20120179236 | SIDEPORT ENGAGEMENT AND SEALING MECHANISM FOR ENDOLUMINAL STENT-GRAFTS | July, 2012 | Benary et al. |
20150297365 | FLEXIBLE PROSTHETIC APPLIANCE | October, 2015 | Brown et al. |
20040209538 | Textile implant | October, 2004 | Klinge et al. |
20050119758 | Surgical implant for promotion of osseo-integration | June, 2005 | Alexander et al. |
20120173001 | Dynamically Activated Variable Response Socket with Hydraulic Pump | July, 2012 | Caspers |
20130023982 | STENT | January, 2013 | Uchiyama et al. |
20090259301 | Detector for abnormal conditions inside body | October, 2009 | Gelbart et al. |
20140200647 | STENT WITH ENHANCED PROFILE | July, 2014 | Abunassar |
20120101581 | INTERVERTEBRAL IMPLANT | April, 2012 | Mathieu et al. |
20030149472 | Modular endluminal stent-grafts and methods for their use | August, 2003 | Pinchuk et al. |
20090192602 | Deformable Sizer and Holder Devices for Minimally Invasive Cardiac Surgery | July, 2009 | Kuehn |
[0001] The present invention relates to a knee prosthesis and more particularly to a mobile bearing knee providing posterior stabilization of the anterior-posterior translation of the femoral component relative to the tibial component.
[0002] Flexion and extension of the normal human knee involves complex movements of the femur, the tibia and the patella. During flexion (i.e., when the knee is bent), the distal end of the femur and the proximal end of the tibia roll and glide relative to each other, with the center of rotation of the joint moving posteriorly over the condyles of the femur. This complex movement is typically referred to as rollback. During extension (i.e., when the leg is straightened), the tibia and femur follow a reverse path. Simultaneous with the movements of the tibia and femur, the patella moves over the surface of the femoral condyles, while remaining a constant distance from the tubercle of the tibia.
[0003] Damage or disease can deteriorate the bones, articular cartilage and ligaments of the knee, which can ultimately affect the ability of the natural knee to function properly. To address these conditions, prosthetic knees have been developed that are mounted to prepared ends of the femur and tibia. Among the many knee prostheses, a mobile bearing knee simulates the condylar and bearing surfaces of the knee to emulate the natural movement of the knee during flexion and extension. The tibial component is configured to permit rotation about the axis of the tibia to accurately replicate the effects of differential rollback in the transverse plane.
[0004] In one type of mobile bearing knee, the tibial component includes an upward projecting spine that translates within an intercondylar notch formed in the femoral component. The spine can contact cam surfaces at the anterior and posterior ends of the notch to limit the relative anterior-posterior movement between the two bones. The spine also operates to provide varus-valgus stability of the joint and to resist dislocation or subluxation at high angles of flexion. An exemplary mobile bearing knee is disclosed in U.S. Pat. No. 6,443,991, the disclosure of which is incorporated herein by reference. Other exemplary mobile bearing knees are embodied in the LCS™ System and the PFC Sigma RP™ knee system marketed by Depuy Orthopaedics, Inc., of Warsaw, Ind.
[0005] While mobile bearing knees are thought to most accurately mimic the natural movement of the intact knee, the design of knee systems requires the introduction of features to maintain the stability of the artificial joint. Thus, modern knee systems provide additional stability to posterior stabilized devices to prevent hyperextension. The articulating and rotating components of the knee system must do so smoothly and accurately. At the same time, the natural knee permits a certain amount of movement and pivoting in the transverse and coronal planes that should be approximated in the prosthetic knee system. The development of knee systems has attempted to harmonize the need for preserving a full range of motion with the need for maintaining the strength of the joint.
[0006] The present invention contemplates an improved knee prosthesis comprising a femoral component configured to be attached to the distal end of a femur and having a medial and a lateral condyle surface spaced apart to define a notch therebetween. The notch defines an elongated cam housing having an anterior cam and a posterior cam at opposite ends of the cam housing.
[0007] The prosthesis further includes a tibial component including a platform configured for attachment to the proximal end of a tibia and a bearing supported on the platform. The bearing defines medial and lateral bearing surfaces configured to articulate with the medial and lateral condyle surfaces, and a spine projecting superiorly from the bearing within the cam housing when the condyle surfaces are in articulating contact with the bearing surfaces.
[0008] The spine defines an anterior face facing the anterior cam and a posterior face facing the posterior cam. In one feature of the invention, the posterior face and the posterior cam defining complementary curved surfaces configured for cooperative engagement when the femoral component and the tibial component are rotated relative to each other to at least a predetermined flexion angle. In certain embodiments, that predetermined angle corresponds to about 50° of flexion of the knee joint.
[0009] The complementary curved surfaces of the posterior cam and posterior face of the spine are preferably curved at a common radius, while the anterior cam and the anterior face of the spine are substantially flat.
[0010] In one aspect of the knee prosthesis the cam housing defines a width sufficient to provide a predetermined clearance on either side of the spine, when the spine projects into the cam housing, to limit varus-valgus movement or pivoting of the joint. In a preferred embodiment, the widths of the spine and cam housing are sized to limit varus-valgus pivoting to 0.5°-1.5°.
[0011] In addition, the cam housing can be configured so that a gap exists between the posterior cam and the spine when the knee is in its normally extended position. The spine does not contact the posterior cam until the knee is flexed to the predetermined angle. In another aspect, the complementary surfaces of the spine and posterior cam do not nest or coincide until the knee is flexed further to another predetermined angle. The posterior cam can include a blunt or rounded anterior end that contacts the spine first when the knee is flexed. The spine and posterior cam produce roll-back for the knee prosthesis.
[0012] In yet another aspect of the invention, the spine has a greater height than prior spine designs. The spine height is calibrated to prevent subluxation of the joint at high flexion angles. In a preferred embodiment, the spine height is about 24.6 mm. The cam housing includes a roof that is sized relative to the condyle surfaces so that the spine cannot contact the roof when the condyle surfaces are supported on the bearing surfaces.
[0013] The invention also contemplates a knee prosthesis comprising a femoral component configured to be attached to the distal end of a femur and having a medial and a lateral condyle surface spaced apart to define a notch therebetween, the notch defining an elongated cam housing having an anterior cam and a posterior cam at opposite ends of the cam housing. The prosthesis also comprises a tibial component including a platform configured for attachment to the proximal end of a tibia and a bearing supported on the platform, the bearing defining medial and lateral bearing surfaces configured to articulate with the medial and lateral condyle surfaces, and a spine projecting superiorly within the cam housing when the condyle surfaces are in articulating contact with the bearing surfaces, wherein the spine defines an anterior face facing the anterior cam and a posterior face facing the posterior cam and configured for cooperative engagement when the posterior cam.
[0014] In this embodiment, the spine further defines a bore therethrough that receives a pin configured to be disposed within the bore. The pin is formed of a material different from the material of the spine to add stiffness or bending strength to the spine. The pin can be configured to be press-fit into the bore. In certain embodiments, the spine is formed of a plastic and the pin is formed of a metal.
[0015] In still another aspect of the invention, a knee prosthesis comprises a femoral component configured to be attached to the distal end of a femur and having a medial and a lateral condyle surface spaced apart to define a notch therebetween, the notch defining an elongated cam housing having an anterior cam and a posterior cam at opposite ends of the cam housing. A tibial component includes a platform configured for attachment to the proximal end of a tibia and a bearing supported on the platform, the bearing defining medial and lateral bearing surfaces configured for rotating contact with the medial and lateral condyle surfaces. A spine projects superiorly from the bearing within the cam housing when the condyle surfaces are in articulating contact with the bearing surfaces, the spine defining an anterior face facing the anterior cam and a posterior face adapted for articulating contact with the posterior cam.
[0016] With this embodiment, the cam housing is configured to define an anterior-posterior distance between the anterior cam and the posterior face of the spine when the femoral component and the tibial component are in a normally extended position relative to each other. With this configuration, the posterior face of the spine is in articulating contact with the posterior cam only at a first predetermined flexion rotation angle between the femoral component and the tibial component. In a specific embodiment, the first predetermined flexion angle is about 50°.
[0017] This embodiment further contemplates that the posterior cam and the posterior face define complementary curved surfaces, whereby the complementary surfaces articulate relative to each other at flexion angles between the femoral component and the tibial component greater than the first predetermined flexion angle. The posterior cam can include a rounded anterior end that is arranged to contact the posterior face first at the first predetermined flexion angle. The complementary curved surface of the posterior cam can further be arranged on the posterior cam so that complementary curved surface of the posterior cam is substantially nested within the complementary curved surface of the posterior face of the spine only after the femoral component and the tibial component rotate relative to each other to a second predetermined flexion angle greater than the first predetermined flexion angle.
[0018] It is one object of the present invention to provide a prosthetic knee that accurately and efficiently emulates the kinematics and function of a normal, health knee. A more specific object is to accomplish these functions with a posterior stabilized knee that can create proper joint roll-back.
[0019] Another object is accomplished by features of the invention that restrict varus-valgus movement or pivoting, as well as provide resistance to subluxation. Other objects and certain benefits of the invention can be appreciated from the following written description together with the accompanying figures.
[0020]
[0021]
[0022]
[0023]
[0024]
[0025] For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and described in the following written specification. It is understood that no limitation to the scope of the invention is thereby intended. It is further understood that the present invention includes any alterations and modifications to the illustrated embodiments and includes further applications of the principles of the invention as would normally occur to one skilled in the art to which this invention pertains.
[0026] Referring to
[0027] The bearing
[0028] The femoral component
[0029] The femoral component
[0030] As thus far described, the prosthetic knee
[0031] As with the prior mobile bearing knee of the '991 Patent, the knee
[0032] As with other known prosthetic knees, each of the components must be sized to the skeletal dimensions of the patient. Thus, it is contemplated that the femoral component
[0033] In addition to providing a measured degree of varus-valgus constraint, the spine
[0034] In accordance with the preferred embodiment of the present invention, the spine has an effective height of between 16-24 mm, and most preferably 19.3 mm, when the prosthesis is at 90° flexion. Thus, the femoral component must rise off the tibial bearing
[0035] Referring now to
[0036] The cam housing further defines a posterior cam
[0037] As shown in
[0038] The curvature or concavity of the posterior face
[0039] In a preferred embodiment, the curved posterior face
[0040] At least the anterior end
[0041] The curved posterior face
[0042] Referring to
[0043] With this configuration, the knee load is carried solely by the articulating interface between the condyle bearings
[0044] In order to preserve the quadricep mechanical advantage, the present invention contemplates that the posterior face
[0045] In another aspect of the invention, the stem
[0046] In accordance with accepted practice, the prosthetic components designed to engage the natural bone, such as the femoral component
[0047] However, the bearing
[0048] One concern posed by the material used for the spine
[0049] It is preferred that the spine
[0050] While the invention has been illustrated and described in detail in the drawings and foregoing description, the same should be considered as illustrative and not restrictive in character. It is understood that only the preferred embodiments have been presented and that all changes, modifications and further applications that come within the spirit of the invention are desired to be protected.
[0051] For instance, the preferred embodiment contemplates one form of mobile bearing knee in which the tibial bearing rotates relative to the tibial platform. Other mobile bearing knees are contemplated, including knee prostheses in which the bearing slides on the platform. Of course, the inventive concepts can also be implemented in knee prosthesis in which the bearing does not move or is incorporated into the tibial platform.
[0052] In addition, the illustrated embodiments contemplate that the spine projects from the bearing. The inventive concepts can be implemented where the spine is separate from the bearing, whether as a separate insert or integrated with the tibial platform.