20050084627 | Springless trampoline with contrasting edge | April, 2005 | Alexander |
20090305047 | TEMPORARY PROTECTIVE POLYMER COATING & REMOVAL SYSTEM | December, 2009 | Woronuk et al. |
20100092726 | COMPOSITE MATERIAL, PARTICULARLY SYNTHETIC LEATHER | April, 2010 | Schuette et al. |
20090291835 | HONEYCOMB STRUCTURE AND PROCESS FOR MANUFACTURING HONEYCOMB STRUCTURE | November, 2009 | Ohno et al. |
20080038559 | Miniaturized microparticles | February, 2008 | True |
20050112324 | Low gloss dry erasable surface | May, 2005 | Rosenbaum et al. |
20060177687 | Method of controlling surface defects in metal-coated strip | August, 2006 | Renshaw et al. |
20100038821 | Tactile Enhancement For Input Devices | February, 2010 | Jenkins et al. |
20090239005 | EDGE IMPACT PROTECTOR | September, 2009 | Hawkins et al. |
20060014002 | High barrier antifog laminate for case ready meat packaging | January, 2006 | Moulton et al. |
20050175839 | Tetrahedral amorphous carbon film and method of making same | August, 2005 | Hyodo |
[0001] The present invention relates to the packaging of bone-in cuts of meat and more particularly to a bag and the method of forming the bag for packaging such meat cuts in bag arrangement which decreases the likelihood of a bone puncturing through the bag.
[0002] The use of bags formed of a plastic film for packaging primal and sub-primal cuts of meat is well known in the art. In use, the cut of meat is loaded into the bag. The bag is evacuated to remove air so the bag collapses against the cut of meat and then it is heat sealed to maintain the evacuation. In many instances, the bag is formed of a heat-shrinkable thermoplastic film. When heat-shrinkable bags are used, after evacuation and sealing, the bag is exposed briefly to hot water at about 90° C. or other heating means causing the bag to shrink and form fit the cut of meat. Packaging in this fashion excludes air from the package to prolong shelf life, reduces weight loss due to drying of the meat, reduces spoilage should a puncture occur, and provides an aesthetically pleasing package.
[0003] Heat shrinkable bag film is typically thin and usually not more than about 3 to 4 mils (0.076 to 0.10 mm) thick. Accordingly, these thin bags generally are not suitable for packaging cuts of meat which contain sharp projecting bones. For example, the ribs or other sharp bone protrusions as contained by rib beef cuts or pork loins and other meat cuts may puncture the bag during the evacuation of air or during heat shrinking as the bag draws tightly about the bone-in meat cut. Any puncture in the bag is undesirable as it allows the meat in the bag to be exposed to the air. The puncture is also a possible source of contamination. The problem of bone punctures is compounded by abrasion during movement of the package along a conveyer and as it is loaded into corrugated boxes for shipping. Abrasion between adjacent packages caused by vibration and movement of the meat packages one against another, during transport and handling, also increases the likelihood of bone punctures.
[0004] One technique for preventing bone punctures is to overlay the protruding bones of the cut of meat with paper, cloth or a wax impregnated cloth prior to insertion into the bag. This is shown, for example, in U.S. Pat. No. 2,891,870. Another common solution is to improve the puncture and abrasion resistance of the bag film by adhering a patch to the outer surface of the heat-shrinkable bag. U.S. Pat. No. 4,755,403 discloses use of an oriented heat-shrinkable patch affixed by an adhesive to the surface of a heat-shrinkable bag and U.S. Pat. No. 5,302,402 discloses a non oriented patch adhered to the bag surface by corona treatment. In order to provide the bag with greater protection, U.S. Pat. No. 5,545,419 discloses adhering two heat-shrinkable patches to the bag, one to each outer surface of the flattened bag.
[0005] Neither the cloth nor paper overlay nor a patch adhered to the outer surface of the bag are entirely acceptable solutions to the problem of preventing bone punctures and providing abrasion resistance. One reason for this is that the overlay may be dislocated from its laid-on position as the bone-in cut of meat is inserted into a bag. Patch-bags do not provide continuous protection from the mouth of the bag to the bottom. Thus, patch-bags require some manipulation of the heavy cut of meat to insure that the patch is properly oriented over the protruding bones. Patch bags require a thin neck region that is not “covered” by a puncture-resistant film, thereby creating a potential for bone punctures. These “neck” regions may be several inches in length and although the prior art patch bags have a defined width designed for the particular cut of meat that is to be packaged, the ultimate length of the finally sealed bag is determined by the position of the final lateral seal placed within the “neck” region. Variation in product size and placement may cause a portion of the product to be unprotected, as may generally occur when operators are working at high production speeds, and an “uncovered” region is left between the final lateral seal and the patch. Another drawback of patch bags is the cost of manufacturing the separate patches and the added cost of having to laminate one or more patches to the bag. Due to the large number of bag sizes required by the meat packaging industry, the patch-bag manufacturers are required to produce different sizes of patches for the different sizes of bags, which in turn adds to the manufacturing costs associated therewith. In the bag manufacturing process, patches are applied intermittently to the bag film and the equipment to perform this is complicated, expensive, unique and difficult to maintain. Disadvantageously, waste is high in the manufacturing process of making patch bags, especially at start-up, due in part to the requirement for precise intermittent placement of the patches. There is also a great deal of set up time required to change and adjust proper placement of the patches to bags in order to accommodate varying products.
[0006] Attempts to avoid applying a patch to the bag have included manufacturing the bag with multiple plies along one side to provide bone puncture resistance. For example, U.S. Pat. Nos. 4,704,101 and 5,020,922 disclose heat sealing a wide area of a laid flat tubing to itself to form a double thickness, corona treating one flattened side and then folding the tubing so that the double thickness overlays one of the flatted sides. This forms a triple ply along one side of the bag and a single ply along an opposite side wherein all the adjacent surfaces of the three ply side are interfacially bonded. U.S. Pat. No. 4,481,669 discloses inserting a narrow longitudinally folded web into a wider longitudinally folded web and then heat sealing across the webs to form side sealed bags which have a single thickness adjacent the bag mouth while the rest of the bag has a double thickness. U.S. Pat. Nos. 6,015,235 and 6,206,569 discloses puncture-resistant barrier pouches having a thick-walled body portion and a thin-walled neck portion that extends outwardly from an open end of the body portion in side-sealed bags.
[0007] Accordingly, it is an object of the present invention to provide an improved bag structure and method of manufacturing the improved bag structure.
[0008] The present invention involves a failure resistant receptacle such as a puncture-resistant bag including an inner bag formed from a seamless tube of material. The puncture-resistant bag includes a tube member having a first tube wall and an opposed second tube wall. The tube member includes a first tube edge, an opposed second tube edge, a first tube end and an opposed second tube end. The first and second tube walls define a product receiving chamber. A first outer film member is affixed to an outer surface of the first tube wall and extends continuously between the first and second tube ends. Optionally, the first outer film member may laterally extend beyond one or both of the first and second tube edges of the tube member or may be coextensive with one or both edges, or may be narrower than one or both edges. A second outer film member is affixed to an outer surface of the second tube wall and extends continuously between the first and second tube ends. Optionally, the second outer film member may laterally extend beyond one or both of the first and second tube edges of the tube member, or may be coextensive with one or both edges, or may be narrower than one or both edges. In one embodiment of the invention when both outer film members have side edges narrower than either the first or second or both edges of the tube member, the side edges of the first and second outer members are slightly offset from one another in the lay-flat position to facilitate sealing by diminishing the transitional differential in thickness between the lay-flat tube and the outer film members. A first lateral seal is provided through the first and second tube walls and the first and second outer film members. The first lateral seal extends laterally across the width of at least the tube member. The tube member may be a flexible tubular film or sheet which may be collapsed to a lay-flat condition for ease of manufacture and processing. Also disclosed are methods for manufacturing such a bag.
[0009] Other details, objects, and advantages of the invention will become apparent from the following detailed description and the accompanying drawing figures of certain embodiments thereof.
[0010] A more complete understanding of the invention can be obtained by considering the following detailed description in conjunction with the accompanying drawings, in which:
[0011]
[0012]
[0013]
[0014]
[0015]
[0016]
[0017]
[0018]
[0019]
[0020] While the present invention will be described fully hereinafter with reference to the accompanying drawings, in which particular embodiments are shown, it is to be understood at the outset that persons skilled in the art may modify the invention herein described while still achieving the desired result of this invention. Accordingly, the description that follows is to be understood as a broad informative disclosure directed to persons skilled in the appropriate art and not as limitations of the present invention. The drawings are not to scale, but are illustrative of the invention. The term “film” as it is used herein means film or foil and includes polymeric films such as thermoplastic films which optionally may be metallized or unmetallized, and metal foils such as aluminum foil.
[0021] Referring to the drawings, FIGS.
[0022] The bag
[0023] The bag
[0024] Another preferred embodiment is shown in
[0025] A second outer film
[0026] A lateral seal
[0027] The films that form the tube member, or “bag film”, and the outer film members, or “puncture-resistant” or abrasion-resistant layers, may be multilayer or monolayer thermoplastic polymeric flexible films. Preferred films are heat-shrinkable. Preferred films may also provide a beneficial combination of one or more or all of the below noted properties including high puncture resistance(e.g. as measured by the ram and/or hot water puncture tests), high shrinkage values, low haze, high gloss, and high seal strengths. Preferably both the bag film and outer film members are heat-shrinkable and advantageously may have an unrestrained shrinkage of at least 20% in each direction and most preferably 40% or more in both the machine and transverse directions. Free shrink is measured by cutting a square piece of film measuring 10 cm in each of the machine and transverse directions. The film is immersed in water at 90° C. for five seconds. After removal from the water the piece is measured and the difference from the original dimension is multiplied by ten to obtain the percentage of shrink. Although heat-shrinkable films are preferred, non-heat-shrinkable films or foils or combinations of heat shrinkable and non-heat shrinkable films or foils may be used with the bag structures and methods disclosed herein.
[0028] Although the films used in the failure-resistant bag according to the present invention can be monolayer or multilayer films, the lay-flat tube member is preferably formed of a multilayer film having 2 or more layers; more preferably 3 to 9 layers; and still more preferably 3 to 5 to 7 layers. Since the inventive bags are primarily intended to hold bone-in food products after evacuation and sealing, it is preferred to use a thermoplastic film for the seamless tube member's construction which includes an oxygen and/or moisture barrier layer. The terms “barrier” or “barrier layer” as used herein means a layer of a multilayer film which acts as a physical barrier to moisture or oxygen molecules. Advantageous for packaging of oxygen sensitive materials such as fresh red meat, a barrier layer material in conjunction with the other film layers will provide an oxygen gas transmission rate(O
[0029] The inner heat sealing layer
[0030] The outer layer
[0031] The outer film members are preferably selected from the group of puncture-resistant films, and are preferably monolayer films, although a multilayer puncture-resistant film is contemplated by the present invention. The puncture-resistant and abrasion-resistant films for use as the outer film members may be any film that provides the bag with the desired puncture-resistance or abrasion-resistance. Preferably, the outer film members are monolayer, biaxially oriented shrink films as previously discussed. The first and second outer film members may include films of the same or similar composition, but this is not required. Preferred puncture-resistant films comprise a blend of at least one linear ethylene-α-olefin copolymer and an ionomer, e.g., an ethylene-methacrylate acid copolymer whose acid groups have been neutralized partly or completely to form a salt, preferably a zinc or sodium salt. Alternatively, the outer film member may be formed of other thermoplastic materials as for example polyamide, styrenic copolymers, e.g., styrene-butadiene copolymer, polypropylene, ethylene-propylene copolymer, ionomer, or an ethylene olefin polymer and in particular a member of the polyethylene family such as LLDPE, VLDPE, ULDPE, HDPE, LDPE, an ethylene vinyl ester copolymer or an ethylene alkyl acrylate copolymer or various blends of two or more of these materials. The outer film members may also comprise metal foils or metallized plastic films.
[0032] In general, the monolayer or multilayer films used in the puncture-resistant bags of the present invention can have any thickness desired, so long as the films have sufficient thickness and composition to provide the desired properties for the particular packaging operation in which the film is used, e.g., puncture-resistance, modulus, seal strength, barrier, optics, etc. For efficiency and conservation of materials, it is desirable to provide the necessary puncture-resistance and other properties using the minimum film thicknesses. Preferably, the tube member bag film has a total thickness from about 1.5 to about 4.0 mils; more preferably from about 2.0 to about 3.0 mils. The outer film member film preferably has a thickness from about 2.0 to about 6.0 mils; more preferably about 3.5 to about 4.5 mils. Preferably bags and rollstock laminates of the present invention will have a total thickness of the combined first and second tube wall of the tube member and any affixed outer film members of at least 5.0 mil, and preferably up to about 16.0 mil, and more preferably will be at least 6.0 mil up to 14.0 mil in total thickness.
[0033] Suitable films for use with the present invention are disclosed in U.S. Pat. No. 5,928,740, incorporated herein by reference thereto in its entirety. The '740 patent discloses a heat sealing layer comprising a blend of a first polymer of ethylene and at least one α-olefin having a polymer melting point between 55 to 75° C.; a second polymer of ethylene and at least one α-olefin having a polymer melting point between 85 to 110° C. and a third thermoplastic polymer having a melting point between 115 to 130° C. which is preferably selected from the group of ethylene homopolymers such as HDPE and LDPE, and ethylene copolymers with at least one α-olefin; and optionally and preferably a fourth polymer such as a copolymer of ethylene with an alkyl acrylate or vinyl ester having a melting point between 80 to 105° C., preferably 90 to 100° C. The '740 patent also discloses a preferred biaxially oriented, heat-shrinkable three-layer barrier film embodiment for use as a lay-flat tube member with the present invention. The three-layer barrier film embodiment comprises an inner heat sealing layer as described above in conjunction with a barrier layer preferably comprising a polyvinylidene chloride (PVDC) or vinylidene chloride methylacrylate copolymer (VDC-MA or MA-saran) or EVOH layer and an outer layer formed of at least 50 wt. %, and preferably at least 70%, of a copolymer of ethylene with at least one alpha-olefin or at least one vinyl ester or blends thereof. Also, preferred EVAswill have between about 3% and about 18% vinyl acetate content.
[0034] Preferred films for use with the present invention are disclosed in U.S. patent application Ser. No. 09/401,692 filed Sep. 22, 1999, and incorporated herein by reference in its entirety. The '692 application discloses monolayer and multilayer films having at least one layer comprising at least a three-polymer blend, optionally including a fourth polymer, comprising: (a) a first polymer having a melting point of 80 to 98° C., preferably 80-92° C., comprising a copolymer of ethylene and hexene-1; (b) a second polymer having a polymer melting point of 115 to 128° C. comprising ethylene and at least one α-olefin; and (c) a third polymer having a melting point of 60 to 110° C. comprising a copolymer of ethylene with an alkyl acrylate or vinyl ester; and optionally (d) a fourth polymer having a melting point of 80 to 110° C. (preferably of 85 to 105° C.), preferably selected from the group of ethylene homopolymers such as HDPE and LDPE, and ethylene copolymers with at least one α-olefin. The inventive blend finds utility as an inner heat sealing layer in many multilayer embodiments. In a preferred three, four or five-layer embodiment, an oxygen barrier layer of a vinylidene chloride copolymer, a polyamide or EVOH is between a layer of the inventive blend and either a layer comprising at least 50% by weight of an EAO or at least one vinyl ester or blends thereof, or another layer comprising the inventive blend. The '692 inventive blend may also be used in either or both of the present tube member and outer film members.
[0035] Additional preferred films for use with the tube member and/or outer film members of the present invention are disclosed in U.S. patent application Ser. No. 09/611,192 filed Jul. 6, 2000, which is incorporated by reference herein in its entirety. The '192 application discloses multi-layer barrier embodiments formed of a flexible, thermoplastic, biaxially stretched, heat-shrinkable film having at least one layer comprising a blend of at least three copolymers comprising: 45 to 85 weight percent of a first polymer having a melting point of from 55 to 98° C. comprising at least one copolymer of ethylene and at least one comonomer selected from the group of hexene-1 and octene-1; 5 to 35 weight percent of a second polymer having a melting point of from 115 to 128° C. comprising at least one copolymer of ethylene and at least one αolefin; and 10 to 50 weight percent of a third polymer having a melting point of from 60 to 110° C. comprising at least one unmodified or anhydride-modified copolymer of ethylene and a vinyl ester, acrylic acid, methacrylic acid, or an alkyl acrylate; where the first and second polymers above have a combined weight percentage of at least 50 weight percent based upon the total weight of the first, second and third polymers; and where the bag film has a total energy absorption of at least 0.70 Joule and a shrinkage value at 90° C. of at least 50% in at least one of the machine and transverse directions. A barrier layer formed of any suitable oxygen barrier material or blend of materials, for example, ethylene-vinyl alcohol copolymer (EVOH) or copolymers of vinylidene chloride (VDC) such as VDC-vinyl chloride (VDC-VC) or VDCmethylacrylate (VDC-MA) may be used. Preferably the barrier layer comprises a blend of 85 wt. % VDC-MA and 15 wt. % VDC-VC. The outer layer is preferably an EVA-VLDPE blend, and more preferably an EVA-VLDPE-plastomer blend. The '192 application also discloses a preferred puncture-resistant film, for use as outer film members, comprising a flexible, thermoplastic film having at least one layer comprising a blend of at least two polymers comprising: 5 to 20 weight percent of (i) an ionomer polymer, e.g., an ethylene-methacrylate acid copolymer whose acid groups have been neutralized partly or completely to forma salt, preferably a zinc or sodium salt; 5 to 95 weight percent of (ii) a copolymer of ethylene and at least one C
[0036] Further preferred films for use with the present invention are described in U.S. Pat. No. 5,302,402 to Dudenhoeffer et al., U.S. Pat. No. 6,171,627 and Lustig et al. U.S. Pat. No. 4,863,769, and the previously discussed U.S. Pat. No. 6,015,235 to Kraimer et al., all of which are incorporated herein in their entireties.
[0037] In a preferred embodiment of the present invention, the puncture-resistant bag includes a lay-flat tube member formed of a three-layer film and monolayer outer film members. The lay-flat tube member of the bag is preferably a biaxially oriented multilayer shrink film including a barrier layer disposed between an inner heat sealing layer and an outer layer, as shown in
[0038] In another preferred embodiment, the lay-flat tube member of the bag comprises a biaxially oriented three-layer seamless tube of heat-shrinkable film having an inner surface layer of the tube made of a blend of about 17 wt. % ethylene-octene-1 copolymer such as ATTANE™ XU 61509.32; about 18 wt. % EVA such ESCORENE™ LD 701.ID; 58% of an ethylene-hexene-1 copolymer such as EXACT™ 9110; about 2% of a processing stabilizer such as Spartech A32434; and about 5% of a slip/processing aid such as Spartech A50050. The outer surface layer is about 19 wt. % ethylene octene-1 copolymer such as ATTANE™ XU 61509.32; 18% EVA (ESCORENE™ LD 701.ID); 60% of an ethylene-hexene-1 copolymer such as EXACT™ 9110; and 3% processing aid such as A50056. The barrier layer is 85% vinylidene chloride-methyl acrylate and about 15% vinylidene chloride-vinyl chloride. Preferably, the inner layer:barrier layer:outer layer thickness ratio is about 62:9:29. The same puncture-resistant film is used for both the first and second outer film members and comprises about 67 wt. % of a plastomer such as Exact 9523(a C
[0039] The tube member and outer film member which make up the inventive receptacle are preferably biaxially oriented by the well-known trapped bubble or double bubble technique as for example described in Pahlke U.S. Pat. No. 3,456,044. In this technique an extruded primary tube leaving the tubular extrusion die is cooled, collapsed and then preferably oriented by reheating and reinflating to form a secondary bubble. The film is preferably biaxially oriented wherein transverse (TD) orientation is accomplished by inflation to radially expand the heated film. Machine direction (MD) orientation is preferably accomplished with the use of nip rolls rotating at different speeds to pull or draw the film tube in the machine direction. The stretch ratio in the biaxial orientation to form the bag material is preferably sufficient to provide a film with total thickness of between about 1.5 and 3.5 mils. The MD stretch ratio is typically 3-5 and the TD stretch ratio is also typically
[0040] Referring now to
[0041] In the case of a multilayer lay-flat tube film, the biaxial orientation preferably is sufficient to provide a multilayer film with a total thickness of from about 1.5 to 4 mils or more, preferably between 2.0 and 3.0 mils (51 to 76 μl), and more preferably about 2.5 mils.
[0042] A preferred film and process for making film suitable for tube member and outer film member stock is described in U.S. patent application Ser. No. 09/401,692 filed Sep. 22, 1999 for “Puncture Resistant Polymeric Films, Blends and Process”; U.S. patent application Ser. No. 09/431,931 filed Nov. 1, 1999 for “Puncture Resistant High Shrink Film, Blend and Process”; and U.S. patent application Ser. No. 09/611,192 filed Jul. 6, 2000 for “Ionomeric, Puncture Resistant Thermoplastic Patch Bag, Film, Blend and Process”, the teachings of all of which are hereby incorporated by reference herein.
[0043] For a monolayer puncture-resistant film, the process is similar but utilizes a single extruder (or multiple extruders running the same polymeric formulation) to produce a primary tube, and biaxial orientation is sufficient to provide a monolayer film preferably having a total thickness of between 2 to 6 mil or higher, and more typically from about 3.5 to 4.5 mils and is generally in the same draw ratio range as the bag film, namely about 3:1 to 5:1 for both the MD and TD.
[0044] After orientation, the tubular lay-flat tube film
[0045] Referring now to
[0046] After the surface energies of the flattened bag film
[0047] The intermediate composite having on outer film or metal foil attached on one side only of the tube member may be used to produce bags without further application of an opposing second outer film. Such one-sided laminate bags may be commercially useful, but bags having a film or foil member attached on both sides are preferred with complete coverage of the entire exterior of the tube member to provide a thick patchless bag being especially preferred.
[0048] The composite structure comprising a bag tube stock of a seamless tube member having first and second outer members affixed (securely attached) to opposing sides of said tube member may be provided wound on cores as rollstock (reels of wound tube stock). Such rollstock may be utilized by a bag maker to create end sealed bags for resale to food or meat packers or other product packagers. Alternatively such rollstock may be provided to end users having suitable equipment to enable manufacture of bags according to a set adjustable bag length or to customized bag lengths according to the dimensions of individual articles such as cuts of meat. Advantageously, the present invention may be used by a packager as rollstock, as a shirred tube or otherwise provided as a continuous tube having lengths of up to, including, and in excess of 10-20 meters.
[0049] Advantageously, a bag maker or end user packager may produce bags of various lengths from rolls of bag tube stock by adjusting the distances between the transverse end seal and bag mouth for a particular bag or series of bags. This avoids the costly need to stock various sizes of patches for intermittently placed patch bags which are currently widely used by meat packers. Also the present invention permits cost savings and manufacturing efficiencies by permitting creation of standardized widths of bag tube rollstock which may be made into bags of varying lengths for each set width depending on customer demand. This reduces the need to carry larger inventories of a vast array of bags having differently sized and placed patches which are dependent upon the length of the bag desired. Instead a roll of bag tube stock comprising a tube member having one or more attached outer film members may be stocked for use in making bags of any desired length because the transverse seal and/or cuts are not required to be made through patchless areas or sides. For the first time bags of adjustable lengths may be made by transversely sealing and cutting through a combined bag thickness across a seamless tube member having film members covering opposing sides of the tube for a bag having a thickness (from an exterior to enclosed product contact side) of up to 3.0 to 3.5 to 5 to 6 to 7 mils or more, and for a combined collapsed lay-flat bag thickness from exterior side to opposing exterior side of 6 to 7 to 10 to 12 to 14 mils or higher. Prior to the invention such bag stock did not exist.
[0050] Another advantage of the present invention is that the prior art patch bag technology required use of higher modulus materials to provide the stiffness needed for accurate patch placement. Stiff materials were needed to avoid undesirable folds as well as alignment and misplacement problems associated with handling more flexible materials. Beneficially outer film members, especially biaxially oriented or heat shrinkable members, having an elongation at break of >200% or >250% or >300% and/or a 1% secant modulus value of <20,000 psi or <17,500 psi or <15,000 psi in at least one or optionally both directions (MD and TD) may be used without suffering from the above problems which are virtually eliminated by the present invention. The present invention may continuously apply one or more outer film members which extend over the entire length and optionally width of the seamless tube and there are no leading or trailing edges of a patch to be intermittently placed. Thus, there is a reduction in waste especially at start up in the inventive patchless manufacturing process relative to the waste created in the prior art processes by folded or misplaced patches. In one embodiment of the invention the first outer film member and the second outer film member comprise a continuous film of at least one layer and the continuous film may be wrapped around at least one edge of said first and said second tube walls. This continuous film may be an integral single or multiply sheet or film.
[0051] For bag making the composite film structure
[0052] The present invention advantageously provides for producing a puncture-resistant bag wherein the bag manufacturer may produce multiple bag sizes (different lengths) from a single puncture-resistant bag tube stock size with out the need to manufacture different sized patches. In other words, the present invention allows the bag manufacturer to produce several standard widths of puncture-resistant bag tube stock, such as 8 inch, 12 inch and 16 inch. These standard composite structures may then be sealed and cut to form any desired length for that width of tube, such as 16×32 inch, 16×40 inch or 16×42 inch without the necessity of manufacturing, positioning and applying different patch sizes. Prior art patch bags require the manufacturer thereof to produce different patch sizes for each size of patch bag produced and expensive equipment is required to accurately apply the individual patches. The bags made according to the present invention advantageously include continuous puncture protection from the mouth of the bag (where the final lateral seal is placed after product insertion) through the bottom seal, and on both sides of the bag. Preferably, the bags according to the present invention have 100% coverage of the lay-flat tube member, so as to increase the puncture-resistance of the bag and to eliminate any portions of the bag that are more susceptible to puncture than others.
[0053] Unless otherwise noted, the following physical properties are used to describe the invention, films and seals. These properties are measured by either the test procedures described below or tests similar to the following methods.
[0054] Average Gauge: ASTM D-2103
[0055] Tensile Strength: ASTM D-882, method A
[0056] 1% Secant Modulus: ASTM D-882, method A
[0057] Oxygen Gas Transmission Rate (O
[0058] Percent Elongation at Break: ASTM D-882, method A
[0059] Molecular Weight Distribution: Gel permeation chromatography
[0060] Gloss: ASTM D-2457, 45° Angle
[0061] Haze: ASTM D-1003-52
[0062] Melt Index: ASTM D-1238, Condition E (190° C.) (except for propene-based (>50% C
[0063] Melting Point: ASTM D-3418, peak m.p. determined by DSC with a 10° C./min. heating rate.
[0064] Vicat Softening Point (Vsp): ASTM D-1525-82
[0065] All ASTM test methods noted herein are incorporated by reference into this disclosure.
[0066] Shrinkage Values:
[0067] Shrinkage values are obtained by measuring unrestrained shrink of a 10 cm. square sample immersed in water at 90° C. (or the indicated temperature if different) for ten seconds. Four test specimens are cut from a given sample of the film to be tested. Specimens are cut into squares of 10 cm length (M.D.) by 10 cm. length (T.D.). Each specimen is completely immersed for 10 seconds in a 90° C. (or the indicated temperature if different) water bath. The specimen is then removed from the bath and the distance between the ends of the shrunken specimen is measured for both the M.D. and T.D. directions. The difference in the measured distance for the shrunken specimen and each original 10 cm. side is multiplied by ten to obtain percent shrinkage in each direction. The shrinkage of 4 specimens is averaged and the average M.D. and T.D. shrinkage values reported. The term “heat shrinkable film at 90° C.” means a film having an unrestrained shrinkage value of at least 10% in at least one direction.
[0068] Tensile Seal Strength (Seal Strength) Test
[0069] Five identical samples of film are cut 1 inch (2.54 cm) wide and a suitable length for the test equipment e.g. about 5 inches (77 cm) long with a 1 inch (2.54 cm) wide seal portion centrally and transversely disposed. Opposing end portions of a film sample are secured in opposing clamps in a universal tensile testing instrument. The film is secured in a taut snug fit between the clamps without stretching prior to beginning the test. The test is conducted at an ambient or room temperature (RT) (about 23° C.) test temperature. The instrument is activated to pull the film via the clamps transverse to the seal at a uniform rate of 12.0 inches (30.48 cm) per minute until failure of the film (breakage of film or seal, or delamination and loss of film integrity). The test temperature noted and lbs. force at break are measured and recorded. The test is repeated for four additional samples and the average grams at break reported.
[0070] Ram Puncture Test
[0071] The ram puncture test is used to determine the maximum puncture load or force, and the maximum puncture stress of a flexible film when struck by a hemispherically or spherically shaped striker. This test provides a quantitative measure of the puncture resistance of thin plastic films. This test is further described in U.S. patent application Ser. No. 09/401,692.
[0072] Following are examples and comparative examples given to illustrate the invention.
[0073] In all the following examples, unless otherwise indicated, the film compositions were produced generally utilizing the apparatus and method described in U.S. Pat. No. 3,456,044 (Pahlke) which describes a coextrusion type of double bubble method and in further accordance with the detailed description above. In the following examples, all layers were extruded (coextruded in the multilayer examples) as a primary tube which was cooled upon exiting the die e.g. by spraying with tap water. This primary tube was then reheated by radiant heaters(although means such as conduction or convection heating may be used) with further heating to the draw (orientation) temperature for biaxial orientation accomplished by an air cushion which was itself heated by transverse flow through a heated porous tube concentrically positioned around the moving primary tube. Cooling was accomplished by means of a concentric air ring. Draw point temperature, bubble heating and cooling rates and orientation ratios were generally adjusted to maximize bubble stability and throughput for the desired amount of stretching or orientation. All percentages are by weight unless indicated otherwise.
[0074] A puncture-resistant bag according to the present invention, as generally illustrated in
[0075] (A) 35 wt. % EXACT™ 9519; 36.5% ATTANE™ XU 61509.32; 26.5% ESCORENE™ LD 701.ID; 3% Spartech A50050; and 2% Spartech A32434;
[0076] (B) a blend of about 85% vinylidene chloride-vinyl chloride copolymer and about 15% vinylidene chloride-methacrylate copolymer; and
[0077] (C) 35 wt. % EXACT™ 9519; 35% ATTANE™ XU 61509.32; 27% ESCORENE™ LD 701.ID; and 3% Spartech A50050.
[0078] One extruder was used for each layer. Each extruder was connected to an annular coextrusion die from which heat plastified resins were coextruded forming a primary tube. The resin mixture for each layer was fed from a hopper into an attached single screw extruder where the mixture was heat plastified and extruded through a three-layer coextrusion die into the primary tube. The extruder barrel temperature for the barrier layer (B) was between about 250-300° F. (121-149° C.); for the inner layer (A) and for the outer layer (C) were about 290-330° F.(143-165° C.). The coextrusion die temperature profile was set from about 320 to 350° F. (163 to 177° C.). The extruded multilayer primary tube was cooled by spraying with cold tap water 50-68° F. (about 10-20° C.).
[0079] A cooled primary tube of about 45 to 165 mm flatwidth was produced passing through a pair of nip rollers. The cooled flattened primary tube was inflated, reheated, biaxially stretched, and cooled again to produce a biaxially stretched and biaxially oriented film which was wound on a reel. The M.D. orientation ratio was about 5:1 and the T.D. orientation ratio was about 4:1. The draw point or orientation temperature was below the predominant melting point for each layer oriented and above that layer's predominant glass transition point and is believed to be about 68-85° C. The resultant biaxially oriented bag film had an average gauge of about 2.5 mil and had an excellent appearance.
[0080] Both outer film members used the identically formulated and processed puncture-resistant film. The puncture-resistant outer film member was a monolayer, biaxially stretched film made according to the above-described orientation process. The monolayer puncture-resistant film formulation comprised: 45 Wt. % EXACT™ 9519; 40% ATTANE™ XU 61509.32; 12% SURLYN™ 1705-1; and 3% Ampacet 501237. The monolayer puncture-resistant film formulation was blended and fed from a hopper into an attached single screw extruder extruded through an annular die from which the heat plastified resin blend formed a primary tube. The extruder barrel temperature was between about 290-330° F. (143-165° C.). The die temperature was set from about 320 to 350° F. (163 to 177° C.). The extruded primary tube was cooled by spraying with cold tap water 50-68° F. (about 10-20° C.).
[0081] A cooled monolayer primary tube of about 45 to 165 mm flatwidth was produced passing through a pair of nip rollers. The cooled flattened primary tube was inflated, reheated, biaxially stretched, and cooled again to produce a biaxially stretched and biaxially oriented tubular film which was wound on a reel. The machine direction (MD) orientation ratio was about 4.5:1 and the transverse direction (TD) orientation ratio was about 4:1 the film. The draw point or orientation temperature was below the predominant melting point for each layer oriented and above that layer's predominant glass transition point and is believed to be about 68-85° C. The resultant biaxially oriented puncture-resistant film had an average gauge of about 4 mil and had an excellent appearance. The tubular puncture-resistant film was slit to form sheets having widths of approximately 175-660 mm and wound on reels.
[0082] Although not essential, it is preferred to irradiate the entire bag film to broaden the heat sealing range and/or enhance the toughness properties of the inner and outer layers by irradiation induced cross-linking and/or scission. This is preferably done by irradiation with an election beam at dosage level of at least about 2 megarads (MR) and preferably in the range of 3-5 MR, although higher dosages may be employed especially for thicker films or where the primary tube is irradiated. Irradiation may be done on the primary tube or after biaxial orientation. The latter, called post-irradiation, is preferred and described in Lustig et al. U.S. Pat. No. 4,737,391, which is hereby incorporated by reference. An advantage of post-irradiation is that a relatively thin film is treated instead of the relatively thick primary tube, thereby reducing the power requirement for a given treatment level.
[0083] The tubular film was unwound and both outer surfaces were corona treated. Similarly, the puncture-resistant films were unwound and a surface of each was corona treated. The three films were then pressed together, as discussed above to ensure contact of each treated surface with another treated surface, thereby bonding the three films into a continuous three-film composite structure having a monolayer film member securely attached to each side of the lay-flat tube member. Bags similar to the bag
[0084] Various tests were performed on the resultant inventive bags. The gauge thickness was measured from the exterior through the outer film member and tube member an a bag thickness was determined to be an average 6.9 mil with the transverse end seal being made through a total thickness that is calculated to be on average 13.8 mil in thickness. This same seal was tested to have a very strong average seal strength of about 5000 to 5400 grams. The bag also had an average M.D. and T.D. heat shrinkability at 90° C. of
[0085] A further advantage of the invention is that either or both sides of the tube member may be printed, or the mating surface of either or both of the outer film members may be printed and the print may thus be protected from contact with either enclosed product such as food, or protected from exposed surface wear, abrasion or conditions which may have a deleterious effect upon the print quality or appearance. Special effects may also be obtained by printing on surfaces trapped between layers as well as exterior surfaces in combination.
[0086] While this invention has been described with reference to certain specific embodiments, it will be recognized by those skilled in the art that many variations are possible without departing from the scope and spirit of the invention and such variations are deemed to be within the scope of the invention claimed below.