
TABLE 7 CpG DNA induces cytokine expression in purified human macrophages IL-6 (pg/ml) GM-CSF (pg/ml) TNF-α (pg/ml) Cells alone 0 0 0 CT DNA (50 μg/ml) 0 0 0 EC DNA (50 μg/ml) 2000 15.6 1000
[0102] Biolozical Role of IL-6 in Inducinz Murine IgM Production in Response to CpG Motifs.
[0103] The kinetic studies described above revealed that induction of IL-6 secretion, which occurs within 1 hr post CpG stimulation, precedes lgM secretion. Since the optimal CpG motif for ODN inducing secretion of IL-6 is the same as that for IgM (Table 2), whether the CpG motifs independently induce IgM and IL-6 production or whether the IgM production is dependent on prior IL-6 secretion was examined. The addition of neutralizing anti-IL-6 antibodies inhibited in vitro IgM production mediated by CpG ODN in a dose-dependent manner but a control antibody did not (
[0104] Increased Transcriptional Activity of the IL-6 Promoter in Response to CpG DNA.
[0105] The increased level of IL-6 mRNA and protein after CpG DNA stimulation could result from transcriptional or post-transcriptional regulation. To determine if the transcriptional activity of the IL-6 promoter was upregulated in B cells cultured with CpG ODN, a murine B cell line, WEHI-23 1, which produces IL-6 in response to CpG DNA, was transfected with an IL-6 promoter-CAT construct (plL-6/CAT) (Pottratz, S. T. et al., 17B-estradiol) inhibits expression of human interleukin-6-promoter-reporter constructs by a receptor-dependent mechanism.
[0106] Dependence of B Cell Activation bv CpG ODN on the Number of 5′ and 3′ Phosphorothioate Internucleotide Linkages.
[0107] To determine whether partial sulfur modification of the ODN backbone would be sufficient to enhance B cell activation, the effects of a series of ODN with the same sequence, but with differing numbers of S internucleotide linkages at the 5′ and 3′ ends were tested. Based on previous studies of nuclease degradation of ODN, it was determined that at least two phosphorothioate linkages at the 5′ end of ODN were required to provide optimal protection of the ODN from degradation by intracellular exo- and endo- nucleases. Only chimeric ODN containing two 5′ phosphorothioate-modified linkages, and a variable number of 3′ modified linkages were therefore examined.
[0108] The lymphocyte stimulating effects of these ODN were tested at three concentrations (3.3, 10, and 30 μM) by measuring the total levels of RNA synthesis (by
[0109] Dependence of CpG-Mediated Lymphocyte Activation on the Type of Backbone Modification.
[0110] Phosphorothioate modified ODN (S-ODN) are far more nuclease resistant than phosphodiester modified ODN (O-ODN). Thus, the increased immune stimulation caused by S-ODN and S-O-ODN (i.e. chimeric phosphorothioate ODN in which the central linkages are phosphodiester, but the two 5′ and five 3′ linkages are phosphorothioate modified) compared to O-ODN may result from the nuclease resistance of the former. To determine the role of ODN nuclease resistance in immune stimulation by CpG ODN, the stimulatory effects of chimeric ODN in which the 5′ and 3′ ends were rendered nuclease resistant with either methylphosphonate (MP-), methylphosphorothioate (MPS-), phosphorothioate (S-); or phosphorodithioate (S
[0111] S-O-ODN were far more stimulatory than O-ODN, and were even more stimulatory than S-ODN, at least at concentrations above 3.3 μM. At concentrations below 3 μM, the S-ODN with the 3M sequence was more potent than the corresponding S-O-ODN, while the S-ODN with the 3D sequence was less potent than the corresponding S-O-ODN (Example 10). In comparing the stimulatory CpG motifs of these two sequences, it was noted that the 3D sequence is a perfect match for the stimulatory motif in that the CpG is flanked by two 5′ purines and two 3′ pyrimidines. However, the bases immediately flanking the CpG in ODN 3D are not optimal; it has a 5′ pyrimidine and a 3′ purine. Based on further testing, it was found that the sequence requirement for immune stimulation is more stringent for S-ODN than for S-O- or O-ODN. S-ODN with poor matches to the optimal CpG motif cause little or no lymphocyte activation (e.g. Sequence 3D). However, S-ODN with good matches to the motif, most critically at the positions immediately flanking the CpG, are more potent than the corresponding S-O-ODN (e.g. Sequence 3M, Sequences 4 and 6), even though at higher concentrations (greater than 3 μM) the peak effect from the S-O-ODN is greater (Example 10).
[0112] S
[0113] The increased B cell stimulation seen with CpG ODN bearing S or S
[0114] Unmethylated CpG Containing Olizos have NK Cell Stimulatory Activity
[0115] Experiments were conducted to determine whether CpG containing oligonucleotides stimulated the activity of natural killer (NK) cells in addition to B cells. As shown in Table 8, a marked induction of NK activity among spleen cells cultured with CpG ODN 1 and 3Dd was observed. In contrast, there was relatively no induction in effectors that had been treated with non-CpG control ODN.
TABLE 8 Induction Of NK Activity By CpG Oligodeoxynucleotides (ODN) % YAC-1 % 2C11 Specific Lysis* Specific Lysis Effector: Target Effector: Target ODN 50:1 100:1 50:1 100:1 None −1.1 −1.4 15.3 16.6 1 16.1 24.5 38.7 47.2 3Dd 17.1 27.0 37.0 40.0 non-CpG ODN −1.6 −1.7 14.8 15.4
[0116] Induction of NK Activity by DNA Containing CpG Motifs, but not by Non-CpG DNA.
[0117] Bacterial DNA cultured for 18 hrs. at 37° C. and then assayed for killing of K562 (human) or Yac-1 (mouse) target cells induced NK lytic activity in both mouse spleen cells depleted of B cells and human PBMC, but vertebrate DNA did not (Table 9). To deternine whether the stimulatory activity of bacterial DNA may be a consequence of its increased level of unmethylated CpG dinucleotides, the activating properties of more than 50 synthetic ODN containing unmethylated, methylated, or no CpG dinucleotides was tested. The results, summarized in Table 9, demonstrate that synthetic ODN can stimulate significant NK activity, as long as they contain at least one unmethylated CpG dinucleotide. No difference was observed in the stimulatory effects of ODN in which the CpG was within a palindrome (such as ODN 1585, which contains the palindrome AACGTT) from those ODN without palindromes (such as 1613 or 1619), with the caveat that optimal stimulation was generally seen with ODN in which the CpG was flanked by two 5′ purines or a 5′ GpT dinucleotide and two 3′ pyrimidines. Kinetic experiments demonstrated that NK activity peaked around 18 hrs. after addition of the ODN. The data indicates that the murine NK response is dependent on the prior activation of monocytes by CpG DNA, leading to the production of IL-12, TNF-α, and IFN-α/β (Example 11).
TABLE 9 Induction of NK Activity by DNA Containing CpG Motifs but not by Non-CpG DNA LU/10 DNA or Cytokine Added Mouse Cells Human Cells Expt. 1 None 0.00 0.00 IL-2 16.68 15.82 7.23 5.05 Calf thymus DNA 0.00 0.00 Expt. 2 None 0.00 3.28 1585 gggGTCAA (SEQ ID NO:12) 7.38 17.98 1629 . . . . . . .gtc. . . . . . . . . . (SEQ ID NO:50) 0.00 4.4 Expt. 3 None 0.00 1613 GCTAGA (SEQ ID NO:51) 5.22 1769 . . . . . . .Z. . . . . . . (SEQ ID NO:52) 0.02 ND 1619 TCCATGT (SEQ ID NO:43) 3.35 1765 . . . . . . .Z. . . . . . . . . . . . (SEQ ID NO:53) 0.11
[0118] CpG dinucleotides in ODN sequences are indicated by underlying; Z indicates methylcytosine. Lower case letters indicate nuclease resistant phosphorothioate modified intemucleotide linkages which, in titration experiments, were more than 20 times as potent as non-modified ODN, depending on the flanking bases. Poly G ends (g) were used in some ODN, because they significantly increase the level of ODN uptake.
[0119] From all of these studies, a more complete understanding of the immune effects of CpG DNA has been developed, which is summarized in
[0120] Identification of B Cell and Monocyte/NK Cell-Specific Oligonucleotides
[0121] As shown in
[0122] In further studies of different immune effects of CpG DNA, it was found that there is more than one type of CpG motif. Specifically, oligo 1668, with the best mouse B cell motif, is a strong inducer of both B cell and natural killer (NK) cell activation, while oligo 1758 is a weak B cell activator, but still induces excellent NK responses (Table 10).
TABLE 10 Different CpG motifs stimulate optimal murine B cell and NK activation ODN Sequence B cell activation NK activation 1668 TCCATGA 42,849 2.52 (SEQ ID NO:54) 1758 TCTCCCAG 1,747 6.66 (SEQ ID NO:55) NONE 367 0.00
[0123] CpG dinucleotides are underlined; oligonucleotides were synthesized with phosphorothioate modified backbones to improve their nuclease resistance.
[0124]
[0125]
[0126] Teleological Basis of Immunostimulatory, Nucleic Acids
[0127] Vertebrate DNA is highly methylated and CpG dinucleotides are underrepresented. However, the stimulatory CpG motif is common in microbial genomic DNA, but quite rare in vertebrate DNA. In addition, bacterial DNA has been reported to induce B cell proliferation and immunoglobulin (Ig) production, while mammalian DNA does not (Messina, J. P. et al.,
[0128] Teleologically, it appears likely that lymphocyte activation by the CpG motif represents an immune defense mechanism that can thereby distinguish bacterial from host DNA. Host DNA, which would commonly be present in many anatomic regions and areas of inflammation due to apoptosis (cell death), would generally induce little or no lymphocyte activation due to CpG suppression and methylation. However, the presence of bacterial DNA containing unmethylated CpG motifs can cause lymphocyte activation precisely in infected anatomic regions, where it is beneficial. This novel activation pathway provides a rapid alternative to T cell dependent antigen specific B cell activation. Since the CpG pathway synergizes with B cell activation through the antigen receptor, B cells bearing antigen receptor specific for bacterial antigens would receive one activation signal through cell membrane Ig and a second signal from bacterial DNA, and would therefore tend to be preferentially activated. The interrelationship of this pathway with other pathways of B cell activation provide a physiologic mechanism employing a polyclonal antigen to induce antigen-specific responses.
[0129] However, it is likely that B cell activation would not be totally nonspecific. B cells bearing antigen receptors specific for bacterial products could receive one activation signal through cell membrane Ig, and a second from bacterial DNA, thereby more vigorously triggering antigen specific immune responses. As with other immune defense mechanisms, the response to bacterial DNA could have undesirable consequences in some settings. For example, autoimmune responses to self antigens would also tend to be preferentially triggered by bacterial infections, since autoantigens could also provide a second activation signal to autoreactive B cells triggered by bacterial DNA. Indeed the induction of autoimmunity by bacterial infections is a common clinical observance. For example, the autoimmune disease systemic lupus erythematosus, which is: i) characterized by the production of anti-DNA antibodies; ii) induced by drugs which inhibit DNA methyltransferase (Cornacchia, E. J. et al.,
[0130] Further, sepsis, which is characterized by high morbidity and mortality due to massive and nonspecific activation of the immune system may be initiated by bacterial DNA and other products released from dying bacteria that reach concentrations sufficient to directly activate many lymphocytes. Further evidence of the role of CpG DNA in the sepsis syndrome is described in Cowdery, J., et. al., (1996)
[0131] Proposed Mechanisms of Action
[0132] Unlike antigens that trigger B cells through their surface Ig receptor, CpG-ODN did not induce any detectable Ca
[0133] Recent data indicate the involvement of the transcription factor NFκB as a direct or indirect mediator of the CpG effect. For example, within 15 minutes of treating B cells or monocytes with CpG DNA, the level of NFkB binding activity is increased (
[0134] There are several possible mechanisms through which NFκB can be activated. These include through activation of various protein kinases, or through the generation of reactive oxygen species. No evidence for protein kinase activation induced immediately after CpG DNA treatment of B cells or monocytic cells have been found, and inhibitors of protein kinase A, protein kinase C, and protein tyrosine kinases had no effects on the CpG induced activation. However, CpG DNA causes a rapid induction of the production of reactive oxygen species in both B cells and monocytic cells, as detected by the sensitive fluorescent dye dihydrorhodamine 123 as described in Royall, J. A., and Ischiropoulos, H. (
[0135] Working backwards, the next question was how CpG DNA leads to the generation of reactive oxygen species so quickly. Previous studies by the inventors demonstrated that oligonucleotides and plasmid or bacterial DNA are taken up by cells into endosomes. These endosomes rapidly become acidified inside the cell. To determine whether this acidification step may be important in the mechanism through which CpG DNA activates reactive oxygen species, the acidification step was blocked with specific inhibitors of endosome acidification including chloroquine, monensin, and bafilomycin, which work through different mechanisms.
[0136] In the presence of chloroquine, the results are very different (
[0137] Presumably, there is a protein in or near the endosomes that specifically recognizes DNA containing CpG motifs and leads to the generation of reactive oxygen species. To detect any protein in the cell cytoplasm that may specifically bind CpG DNA, we used electrophoretic mobility shift assays (EMSA) with 5′ radioactively labeled oligonucleotides with or without CpG motifs. A band was found that appears to represent a protein binding specifically to single stranded oligonucleotides that have CpG motifs, but not to oligonucleotides that lack CpG motifs or to oligonucleotides in which the CpG motif has been methylated. This binding activity is blocked if excess of oligonucleotides that contain the NFκB binding site was added. This suggests that an NFκB or related protein is a component of a protein or protein complex that binds the stimulatory CpG oligonucleotides.
[0138] No activation of CREB/ATF proteins was found at time points where NFκB was strongly activated. These data therefore do not provide proof that NFκB proteins actually bind to the CpG nucleic acids, but rather that the proteins are required in some way for the CpG activity. It is possible that a CREB/ATF or related protein may interact in some way with NFkB proteins or other proteins thus explaining the remarkable similarity in the binding motifs for CREB proteins and the optimal CpG motif. It remains possible that the oligos bind to a CREB/ATF or related protein, and that this leads to NFκB activation.
[0139] Alternatively, it is very possible that the CpG nucleic acids may bind to one of the TRAF proteins that bind to the cytoplasmic region of CD40 and mediate NFκB activation when CD40 is cross-linked. Examples of such TRAF proteins include TRAF-2 and TRAF-5.
[0140] Method for Making Immunostimulatory Nucleic Acids
[0141] For use in the instant invention, nucleic acids can be synthesized de novo using any of a number of procedures well known in the art. For example, the β-cyanoethyl phosphoramidite method (S. L. Beaucage and M. H. Caruthers, (1981)
[0142] For use in vivo, nucleic acids are preferably relatively resistant to degradation (e.g. via endo- and exo- nucleases). Secondary structures, such as stem loops, can stabilize nucleic acids against degradation. Alternatively, nucleic acid stabilization can be accomplished via phosphate backbone modifications. A preferred stabilized nucleic acid has at least a partial phosphorothioate modified backbone. Phosphorothioates may be synthesized using automated techniques employing either phosphoramidate or H-phosphonate chemistries. Aryl- and alkyl- phosphonates can be made e.g. as described in U.S. Pat. No. 4,469,863; and alkylphosphotriesters (in which the charged oxygen moiety is alkylated as described in U.S. Pat. No.5,023,243 and European Patent No. 092,574) can be prepared by automated solid phase synthesis using commercially available reagents. Methods for making other DNA backbone modifications and substitutions have been described (Uhlmann, E. and Peyman, A. (1990)
[0143] For administration in vivo, nucleic acids may be associated with a molecule that results in higher affinity binding to target cell (e.g. B-cell, monocytic cell and natural killer (NK) cell) surfaces and/or increased cellular uptake by target cells to form a “nucleic acid delivery complex”. Nucleic acids can be lonically, or covalently associated with appropriate molecules using techniques which are well known in the art. A variety of coupling or crosslinking agents can be used e.g. protein A, carbodiimide, and N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP). Nucleic acids can alternatively be encapsulated in liposomes or virosomes using well-known techniques.
[0144] Therapeutic Uses of Immunostimulatory Nucleic Acid Molecules
[0145] Based on their immunostimulatory properties, nucleic acid molecules containing at least one unmethylated CpG dinucleotide can be administered to a subject in vivo to treat an “immune system deficiency”. Alternatively, nucleic acid molecules containing at least one unmethylated CpG dinucleotide can be contacted with lymphocytes (e.g. B cells, monocytic cells or NK cells) obtained from a subject having an immune system deficiency ex vivo and activated lymphocytes can then be reimplanted in the subject.
[0146] As reported herein, in response to unmethylated CpG containing nucleic acid molecules, an increased number of spleen cells secrete IL-6, IL-12, IFN-γ, IFN-α, IFN-β, IL-1, IL-3, IL-10, TNF-α, TNF-β, GM-CSF, RANTES, and probably others. The increased IL-6 expression was found to occur in B cells, CD4+T cells and monocytic cells.
[0147] Immunostimulatory nucleic acid molecules can also be administered to a subject in conjunction with a vaccine to boost a subject's immune system and thereby effect a better response from the vaccine. Preferably the immunostimulatory nucleic acid molecule is administered slightly before or at the same time as the vaccine. A conventional adjuvant may optionally be administered in conjunction with the vaccine, which is minimally comprised of an antigen, as the conventional adjuvant may further improve the vaccination by enhancing antigen absorption.
[0148] When the vaccine is a DNA vaccine at least two components determine its efficacy. First, the antigen encoded by the vaccine determines the specificity of the immune response. Second, if the backbone of the plasmid contains CpG motifs, it functions as an adjuvant for the vaccine. Thus, CpG DNA acts as an effective “danger signal” and causes the immune system to respond vigorously to new antigens in the area. This mode of action presumably results primarily from the stimulatory local effects of CpG DNA on dendritic cells and other “professional” antigen presenting cells, as well as from the costimulatory effects on B cells.
[0149] Immunostimulatory oligonucleotides and unmethylated CpG containing vaccines, which directly activate lymphocytes and co-stimulate an antigen-specific response, are fundamentally different from conventional adjuvants (e.g. aluminum precipitates), which are inert when injected alone and are thought to work through absorbing the antigen and thereby presenting it more effectively to immune cells. Further, conventional adjuvants only work for certain antigens, only induce an antibody (hurnoral) immune response (Th2), and are very poor at inducing cellular immune responses (Th1). For many pathogens, the humoral response contributes little to protection, and can even be detrimental.
[0150] In addition, an immunostimulatory oligonucleotide can be administered prior to, along with or after administration of a chemotherapy or immunotherapy to increase the responsiveness of the malignant cells to subsequent chemotherapy or immunotherapy or to speed the recovery of the bone marrow through induction of restorative cytokines such as GM-CSF. CpG nucleic acids also increase natural killer cell lytic activity and antibody dependent cellular cytotoxicity (ADCC). Induction of NK activity and ADCC may likewise be beneficial in cancer immunotherapy, alone or in conjunction with other treatments.
[0151] Another use of the described immunostimulatory nucleic acid molecules is in desensitization therapy for allergies, which are generally caused by IgE antibody generation against harmless allergens. The cytokines that are induced by unmethylated CpG nucleic acids are predominantly of a class called “Th1” which is most marked by a cellular immune response and is associated with IL-12 and IFN-γ. The other major type of immune response is termed a Th2 immune response, which is associated with more of an antibody immune response and with the production of IL-4, IL-5 and IL-10. In general, it appears that allergic diseases are mediated by Th2 type immune responses and autoimmune diseases by Th1 immune response. Based on the ability of the immunostimulatory nucleic acid molecules to shift the immune response in a subject from a Th2 (which is associated with production of IgE antibodies and allergy) to a Th1 response (which is protective against allergic reactions), an effective dose of an immunostimulatory nucleic acid (or a vector containing a nucleic acid) alone or in conjunction with an allergen can be administered to a subject to treat or prevent an allergy.
[0152] Nucleic acids containing unmethylated CpG motifs may also have significant therapeutic utility in the treatment of asthma. Th2 cytokines, especially IL-4 and IL-5 are elevated in the airways of asthmatic subjects. These cytokines promote important aspects of the asthmatic inflammatory response, including IgE isotype switching, eosinophil chemotaxis and activation and mast cell growth. Th1 cytokines, especially IFN-γ and IL-12, can suppress the formation of Th2 clones and production of Th2 cytokines.
[0153] As described in detail in the following Example 12, oligonucleotides containing an unmethylated CpG motif (i.e. TCCATGA
[0154] For use in therapy, an effective amount of an appropriate immunostimulatory nucleic acid molecule alone or formulated as a delivery complex can be administered to a subject by any mode allowing the oligonucleotide to be taken up by the appropriate target cells (e.g., B-cells and monocytic cells). Preferred routes of administration include oral and transdermal (e.g., via a patch). Examples of other routes of administration include injection (subcutaneous, intravenous, parenteral, intraperitoneal, intrathecal, etc.). The injection can be in a bolus or a continuous infusion.
[0155] A nucleic acid alone or as a nucleic acid delivery complex can be administered in conjunction with a pharmaceutically acceptable carrier. As used herein, the phrase “pharmaceutically acceptable carrier” is intended to include substances that can be coadministered with a nucleic acid or a nucleic acid delivery complex and allows the nucleic acid to perform its indicated function. Examples of such carriers include solutions, solvents, dispersion media, delay agents, emulsions and the like. The use of such media for pharmaceutically active substances are well known in the art. Any other conventional carrier suitable for use with the nucleic acids falls within the scope of the instant invention.
[0156] The language “effective amount” of a nucleic acid molecule refers to the amount necessary or sufficient to realize a desired biologic effect. For example, an effective amount of a nucleic acid containing at least one unmethylated CpG for treating an immune system deficiency could be that amount necessary to eliminate a tumor, cancer, or bacterial, viral or fungal infection. An effective amount for use as a vaccine adjuvant could be that amount useful for boosting a subjects immune response to a vaccine. An “effective amount” for treating asthma can be that amount useful for redirecting a Th2 type of immune response that is associated with asthma to a Th1 type of response. The effective amount for any particular application can vary depending on such factors as the disease or condition being treated, the particular nucleic acid being administered (e.g. the number of unmethylated CpG motifs or their location in the nucleic acid), the size of the subject, or the severity of the disease or condition. One of ordinary skill in the art can empirically determine the effective amount of a particular oligonucleotide without necessitating undue experimentation.
[0157] The present invention is further illustrated by the following Examples which in no way should be construed as further limiting. The entire contents of all of the references (including literature references, issued patents, published patent applications, and co-pending patent applications) cited throughout this application are hereby expressly incorporated by reference.
[0158] Effects of ODNs on B Cell Total RNA Synthesis and Cell Cycle
[0159] B cells were purified from spleens obtained from 6-12 wk old specific pathogen free DBA/2 or BXSB mice (bred in the University of Iowa animal care facility; no substantial strain differences were noted) that were depleted of T cells with anti-Thy-1.2 and complement and centrifugation over lympholyte M (Cedarlane Laboratories, Hornby, Ontario, Canada) (“B cells”). B cells contained fewer than 1% CD4
[0160] Effects of ODN on Production of IgM from B cells
[0161] Single cell suspensions from the spleens of freshly killed mice were treated with anti-Thyl, anti-CD4, and anti-CD8 and complement by the method of Leibson et al.,
[0162] B cell Stimulation by Bacterial DNA
[0163] DBA/2 B cells were cultured with no DNA or 50 μg/ml of a) Micrococcus lysodeikticus; b) NZB/N mouse spleen; and c) NFS/N mouse spleen genomic DNAs for 48 hours, then pulsed with
[0164] DBA/2 B cells were cultured with either no additive, 50 μg/ml LPS or the ODN 1; Ia; 4; or 4a at 20 uM. Cells were cultured and harvested at 4, 8, 24 and 48 hours. BXSB cells were cultured as in Example 1 with 5, 10, 20, 40 or 80 μM of ODN 1; 1a; 4; or 4a or LPS. In this experiment, wells with no ODN had 3833 cpm. Each experiment was performed at least three times with similar results. Standard deviations of the triplicate wells were <5%.
[0165] Effects of ODN on Natural Killer (NK) Activity
[0166] 10×10
[0167] In Vivo Studies with CpG Phosphorothioate ODN
[0168] Mice were weighed and injected IP with 0.25 ml of sterile PBS or the indicated phophorothioate ODN dissolved in PBS. Twenty four hours later, spleen cells were harvested, washed, and stained for flow cytometry using phycoerythrin conjugated 6B2 to gate on B cells in conjunction with biotin conjugated anti Ly-6A/E or anti-la
[0169] Titration of Phosphorothioate ODN for B Cell Stimulation
[0170] B cells were cultured with phosphorothioate ODN with the sequence of control ODN 1a or the CpG ODN Id and 3Db and then either pulsed after 20 hr with
[0171] Rescue of B Cells From Apoptosis
[0172] WEHI-231 cells (5×10
[0173] In Vivo Induction of Murine IL-6
[0174] DBA/2 female mice (2 mos. old) were injected IP with 500 μg CpG or control phosphorothioate ODN. At various time points after injection, the mice were bled. Two mice were studied for each time point. IL-6 was measured by Elisa, and IL-6 concentration was calculated by comparison to a standard curve generated using recombinant IL-6. The sensitivity of the assay was 10 pg/ml. Levels were undetectable after 8 hr.
[0175] Systemic Induction of Murine IL-6 Transcription
[0176] Mice and cell lines. DBA/2, BALB/c, and C3H/HeJ mice at 5-10 wk of age were used as a source of lymphocytes. All mice were obtained from The Jackson Laboratory (Bar Harbor, Me.), and bred and maintained under specific pathogen-free conditions in the University of Iowa Animal Care Unit. The mouse B cell line CH12.LX was kindly provided by Dr. G. Bishop (University of Iowa, Iowa City).
[0177] Cell preparation. Mice were killed by cervical dislocation. Single cell suspensions were prepared aseptically from the spleens from mice. T cell depleted mouse splenocytes were prepared by using anti-Thy-1.2 and complement and centrifugation over lympholyte M (Cedarlane Laboratories, Hornby, Ontario, Canada) as described (Krieg, A. M. et al., (1989) A role for endogenous retroviral sequences in the regulation of lymphocyte activation.
[0178] ODN and DNA. Phosphodiester oligonucleotides (O-ODN) and the backbone modified phosphorothioate oligonucleotides (S-ODN) were obtained from the DNA Core facility at the University of Iowa or from Operon Technologies (Alameda, Calif.).
[0179] Cell Culture. All cells were cultured at 37° C. in a 5% CO
[0180] In vivo induction ofIL-6 and IgM. BALB/c mice were injected intravenously (iv) with PBS, calf thymus DNA (200 μg/100 μl PBS/mouse),
[0181] ELISA. Flat-bottomed Immunl plates (Dynatech Laboratories, Inc., Chantilly, Va.) were coated with 100 μl/well of anti-mouse IL-6 mAb (MP5-20F3) (2 μg/ml) or anti-mouse IgM μ-chain specific (5 μg/ml; Sigma, St. Louis, Mo.) in carbonate-bicarbonate, pH 9.6 buffer (15nM Na
[0182] RT-PCR. A sense primer, an antisense primer, and an internal oligonucleotide probe for L-6 were synthesized using published sequences (Montgomery, R. A. and M. S. Dallman (1991), Analysis of cytokine gene expression during fetal thymic ontogeny using the polymerase chain reaction (
[0183] Cell Proliferation assay. DBA/2 mice spleen B cells (5×10
[0184] Transfections and CAT assays. WEHI-231 cells (10
[0185] Oligodeoxvnucleotide Modifications Determine the Magnitude of B Cell Stimulation by CpG Motifs
[0186] ODN were synthesized on an Applied Biosystems Inc. (Foster City, Calif.) model 380A, 380B, or 394 DNA synthesizer using standard procedures (Beacage and Caruthers (1981) Deoxynucleoside phosphoramidites—A new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Letters 22, 1859-1862.). Phosphodiester ODN were synthesized using standard beta-cyanoethyl phosphoramidite chemistry. Phosphorothioate linkages were introduced by oxidizing the phosphite linkage with elemental sulfur instead of the standard iodine oxidation. The four common nucleoside phosphoramidites were purchased from Applied Biosystems. All phosphodiester and thioate containing ODN were deprotected by treatment with concentrated ammonia at 55° C. for 12 hours. The ODN were purified by gel exclusion chromatography and lyophilized to dryness prior to use. Phosphorodithioate linkages were introduced by using deoxynucleoside S-(b-benzoylmercaptoethyl) pyrrolidino thiophosphoramidites (Wiesler, W. T. et al., (1993) In Methods in Molecular Biology: Protocols for Oligonucleotides and Analogs-Synthesis and Properties, Agrawal, S. (ed.), Humana Press, 191-206.). Dithioate containing ODN were deprotected by treatment with concentrated ammonia at 55° C. for 12 hours followed by reverse phase HPLC purification.
[0187] In order to synthesize oligomers containing methylphosphonothioates or methylphosphonates as well as phosphodiesters at any desired internucleotide linkage, two different synthetic cycles were used. The major synthetic differences in the two cycles are the coupling reagent where dialkylaminomethylnucleoside phosphines are used and the oxidation reagents in the case of methylphosphonothioates. In order to synthesize either derivative, the condensation time has been increased for the dialkylaminomethylnucleoside phosphines due to the slower kinetics of coupling (Jager and Engels, (1984) Synthesis of deoxynucleoside methylphosphonates via a phosphonamidite approach. Tetrahedron Letters 24, 1437-1440). After the coupling step has been completed, the methylphosphinodiester is treated with the sulfurizing reagent (5% elemental sulfur, 100 millimolar N,N-diamethylaminopyridine in carbon disulfide/pyridine/triethylamine), four consecutive times for 450 seconds each to produce methylphosphonothioates. To produce methylphosphonate linkages, the methylphosphinodiester is treated with standard oxidizing reagent (0.1 M iodine in tetrahydrofuran/2,6-lutidine/water).
[0188] The silica gel bound oligomer was treated with distilled pyridine/concentrated ammonia, 1:1, (v/v) for four days at 4 degrees centigrade. The supernatant was dried in vacuo, dissolved in water and chromatographed on a G50/50 Sephadex column.
[0189] As used herein, O-ODN refers to ODN which are phosphodiester; S-ODN are completely phosphorothioate modified; S-O-ODN are chimeric ODN in which the central linkages are phosphodiester, but the two 5′ and five 3′ linkages are phosphorothioate modified; S3D (5′GAGAA (SEQ ID NO:14) 3M (5′TCCATGT (SEQ ID NO:22) 5 (5′GG (SEQ ID NO:57) and 6 (5′CCTA (SEQ ID NO:58)
[0190] These sequences are representative of literally hundreds of CpG and non-CpG ODN that have been tested in the course of these studies.
[0191] Mice. DBA/2, or BXSB mice obtained from The Jackson Laboratory (Bar Harbor, Me.), and maintained under specific pathogen-free conditions were used as a source of lymphocytes at 5-10 wk of age with essentially identical results.
[0192] Cell proliferation assay. For cell proliferation assays, mouse spleen cells (5×10
[0193] Induction of NK Activity
[0194] Phosphodiester ODN were purchased from Operon Technologies (Alameda, Calif.). Phosphorothioate ODN were purchased from the DNA core facility, University of Iowa, or from The Midland Certified Reagent Company (Midland Tex.).
[0195] Virus-free, 4-6 week old, DBA/2, C57BL/6 (B6) and congenitally athymic BALB/C mice were obtained on contract through the Veterans Affairs from the National Cancer Institute (Bethesda, Md.). C57BL/6 SCID mice were bred in the SPF barrier facility at the University of Iowa Animal Care Unit.
[0196] Human peripheral mononuclear blood leukocytes (PBMC) were obtained as previously described (Ballas, Z. K. et al., (1990)
[0197] Prevention of the Development of an Inflammatory Cellular Infiltrate and Eosinoiphilia in a Murine Model of Asthma
[0198] 6-8 week old C56BL/6 mice (from The Jackson Laboratory, Bar Harbor, Me.) were immunized with 5,000 Schistosoma mansoni eggs by intraperitoneal (i.p.) injection on days 0 and 7. Schistosoma mansoni eggs contain an antigen (
[0199] The immunized mice were then treated with oligonucleotides (30 μg in 200 μl saline by i.p.injection), which either contained an unmethylated CpG motif (i.e. TCCATGA
[0200] Mice were sacrificed at various times after airway challenge. Whole lung lavage was performed to harvest airway and alveolar inflammatory cells. Cytokine levels were measured from lavage fluid by ELISA. RNA was isolated from whole lung for Northern analysis and RT-PCR studies using CsCl gradients. Lungs were inflated and perfused with 4% para formaldehyde for histologic examination.
[0201]
[0202]
[0203]
[0204]
[0205]
[0206]
[0207]
[0208] CSG Oligonucleotides Induce Human PBMC to Secrete Cytokines.
[0209] Human PBMC were prepared from whole blood by standard centrifugation over ficoll hypaque. Cells (5×10
[0210] Equivalents
[0211] Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents of the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.