[0001] The technical field of the invention is oligonucleotide-directed repair or alteration of plant genetic information using novel chemically modified oligonucleotides.
[0002] A number of methods have been developed specifically to alter the genomic information of plants. These methods generally include the use of vectors such as, for example, T-DNA, carrying nucleic acid sequences encoding partial or complete portions of a particular protein which is expressed in a cell or tissue to effect the alteration. The expression of the particular protein then results in the desired phenotype. See, for example, U.S. Pat. No. 4,459,355 which describes a method for transforming plants with a DNA vector and U.S. Pat. No. 5,188,642 which describes cloning or expression vectors containing a transgenic DNA sequence which when expressed in plants confers resistance to the herbicide glyphosate. The use of such transgene-containing vectors adds one or more exogenous copies of a gene in a usually random fashion at one or more integration sites of the plant's genome at some variable frequency. The introduced gene may be foreign or may be derived from the host plant. Any gene which was originally present in the genome, which may be, for example, a normal allelic variant, mutated, defective, and/or functional copy of the introduced gene, is retained in the genome of the host plant.
[0003] These methods of gene alteration are problematic in that complications which can compromise the vigor, productivity, yield, etc. of the plant may result. One such problem is that insertion of exogenous nucleic acid at random location(s) in the genome can have deleterious effects. The random nature of this insertion and/or the use of exogenous promoters can also cause the timing, location or strength of expression of the introduced transgene to be inappropriate or unpredictable. Another problem with such systems includes the addition of unnecessary and unwanted genetic material to the genome of the recipient, including, for example, T-DNA ends or other vector remnants, exogenous control sequences required to allow production of the transgene protein, which control sequences may be exogenous or native to the host plant and/or the transgene, and reporter genes or resistance markers. Such remnants and added sequences may have presently unrecognized consequences, for example, involving genetic rearrangements of the recipient genomes. In addition, concerns have been raised with consumption, especially by humans, of plants containing such exogenous genetic material.
[0004] More recently, simpler systems involving poly- or oligo-nucleotides have been described for use in the alteration of genomic DNA. These chimeric RNA-DNA oligonucleotides, requiring contiguous RNA and DNA bases in a double-stranded molecule folded by complementarity into a double hairpin conformation, have been shown to effect single basepair or frameshift alterations, for example, for mutation or repair of plant, animal or fungal genomes. See, for example, WO 99/07865 and U.S. Pat. No. 5,565,350. In the chimeric RNA-DNA oligonucleotide, an uninterrupted stretch of DNA bases within the molecule is required for sequence alteration of the targeted genome while the obligate RNA residues are involved in complex stability. Due to the length, backbone composition, and structural configuration of these chimeric RNA-DNA molecules, they are expensive to synthesize and difficult to purify. Moreover, if the RNA-containing strand of the chimeric RNA-DNA oligonucleotide is designed so as to direct gene alteration, a series of mutagenic reactions resulting in nonspecific base alteration can result. Such a result reduces the utility of such a molecule in methods designed for targeted gene alteration.
[0005] Alternatively, other oligo- or poly-nucleotides have been used which require a triplex forming, usually polypurine or polypyrimidine, structural domain which binds to a DNA helical duplex through Hoogsteen interactions between the major groove of the DNA duplex and the oligonucleotide. Such oligonucleotides may have an additional DNA reactive moiety, such as psoralen, covalently linked to the oligonucleotide. These reactive moieties function as effective intercalation agents, stabilize the formation of a triplex and can be mutagenic. Such agents may be required in order to stabilize the triplex forming domain of the oligonucleotide with the DNA double helix if the Hoogsteen interactions from the oligonucleotide/target base composition are insufficient. See, e.g., U.S. Pat. No. 5,422,251. The utility of these oligonucleotides for directing targeted gene alteration is compromised by a high frequency of nonspecific base changes.
[0006] In more recent work, the domain for altering a genome is linked or tethered to the triplex forming domain of the bi-functional oligonucleotide, adding an additional linking or tethering functional domain to the oligonucleotide. See, e.g., Culver et al.,
[0007] Other genes, e.g. CFTR, have been targeted by homologous recombination using duplex fragments having several hundred basepairs. See, e.g., Kunzelmann et al.,
[0008] Earlier experiments to mutagenize an antibiotic resistance indicator gene by homologous recombination used an unmodified DNA oligonucleotide rather than larger fragments of DNA, wherein the oligonucleotide had no functional domains other than a region of complementary sequence to the target. See Campbell et al.,
[0009] Oligonucleotides designed for use in the targeted alteration of genetic information are significantly different from oligonucleotides designed for antisense approaches. For example, antisense oligonucleotides are perfectly complementary to and bind an mRNA strand in order to modify expression of a targeted mRNA and are used at high concentration. As a consequence, they are unable to produce a gene conversion event by either mutagenesis or repair of a defect in the chromosomal DNA of a host genome. Furthermore, the backbone chemical composition used in most oligonucleotides designed for use in antisense approaches renders them inactive as substrates for homologous pairing or mismatch repair enzymes and the high concentrations of oligonucleotide required for antisense applications can be toxic with some types of nucleotide modifications. In addition, antisense oligonucleotides must be complementary to the mRNA and therefore, may not be complementary to the other DNA strand or to genomic sequences that span the junction between intron sequence and exon sequence.
[0010] Artificial chromosomes can be useful for the screening purposes identified herein. These molecules are man-made linear or circular DNA molecules constructed from essential cis-acting DNA sequence elements that are responsible for the proper replication and partitioning of natural chromosomes (Murray et al., 1983). The essential elements are: (1) Autonomous Replication Sequences (ARS), (2) Centromeres, and (3) Telomeres.
[0011] Yeast artificial chromosomes (YACs) allow large segments of genomic DNA to be cloned and modified (Burke et al., Science 236:806; Peterson et al., Trends Genet. 13:61 (1997); Choi, et al., Nat. Genet., 4:117-223 (1993), Davies, et al., Biotechnology 11:911-914 (1993), Matsuura, et al., Hum. Mol. Genet., 5:451-459 (1996), Peterson et al., Proc. Natl. Acad. Sci., 93:6605-6609 (1996); and Schedl, et al., Cell, 86:71-82 (1996)). Other vectors also have been developed for the cloning of large segments of genomic DNA, including cosmids, and bacteriophage P1 (Sternberg et al., Proc. Natl. Acad. Sci. U.S.A., 87:103-107 (1990)). YACs have certain advantages over these alternative large capacity cloning vectors (Burke et al., Science, 236:806-812 (1987)). The maximum insert size is 35-30 kb for cosmids, and 100 kb for bacteriophage P1, both of which are much smaller than the maximal insert size for a YAC.
[0012] An alternative to YACs are cloning systems based on the
[0013] A need exists for simple, inexpensive oligonucleotides capable of producing targeted alteration of genetic material such as those described herein as well as methods to identify optimal oligonucleotides that accurately and efficiently alter target DNA.
[0014] Novel, modified single-stranded nucleic acid molecules that direct gene alteration in plants are identified and the efficiency of alteration is analyzed both in vitro using a cell-free extract assay and in vivo using a yeast system and a plant system. The alteration in an oligonucleotide of the invention may comprise an insertion, deletion, substitution, as well as any combination of these. Site specific alteration of DNA is not only useful for studying function of proteins in vivo, but it is also useful for creating plants with desired phenotypes, including, for example, environmental stress tolerance, improved nutritional value, herbicide resistance, disease resistance, modified oil production, modified starch production, and altered floral morphology including selective sterility. As described herein, oligonucleotides of the invention target directed specific gene alterations in genomic double-stranded DNA in cells. The target genomic DNA can be nuclear chromosomal DNA as well as plastid or mitochondrial chromosomal DNA. The target DNA can also be a transgene present in the plant cell, including, for example, a previously introduced T-DNA. For screening purposes, the target plant DNA can also be extrachromosomal DNA present in plant or non-plant cells in various forms including, e.g., mammalian artificial chromosomes (MACs), PACs from P-1 vectors, yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), plant artificial chromosomes (PLACs), as well as episomal DNA, including episomal DNA from an exogenous source such as a plasmid or recombinant vector. Many of these artificial chromosome constructs containing plant DNA can be obtained from a variety of sources, including, e.g., the Arabidopsis Biological Resource Center (ABRC) at the Ohio State University, and the Rice Genome Research Program at the MAFF DNA bank in Ibaraki, Japan. The target DNA may be transcriptionally silent or active. In a preferred embodiment, the target DNA to be altered is the non-transcribed strand of a genomic DNA duplex. In a more preferred embodiment, the target DNA to be altered is the non-transcribed strand of a transcribed gene of a genomic DNA duplex.
[0015] The low efficiency of targeted gene alteration obtained using unmodified DNA oligonucleotides is believed to be largely the result of degradation by nucleases present in the reaction mixture or the target cell. Although different modifications are known to have different effects on the nuclease resistance of oligonucleotides or stability of duplexes formed by such oligonucleotides (see, e.g., Koshkin et al.,
[0016] The assay allows for determining the optimum length of the oligonucleotide, optimum sequence of the oligonucleotide, optimum position of the mismatched base or bases, optimum chemical modification or modifications, optimum strand targeted for identifying and selecting the most efficient oligonucleotide for a particular gene alteration event by comparing to a control oligonucleotide. Control oligonucleotides may include a chimeric RNA-DNA double hairpin oligonucleotide directing the same gene alteration event, an oligonucleotide that matches its target completely, an oligonucleotide in which all linkages are phosphorothiolated, an oligonucleotide fully substituted with 2′-O-methyl analogs or an RNA oligonucleotide. Such control oligonucleotides either fail to direct a targeted alteration or do so at a lower efficiency as compared to the oligonucleotides of the invention. The assay further allows for determining the optimum position of a gene alteration event within an oligonucleotide, optimum concentration of the selected oligonucleotide for maximum alteration efficiency by systematically testing a range of concentrations, as well as optimization of either the source of cell extract by testing different plants or strains, or testing cells derived from different plants or strains, or plant cell lines. Using a series of single-stranded oligonucleotides, comprising all RNA or DNA residues and various mixtures of the two, several new structures are identified as viable molecules in nucleotide conversion to direct or repair a genomic mutagenic event. When extracts from mammalian, plant and fungal cells are used and are analyzed using a genetic readout assay in bacteria, single-stranded oligonucleotides having one of several modifications are found to be more active than a control RNA-DNA double hairpin chimera structure when evaluated using an in vitro gene repair assay. Similar results are also observed in vivo using yeast, mammalian and plant cells. Molecules containing various lengths of modified bases were found to possess greater activity than unmodified single-stranded DNA molecules.
[0017] The present invention provides oligonucleotides having chemically modified, nuclease resistant residues, preferably at or near the termini of the oligonucleotides, and methods for their identification and use in targeted alteration of plant genetic material, including gene mutation, targeted gene repair and gene knockout. The oligonucleotides are preferably used for mismatch repair or alteration by changing at least one nucleic acid base, or for frameshift repair or alteration by addition or deletion of at least one nucleic acid base. The oligonucleotides of the invention direct any such alteration, including gene correction, gene repair or gene mutation and can be used, for example, to introduce a polymorphism or haplotype or to eliminate (“knockout”) a particular protein activity. For example, gene alterations that knockout a particular protein activity can be obtained using oligonucleotides designed to convert a codon in the coding region of the protein to a stop codon, thus prematurely terminating translation of the protein. Oligonucleotides that introduce stop codons in the open-reading-frame of the protein are one embodiment of the invention. Generally, oligonucleotides that introduce stop codons early in the open-reading-frame of the protein are preferred. If the open-reading-frame contains more than one methionine, oligonucleotides that introduce stop codons after the second methionine are preferred. Additionally, if the gene exhibits alternative splice sites, oligonucleotides that introduce stop codons in exons after the alternative splice site are preferred. The following table provides examples of codons that can be converted to stop codons by altering a single oligonucleotide. A skilled artisan could readily identify other codons that can be converted to stop codons by altering one, two or three of the base pairs in a given codon. Similarly, a skilled artisan could readily identify codons that can be converted to stop codons by a frameshift mutations that inserts or deletes one or two base pairs in the open-reading-frame. It is also understood that more than one stop codon can be generated in a single open-reading-frame and that these stop codons can be adjacent in the sequence or separated by intervening codons. Where more than one stop codon is introduced into a single open-reading-frame, such alterations can be generated by a single or multiple oligonucleotides and can be generated simultaneously or by sequential mutagenesis of the target nucleic acid.
Corresponding Original codons* stop codon TGA (leucine), T (tryptophan), TG TAG (leucine), T (cysteine), TA TAA (leucine), T (tyrosine)
[0018] The oligonucleotides of the invention are designed as substrates for homologous pairing and repair enzymes and as such have a unique backbone composition that differs from chimeric RNA-DNA double hairpin oligonucleotides, antisense oligonucleotides, and/or other poly- or oligo-nucleotides used for altering genomic DNA, such as triplex forming oligonucleotides. The single-stranded oligo-nucleotides described herein are inexpensive to synthesize and easy to purify. In side-by-side comparisons, an optimized single-stranded oligonucleotide comprising modified residues as described herein is significantly more efficient than a chimeric RNA-DNA double hairpin oligonucleotide in directing a base substitution or frameshift mutation in a cell-free extract assay.
[0019] We have discovered that single-stranded oligonucleotides having a DNA domain surrounding the targeted base, with the domain preferably central to the poly- or oligo-nucleotide, and having at least one modified end, preferably at the 3′ terminal region, are able to alter a target genetic sequence and with an efficiency that is higher than chimeric RNA-DNA double hairpin oligonucleotides disclosed in U.S. Pat. No. 5,565,350. Preferred oligonucleotides of the invention have at least two modified bases on at least one of the termini, preferably the 3′ terminus of the oligonucleotide. Oligonucleotides of the invention can efficiently be used to introduce targeted alterations in a genetic sequence of DNA in the presence of human, animal, plant, fungal (including yeast) proteins and in cells of different types including, for example, plant cells, fungal cells including
[0020] According to certain embodiments, one or both of the termini of the oligonucleotides of the present invention comprise phosphorothioate modifications, LNA backbone (including LNA derivatives and analogs) modifications, or 2′-O-methyl base analogs, or any combination of these modifications. Oligonucleotides comprising 2′-O-methyl or LNA analogs are a mixed DNA/RNA polymer. The oligonucleotides of the invention are, however, single-stranded and are not designed to form a stable internal duplex structure within the oligonucleotide. The efficiency of gene alteration is surprisingly increased with oligonucleotides having internal complementary sequence comprising phosphorothioate modified bases as compared to 2′-O-methyl modifications. This result indicates that specific chemical interactions are involved between the converting oligonucleotide and the proteins involved in the conversion. The effect of other such chemical interactions to produce nuclease resistant termini using modifications other than LNA (including LNA derivatives or analogs), phosphorothioate linkages, or 2′-O-methyl analog incorporation into an oligonucleotide can not yet be predicted because the proteins involved in the alteration process and their particular chemical interaction with the oligonucleotide substituents are not yet known and cannot be predicted.
[0021] In the examples, oligonucleotides of defined sequence are provided for alteration of genes in particular plants. Provided the teachings of the instant application, one of skill in the art could readily design oligonucleotides to introduce analogous alterations in homologous genes from any plant. Furthermore, in the tables of these examples, the oligonucleotides of the invention are not limited to the particular sequences disclosed. The oligonucleotides of the invention include extensions of the appropriate sequence of the longer 120 base oligonucleotides which can be added base by base to the smallest disclosed oligonucleotides of 17 bases. Thus the oligonucleotides of the invention include for each correcting change, oligonucleotides of length 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, or 120 with further single-nucleotide additions up to the longest sequence disclosed. In some embodiments, longer nucleic acids of up to 240 bases which comprise the sequences disclosed herein may be used. Moreover, the oligonucleotides of the invention do not require a symmetrical extension on either side of the central DNA domain. Similarly, the oligonucleotides of the invention as disclosed in the various tables for alteration of particular plant genes contain phosphorothioate linkages, 2′-O-methyl analog or LNA (including LNA derivatives and analogs) or any combination of these modifications just as the assay oligonucleotides do.
[0022] The present invention, however, is not limited to oligonucleotides that contain any particular nuclease resistant modification. Oligonucleotides of the invention may be altered with any combination of additional LNAs (including LNA derivatives and analogs), phosphorothioate linkages or 2′-O-methyl analogs to maximize conversion efficiency. For oligonucleotides of the invention that are longer than about 17 to about 25 bases in length, internal as well as terminal region segments of the backbone may be altered. Alternatively, simple fold-back structures at each end of a oligonucleotide or appended end groups may be used in addition to a modified backbone for conferring additional nuclease resistance.
[0023] The different oligonucleotides of the present invention preferably contain more than one of the aforementioned backbone modifications at each end. In some embodiments, the backbone modifications are adjacent to one another. However, the optimal number and placement of backbone modifications for any individual oligonucleotide will vary with the length of the oligonucleotide and the particular type of backbone modification(s) that are used. If constructs of identical sequence having phosphorothioate linkages are compared, 2, 3, 4, 5, or 6 phosphorothioate linkages at each end are preferred. If constructs of identical sequence having 2′-O-methyl base analogs are compared, 1, 2, 3 or 4 analogs are preferred. The optimal number and type of backbone modifications for any particular oligo-nucleotide useful for altering target DNA may be determined empirically by comparing the alteration efficiency of the oligonucleotide comprising any combination of the modifications to a control molecule of comparable sequence using any of the assays described herein. The optimal position(s) for oligonucleotide modifications for a maximally efficient altering oligonucleotide can be determined by testing the various modifications as compared to control molecule of comparable sequence in one of the assays disclosed herein. In such assays, a control molecule includes, e.g., a completely 2′-O-methyl substituted molecule, a completely complementary oligonucleotide, or a chimeric RNA-DNA double hairpin.
[0024] Increasing the number of phosphorothioate linkages, LNAs or 2′-O-methyl bases beyond the preferred number generally decreases the gene repair activity of a 25 nucleotide long oligonucleotide. Based on analysis of the concentration of oligonucleotide present in the extract after different time periods of incubation, it is believed that the terminal modifications impart nuclease resistance to the oligo-nucleotide thereby allowing it to survive within the cellular environment. However, this may not be the only possible mechanism by which such modifications confer greater efficiency of conversion. For example, as disclosed herein, certain modifications to oligonucleotides confer a greater improvement to the efficiency of conversion than other modifications.
[0025] Efficiency of conversion is defined herein as the percentage of recovered substrate molecules that have undergone a conversion event. Depending on the nature of the target genetic material, e.g. the genome of a cell, efficiency could be represented as the proportion of cells or clones containing an extrachromosomal element that exhibit a particular phenotype. Alternatively, representative samples of the target genetic material can be sequenced to determine the percentage that have acquired the desire change. The oligonucleotides of the invention in different embodiments can alter DNA two, three, four, five, six, seven, eight, nine, ten, twelve, fifteen, twenty, thirty, and fifty or more fold more than control oligonucleotides. Such control oligonucleotides are oligonucleotides with fully phosphorothiolated linkages, oligonucleotides that are fully substituted with 2′-O-methyl analogs, a perfectly matched oligonucleotide that is fully complementary to a target sequence or a chimeric DNA-RNA double hairpin oligonucleotide such as disclosed in U.S. Pat. No. 5,565,350.
[0026] In addition, for a given oligonucleotide length, additional modifications interfere with the ability of the oligonucleotide to act in concert with the cellular recombination or repair enzyme machinery which is necessary and required to mediate a targeted substitution, addition or deletion event in DNA. For example, fully phosphorothiolated or fully 2-O-methylated molecules are inefficient in targeted gene alteration.
[0027] The oligonucleotides of the invention as optimized for the purpose of targeted alteration of genetic material, including gene knockout or repair, are different in structure from antisense oligo-nucleotides that may possess a similar mixed chemical composition backbone. The oligonucleotides of the invention differ from such antisense oligonucleotides in chemical composition, structure, sequence, and in their ability to alter genomic DNA. Significantly, antisense oligonucleotides fail to direct targeted gene alteration. The oligonucleotides of the invention may target either strand of DNA and can include any component of the genome including, for example, intron and exon sequences. The preferred embodiment of the invention is a modified oligonucleotide that binds to the non-transcribed strand of a genomic DNA duplex. In other words, the preferred oligonucleotides of the invention target the sense strand of the DNA, i.e. the oligonucleotides of the invention are complementary to the non-transcribed strand of the target duplex DNA. The sequence of the non-transcribed strand of a DNA duplex is found in the mRNA produced from that duplex, given that mRNA uses uracil-containing nucleotides in place of thymine-containing nucleotides.
[0028] Moreover, the initial observation that single-stranded oligonucleotides comprising these modifications and lacking any particular triplex forming domain have reproducibly enhanced gene alteration activity in a variety of assay systems as compared to a chimeric RNA-DNA double-stranded hairpin control or single-stranded oligonucleotides comprising other backbone modifications was surprising. The single-stranded molecules of the invention totally lack the complementary RNA binding structure that stabilizes a normal chimeric double-stranded hairpin of the type disclosed in U.S. Pat. No. 5,565,350 yet is more effective in producing targeted base conversion as compared to such a chimeric RNA-DNA double-stranded hairpin. In addition, the molecules of the invention lack any particular triplex forming domain involved in Hoogsteen interactions with the DNA double helix and required by other known oligonucleotides in other oligonucleotide-dependant gene conversion systems. Although the lack of these functional domains was expected to decrease the efficiency of an alteration in a sequence, just the opposite occurs: the efficiency of sequence alteration using the modified oligonucleotides of the invention is higher than the efficiency of sequence alteration using a chimeric RNA-DNA hairpin targeting the same sequence alteration. Moreover, the efficiency of sequence alteration or gene conversion directed by an unmodified oligonucleotide is many times lower as compared to a control chimeric RNA-DNA molecule or the modified oligonucleotides of the invention targeting the same sequence alteration. Similarly, molecules containing at least 3 2′-O-methyl base analogs are about four to five fold less efficient as compared to an oligonucleotide having the same number of phosphorothioate linkages.
[0029] The oligonucleotides of the present invention for alteration of a single base are about 17 to about 121 nucleotides in length, preferably about 17 to about 74 nucleotides in length. Most preferably, however, the oligonucleotides of the present invention are at least about 25 bases in length, unless there are self-dimerization structures within the oligonucleotide. If the oligonucleotide has such an unfavorable structure, lengths longer than 35 bases are preferred. Oligonucleotides with modified ends both shorter and longer than certain of the exemplified, modified oligonucleotides herein function as gene repair or gene knockout agents and are within the scope of the present invention.
[0030] Once an oligomer is chosen, it can be tested for its tendency to self-dimerize, since self-dimerization may result in reduced efficiency of alteration of genetic information. Checking for self-dimerization tendency can be accomplished manually or, preferably, using a software program. One such program is Oligo Analyzer 2.0, available through Integrated DNA Technologies (Coralville, Iowa 52241) (http://www.idtdna.com); this program is available for use on the world wide web at http://www.idtdna.com/program/oligoanalyzer/oligoanalyzer.asp.
[0031] For each oligonucleotide sequence input into the program, Oligo Analyzer 2.0 reports possible self-dimerized duplex forms, which are usually only partially duplexed, along with the free energy change associated with such self-dimerization. Delta G-values that are negative and large in magnitude, indicating strong self-dimerization potential, are automatically flagged by the software as “bad”. Another software program that analyzes oligomers for pair dimer formation is Primer Select from DNASTAR, Inc., 1228 S. Park St., Madison, Wis. 53715, Phone: (608) 258-7420 (http://www.dnastar.com/products/PrimerSelect.html).
[0032] If the sequence is subject to significant self-dimerization, the addition of further sequence flanking the “repair” nucleotide can improve gene correction frequency.
[0033] Generally, the oligonucleotides of the present invention are identical in sequence to one strand of the target DNA, which can be either strand of the target DNA, with the exception of one or more targeted bases positioned within the DNA domain of the oligonucleotide, and preferably toward the middle between the modified terminal regions. Preferably, the difference in sequence of the oligonucleotide as compared to the targeted genomic DNA is located at about the middle of the oligo-nucleotide sequence. In a preferred embodiment, the oligonucleotides of the invention are complementary to the non-transcribed strand of a duplex. In other words, the preferred oligonucleotides target the sense strand of the DNA, i.e. the oligonucleotides of the invention are preferably complementary to the strand of the target DNA the sequence of which is found in the mRNA.
[0034] The oligonucleotides of the invention can include more than a single base change. In an oligonucleotide that is about a 70-mer, with at least one modified residue incorporated on the ends, as disclosed herein, multiple bases can be simultaneously targeted for change. The target bases may be up to 27 nucleotides apart and may not be changed together in all resultant plasmids in all cases. There is a frequency distribution such that the closer the target bases are to each other in the central DNA domain within the oligonucleotides of the invention, the higher the frequency of change in a given cell. Target bases only two nucleotides apart are changed together in every case that has been analyzed. The farther apart the two target bases are, the less frequent the simultaneous change. Thus, oligonucleotides of the invention may be used to repair or alter multiple bases rather than just one single base. For example, in a 74-mer oligonucleotide having a central base targeted for change, a base change event up to about 27 nucleotides away can also be effected. The positions of the altering bases within the oligonucleotide can be optimized using any one of the assays described herein. Preferably, the altering bases are at least about 8 nucleotides from one end of the oligonucleotide.
[0035] The oligonucleotides of the present invention can be introduced into cells by any suitable means. According to certain preferred embodiments, the modified oligonucleotides may be used alone. Suitable means, however, include the use of polycations, cationic lipids, liposomes, polyethylenimine (PEI), electroporation, biolistics, microinjection and other methods known in the art to facilitate cellular uptake. For plant cells, biolistic or particle bombardment methods are typically used. According to certain preferred embodiments of the present invention, isolated plant cells are treated in culture according to the methods of the invention, to mutate or repair a target gene. Alternatively, plant target DNA may be modified in vitro or in another cell type, including for example, yeast or bacterial cells and then introduced into a plant cell as, for example, a T-DNA. Plant cells thus modified may be used to regenerate the whole organism as, for example, in a plant having a desired targeted genomic change. In other instances, targeted genomic alteration, including repair or mutagenesis, may take place in vivo following direct administration of the modified, single-stranded oligonucleotides of the invention to a subject.
[0036] The single-stranded, modified oligonucleotides of the present invention have numerous applications as gene repair, gene modification, or gene knockout agents. Such oligonucleotides may be advantageously used, for example, to introduce or correct multiple point mutations. Each mutation leads to the addition, deletion or substitution of at least one base pair. The methods of the present invention offer distinct advantages over other methods of altering the genetic makeup of an organism, in that only the individually targeted bases are altered. No additional foreign DNA sequences are added to the genetic complement of the organism. Such agents may, for example, be used to develop plants with improved traits by rationally changing the sequence of selected genes in isolated cells and using these modified cells to regenerate whole plants having the altered gene. See, e.g., U.S. Pat. No. 6,046,380 and U.S. Pat. No. 5,905,185 incorporated herein by reference. Such plants produced using the compositions of the invention lack additional undesirable selectable markers or other foreign DNA sequences. Targeted base pair substitution or frameshift mutations introduced by an oligonucleotide in the presence of a cell-free extract also provides a way to modify the sequence of extrachromosomal elements, including, for example, plasmids, cosmids and artificial chromosomes. The oligonucleotides of the invention also simplify the production of plants having particular modified or inactivated genes. Altered plant model systems such as those produced using the methods and oligonucleotides of the invention are invaluable in determining the function of a gene and in evaluating drugs. The oligonucleotides and methods of the present invention may also be used to introduce molecular markers, including, for example, SNPs, RFLPs, AFLPs and CAPs.
[0037] The purified oligonucleotide compositions may be formulated in accordance with routine procedures depending on the target. For example, purified oligonucleotide can be used directly in a standard reaction mixture to introduce alterations into targeted DNA in vitro or where cells are the target as a composition adapted for bathing cells in culture or for microinjection into cells in culture. The purified oligonucleotide compositions may also be provided on coated microbeads for biolistic delivery into plant cells. Where necessary, the composition may also include a solubilizing agent. Generally, the ingredients will be supplied either separately or mixed together in single-use form, for example, as a dry, lyophilized powder or water-free concentrate. In general, dosage required for efficient targeted gene alteration will range from about 0.001 to 50,000 μg/kg target tissue, preferably between 1 to 250 μg/kg, and most preferably at a concentration of between 30 and 60 micromolar.
[0038] For cell administration, direct injection into the nucleus, biolistic bombardment, electroporation, liposome transfer and calcium phosphate precipitation may be used. In yeast, lithium acetate or spheroplast transformation may also be used. In a preferred method, the administration is performed with a liposomal transfer compound, e.g., DOTAP (Boehringer-Mannheim) or an equivalent such as lipofectin. The amount of the oligonucleotide used is about 500 nanograms in 3 micrograms of DOTAP per 100,000 cells. For electroporation, between 20 and 2000 nanograms of oligonucleotide per million cells to be electroporated is an appropriate range of dosages which can be increased to improve efficiency of genetic alteration upon review of the appropriate sequence according to the methods described herein. For biolistic delivery, microbeads are generally coated with resuspended oligonucleotides, which range of oligonucleotide to microbead concentration can be similarly adjusted to improve efficiency as determined using one of the assay methods described herein, starting with about 0.05 to 1 microgram of oligonucleotide to 25 microgram of 1.0 micrometer gold beads or similar microcarrier.
[0039] Another aspect of the invention is a kit comprising at least one oligonucleotide of the invention. The kit may comprise an additional reagent or article of manufacture. The additional reagent or article of manufacture may comprise a delivery mechanism, cell extract, a cell, or a plasmid, such as one of those disclosed in the Figures herein, for use in an assay of the invention. Alternatively, the invention includes a kit comprising an isogenic set of cells in which each cell in the kit comprises a different altered amino acid for a target protein encoded by a targeted altered gene within the cell produced according to the methods of the invention.
[0040]
[0041]
[0042]
[0043]
[0044]
[0045]
[0046]
[0047]
[0048]
[0049]
[0050]
[0051] The following examples are provided by way of illustration only, and are not intended to limit the scope of the invention disclosed herein.
[0052] In this example, single-stranded and double-hairpin oligonucleotides with chimeric backbones (see
[0053] Additional constructs can be made to test additional gene alteration events or for specific use in different expression systems. For example, alternative comparable plant plasmids or integration vectors such as, e.g. those based on T-DNA, can be constructed for stable expression in plant cells according to the disclosures herein. Such constructs would use a plant specific promoter such as, e.g., cauliflower mosaic virus 35S promoter, to replace the promoters directing expression of the neo, hyg or aureobasidinA resistance gene disclosed herein, including for example, in
[0054] We also construct three mammalian expression vectors, pHyg(rep)eGFP, pHyg(Δ)eGFP, pHyg(ins)eGFP, that contain a substitution mutation at nucleotide 137 of the hygromycin-B coding sequence. (rep) indicates a T1374→G replacement, (Δ) represents a deletion of the G137 and (ins) represents an A insertion between nucleotides 136 and 137. All point mutations create a nonsense termination codon at residue 46. We use pHYGeGFP plasmid (Invitrogen, CA) DNA as a template to introduce the mutations into the hygromycin-eGFP fusion gene by a two step site-directed mutagenesis PCR protocol. First, we generate overlapping 5′ and a 3′ amplicons surrounding the mutation site by PCR for each of the point mutation sites. A 215 bp 5′ amplicon for the (rep), (Δ) or (ins) was generated by polymerization from oligonucleotide primer HygEGFPf (5′-AATACGACTCACTATAGG-3′; SEQ ID NO: 2701) to primer Hygrepr (5′GACCTATCCACGCCCTCC-3′; SEQ ID NO: 2702), HygΔr (5′-GACTATCCACGCCCTCC-3′; SEQ ID NO: 2703), or Hyginsr (5′-GACATTATCCACGCCCTCC-3′; SEQ ID NO: 2704), respectively. We generate a 300 bp 3′ amplicon for the (rep), (Δ) or (ins) by polymerization from oligonucleotide primers Hygrepf (5′-CTGGGATAGGTCCTGCGG-3′; SEQ ID NO: 2705), HygΔf (5′-CGTGGATAGTCCTGCGG-3′; SEQ ID NO: 2706), Hyginsf (5′-CGTGGATAATGTCCTGCGG-3′; SEQ ID NO: 2707), respectively to primer HygEGFPr (5′-AAATCACGCCATGTAGTG-3′; SEQ ID NO: 2708). We mix 20 ng of each of the resultant 5′ and 3′ overlapping amplicon mutation sets and use the mixture as a template to amplify a 523 bp fragment of the Hygromycin gene spanning the KpnI and RsrII restriction endonuclease sites. We use the Expand PCR system (Roche) to generate all amplicons with 25 cycles of denaturing at 94° C. for 10 seconds, annealing at 55° C. for 20 seconds and elongation at 68° C. for 1 minute. We digest 10 μg of vector pHYGeGFP and 5 μg of the resulting fragments for each mutation with KpnI and RsrII (NEB) and gel purify the fragment for enzymatic ligation. We ligate each mutated insert into pHYGeGFP vector at 3:1 molar ratio using T4 DNA ligase (Roche). We screen clones by restriction digest, confirm the mutation by Sanger dideoxy chain termination sequencing and purify the plasmid using a Qiagen maxiprep kit.
[0055] Oligonucleotide synthesis and cells. Chimeric oligonucleotides and single-stranded oligonucleotides (including those with the indicated modifications) are synthesized using available phosphoramidites on controlled pore glass supports. After deprotection and detachment from the solid support, each oligonucleotide is gel-purified using, for example, procedures such as those described in Gamper et al.,
[0056] Cell-free extracts. Although this portion of this example is directed to mammalian systems, similar extracts from plants can be prepared as disclosed elsewhere in this application and used as disclosed in this example. We prepare cell-free extracts from HUH7 cells or other mammalian cells, as follows. We employ this protocol with essentially any mammalian cell including, for example, H1299 cells (human epithelial carcinoma, non-small cell lung cancer), C127I (immortal murine mammary epithelial cells), MEF (mouse embryonic fibroblasts), HEC-1-A (human uterine carcinoma), HCT15 (human colon cancer), HCT116 (human colon carcinoma), LoVo (human colon adenocarcinoma), and HeLa (human cervical carcinoma). We harvest approximately 2×10
[0057] We also perform these experiments with cell-free extracts obtained from fungal cells, including, for example,
[0058] Reaction mixtures of 50 μl are used, consisting of 10-30 μg protein of cell-free extract, which can be optionally substituted with purified proteins or enriched fractions, about 1.5 μg chimeric double-hairpin oligonucleotide or 0.55 μg single-stranded molecule (3S/25G or 6S/25G, see
[0059] The following procedure can also be used. 5 μl of resuspended reaction mixtures (total volume 50 μl) are used to transform 20 μl aliquots of electro-competent DH10B bacteria using a Cell-Porator apparatus (Life Technologies). The mixtures are allowed to recover in 1 ml SOC at 37° C. for 1 hour at which time 50 μg/ml kanamycin or 12 μg/ml tetracycline is added for an additional 3 hours. Prior to plating, the bacteria are pelleted and resuspended in 200 μl of SOC. 100 μl aliquots are plated onto kan or tet agar plates and 100 μl of a 10
[0060] Chimeric single-stranded oligonucleotides. In
[0061] Molecules bearing 3, 6, 8, 10 and 12 phosphorothioate linkages in the terminal regions at each end of a backbone with a total of 24 linkages (25 bases) are tested in the kan
[0062] The efficiency of gene repair directed by phosphorothioate-modified, single-stranded molecules, in a length dependent fashion, led us to examine the length of the RNA modification used in the original chimera as it relates to correction. Construct III represents the “RNA-containing” strand of chimera I and, as shown in Table 1 and
[0063] Repair of the kanamycin mutation requires a G→C exchange. To confirm that the specific desired correction alteration was obtained, colonies selected at random from multiple experiments are processed and the isolated plasmid DNA is sequenced. As seen in
[0064] In
[0065] Correction of a mutant kanamycin gene in cultured mammalian cells. Although this portion of this example is directed to cultured mammalian cells, comparable methods may be used using cultured plant cells or protoplasts of those cells from the plant species disclosed herein. The experiments are performed using different eukaryotic cells including plant and mammalian cells, including, for example, 293 cells (transformed human primary kidney cells), HeLa cells (human cervical carcinoma), and H1299 (human epithelial carcinoma, non-small cell lung cancer). HeLa cells are grown at 37° C. and 5% CO
[0066] Summary of experimental results. Tables 1, 2 and 3 respectively provide data on the efficiency of gene repair directed by single-stranded oligonucleotides. Table 1 presents data using a cell-free extract from human liver cells (HUH7) to catalyze repair of the point mutation in plasmid pkan
[0067]
[0068] Results. In summary, we have designed a novel class of single-stranded oligonucleotides with backbone modifications at the termini and demonstrate gene repair/conversion activity in mammalian and plant cell-free extracts. We confirm that the all DNA strand of the RNA-DNA double-stranded double hairpin chimera is the active component in the process of gene repair. In some cases, the relative frequency of repair by the novel oligonucleotides of the invention is elevated approximately 3-4-fold in certain embodiments when compared to frequencies directed by chimeric RNA-DNA double hairpin oligonucleotides.
[0069] This strategy centers around the use of extracts from various sources to correct a mutation in a plasmid using a modified single-stranded or a chimeric RNA-DNA double hairpin oligonucleotide. A mutation is placed inside the coding region of a gene conferring antibiotic resistance in bacteria, here kanamycin or tetracycline. The appearance of resistance is measured by genetic readout in
[0070] The original RNA-DNA double hairpin chimera design, e.g., as disclosed in U.S. Pat. No. 5,565,350, consists of two hybridized regions of a single-stranded oligonucleotide folded into a double hairpin configuration. The double-stranded targeting region is made up of a 5 base pair DNA/DNA segment bracketed by 10 base pair RNA/DNA segments. The central base pair is mismatched to the corresponding base pair in the target gene. When a molecule of this design is used to correct the kan
[0071] Frame shift mutations are repaired. By using plasmid pT
[0072] Comparison of phosphorothioate oligonucleotides to 2′-O-methyl substituted oligonucleotides. From a comparison of molecules VII and XI, it is apparent that gene repair is more subject to inhibition by RNA residues than by phosphorothioate linkages. Thus, even though both of these oligonucleotides contain an equal number of modifications to impart nuclease resistance, XI (with 16 phosphorothioate linkages) has good gene repair activity while VII (with 16 2′-O-methyl RNA residues) is inactive. Hence, the original chimeric double hairpin oligonucleotide enabled correction directed, in large part, by the strand containing a large region of contiguous DNA residues.
[0073] Oligonucleotides can target multiple nucleotide alterations within the same template. The ability of individual single-stranded oligonucleotides to correct multiple mutations in a single target template is tested using the plasmid pK
[0074] We also use additional oligonucleotides to assay the ability of individual oligonucleotides to correct multiple mutations in the pK
[0075] We assay correction of the original mutation in pKOligo 1 (25-mer) Oligo 2 (70-mer) Clones with both sites changed 9 7 Clones with a single site changed 0 2 Clones that were not changed 4 1
[0076] Nuclease sensitivity of unmodified DNA oligonucleotide. Electrophoretic analysis of nucleic acid recovered from the cell-free extract reactions conducted here confirm that the unmodified single-stranded 25-mer did not survive incubation whereas greater than 90% of the terminally modified oligos did survive (as judged by photo-image analyses of agarose gels).
[0077] Plant extracts direct repair. The modified single-stranded constructs can be tested in plant cell extracts. We have observed gene alteration using extracts from multiple plant sources, including, for example, Arabidopsis, tobacco, banana, maize, soybean, canola, wheat, spinach as well as spinach chloroplast extract or extracts made from other plant cells disclosed herein. We prepare the extracts by grinding plant tissue or cultured cells under liquid nitrogen with a mortar and pestle. We extract 3 ml of the ground plant tissue with 1.5 ml of extraction buffer (20 mM HEPES, pH7.5; 5 mM KCl; 1.5 mM MgCl
[0078] We describe experiments using two sources here: a dicot (canola) and a monocot (banana,
[0079] Tables are attached hereto.
TABLE I Gene repair activity is directed by single-stranded oligonucleotides. Oligonucleotide Plasmid Extract (ug) kan Fold increase I pK 10 300 I ↓ 20 418 1.0 × II ↓ 10 537 II ↓ 20 748 1.78 × III ↓ 10 3 III ↓ 20 5 0.01 × IV ↓ 10 112 IV ↓ 20 96 0.22 × V ↓ 10 217 V ↓ 20 342 0.81 × VI ↓ 10 6 VI ↓ 20 39 0.093 × VII ↓ 10 0 VII ↓ 20 0 0 × VIII ↓ 10 3 VIII ↓ 20 5 0.01 × IX ↓ 10 936 IX ↓ 20 1295 3.09 × X ↓ 10 1140 X ↓ 20 1588 3.7 × XI ↓ 10 480 XI ↓ 20 681 1.6 × XII ↓ 10 18 XII ↓ 20 25 0.059 × XIII ↓ 10 0 XIII ↓ 20 4 0.009 × — ↓ 20 0 I ↓ — 0
[0080] Plasmid pKTABLE II Modified single-stranded oligomers are not dependent on MSH2 or MSH3 for optimal gene repair activity. A. Oligonucleotide Plasmid Extract kan IX (3S/25G) ↓ HUH7 637 X (6S/25G) ↓ HUH7 836 IX ↓ MEF2 781 X ↓ MEF2 676 IX ↓ MEF3 582 X ↓ MEF3 530 IX ↓ MEF 332 X ↓ MEF 497 — ↓ MEF2 10 — ↓ MEF3 5 — ↓ MEF 14
[0081] Chimeric oligonucleotide (1.5 μg) or modified single-stranded oligonucleotide (0.55 μg) was incubated with 1 μg of plasmid pKTABLE III Frameshift mutation repair is directed by single-stranded oligonucleotides Oligonucleotide Plasmid Extract tet Tet IX (3S/25A; 0.5 μg) pT — 0 — ↓ 20 μg 0 Tet IX (0.5 μg) ↓ ↓ 48 Tet IX (1.5 μg) ↓ ↓ 130 Tet IX (2.0 μg) ↓ ↓ 68 Tet I (chimera; 1.5 μg) ↓ ↓ 48
[0082] Each reaction mixture contained the indicated amounts of plasmid and oligonucleotide. The extract used for these experiments came from HUH7 cells. The data represent the number of tetracycline resistant colonies per 10TABLE IV Plant cell-free extracts support gene repair by single-stranded oligonucleotides Oligonucleotide Plasmid Extract kan II (chimera) pK 30 μg Canola 337 IX (3S/25G) ↓ Canola 763 X (6S/25G) ↓ Canola 882 II ↓ Musa 203 IX ↓ Musa 343 X ↓ Musa 746 — ↓ Canola 0 — ↓ Musa 0 IX ↓ — Canola 0 X ↓ — Musa 0
[0083] Canola or Musa cell-free extracts were tested for gene repair activity on the kanamycin-sensitive gene as previously described in (18). Chimeric oligonucleotide II (1.5 μg) and modified single-stranded oligonucleotides IX and X (0.55 μg) were used to correct pKTABLE V Gene repair activity in cell-free extracts prepared from yeast ( Cell-type Plasmid Chimeric Oligo SS Oligo kan Wild type pKan 1 μg 0.36 Wild type ↓ 1 μg 0.81 ΔRAD52 ↓ 1 μg 10.72 ΔRAD52 ↓ 1 μg 17.41 ΔPMS1 ↓ 1 μg 2.02 ΔPMS1 ↓ 1 μg 3.23
[0084] In this example, single-stranded oligonucleotides with modified backbones and double-hairpin oligonucleotides with chimeric, RNA-DNA backbones are used to measure gene repair using two episomal targets with a fusion between a hygromycin resistance gene and eGFP as a target for gene repair. These plasmids are pAURHYG(rep)GFP, which contains a point mutation in the hygromycin resistance gene (
[0085] We synthesize the set of three yeast expression constructs pAURHYG(rep)eGFP, pAURHYG(Δ)eGFP, pAURHYG(ins)eGFP, that contain a point mutation at nucleotide 137 of the hygromycin-B coding sequence as follows. (rep) indicates a T137→G replacement, (Δ) represents a deletion of the G137 and (ins) represents an A insertion between nucleotides 136 and 137. We construct this set of plasmids by excising the respective expression cassettes by restriction digest from pHyg(x)EGFP and ligation into pAUR123 (Panvera, Calif.). We digest 10 μg pAUR123 vector DNA, as well as, 10 μg of each pHyg(x)EGFP construct with KpnI and SaII (NEB). We gel purify each of the DNA fragments and prepare them for enzymatic ligation. We ligate each mutated insert into pHygEGFP vector at 3:1 molar ratio using T4 DNA ligase (Roche). We screen clones by restriction digest, confirm by Sanger dideoxy chain termination sequencing and purify using a Qiagen maxiprep kit.
[0086] We use this system to assay the ability of five oligonucleotides (shown in
[0087] Oligonucleotide synthesis and cells. We synthesized and purified the chimeric, double-hairpin oligonucleotides and single-stranded oligonucleotides (including those with the indicated modifications) as described in Example 1. Plasmids used for assay were maintained stably in yeast (
[0088] Frameshift mutations are repaired in yeast cells. We test the ability of the oligonucleotides shown in
[0089] We also use additional oligonucleotides to assay the ability of individual oligonucleotides to correct multiple mutations in the pAURHYG(x)eGFP plasmid. These include, for example, one that alters two basepairs that are 3 nucleotides apart is a 74-mer with the sequence 5′-CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGG
[0090] Oligonucleotides targeting the sense strand direct gene correction more efficiently. We compare the ability of single-stranded oligonucleotides to target each of the two strands of the target sequence of both pAURHYG(ins)GFP and pAURHYG(rep)GFP. These experiments, presented in Tables 7 and 8, indicate that an oligonucleotide, HygE3T/74α, with sequence complementary to the sense strand (i.e. the strand of the target sequence that is identical to the mRNA) of the target sequence facilitates gene correction approximately ten-fold more efficiently than an oligonucleotide, HygE3T/74, with sequence complementary to the non-transcribed strand which serves as the template for the synthesis of RNA. As indicated in Table 7, this effect was observed over a range of oligonucleotide concentrations from 0-3.6 μg, although we did observe some variability in the difference between the two oligonucleotides (indicated in Table 7 as a fold difference between HygE3T/74α and HygE3T/74). Furthermore, as shown in Table 8, we observe increased efficiency of correction by HygE3T/74α relative to HygE3T/74 regardless of whether the oligonucleotides were used to correct the base substitution mutation in pAURHYG(rep)GFP or the insertion mutation in pAURHYG(ins)GFP. The data presented in Table 8 further indicate that the single-stranded oligonucleotides correct a base substitution mutation more efficiently than an insertion mutation. However, this last effect was much less pronounced and the oligonucleotides of the invention are clearly able efficiently to correct both types of mutations in yeast cells. In addition, the role of transcription is investigated using plasmids with inducible promoters such as that described in
[0091] Optimization of oligonucleotide concentration. To determine the optimal concentration of oligonucleotide for the purpose of gene alteration, we test the ability of increasing concentrations of Hyg3T/74α to correct the mutation in pAURHYG(rep)GFP contained in yeast LSY678. We chose this assay system because our previous experiments indicated that it supports the highest level of correction. However, this same approach could be used to determine the optimal concentration of any given oligonucleotide. We test the ability of Hyg3T/74α to correct the mutation in pAURHYG(rep)GFP contained in yeast LSY678 over a range of oligonucleotide concentrations from 0-10.0 μg. As shown in Table 9, we observe that the correction efficiency initially increases with increasing oligonucleotide concentration, but then declines at the highest concentration tested.
[0092] Tables are attached hereto.
TABLE 6 Correction of an insertion mutation in pAURHYG(ins)GFP by HygGG/Rev, HygE3T/25 and HygE3T/74 Colonies on Colonies on Correction Oligonucleotide Tested Hygromycin Aureobasidin (/10 Efficiency HygGG/Rev 3 157 0.02 HygE3T/25 64 147 0.44 HygE3T/74 280 174 1.61 Kan70T 0 — —
[0093]
TABLE 7 An oligonucleotide targeting the sense strand of the target sequence corrects more efficiently. Colonies per hygromycin plate Amount of Oligonucleotide (μg) HygE3T/74 HygE3T/74α 0 0 0 0.6 24 128 (8.4x)* 1.2 69 140 (7.5x)* 2.4 62 167 (3.8x)* 3.6 29 367 (15x)*
[0094]
TABLE 8 Correction of a base substitution mutation is more efficient than correction of a frame shift mutation. Oligonucleotide Plasmid tested (contained in LSY678) Tested (5 μg) pAURHYG(ins)GFP pAURHYG(rep)GFP HygE3T/74 72 277 HygE3T/74α 1464 2248 Kan70T 0 0
[0095]
TABLE 9 Optimization of oligonucleotide concentration in electroporated yeast cells. Colonies on Colonies on Correction Amount (μg) hygromycin aureobasidin (/10 efficiency 0 0 67 0 1.0 5 64 0.08 2.5 47 30 1.57 5.0 199 33 6.08 7.5 383 39 9.79 10.0 191 33 5.79
[0096] Although disclosure in this example is directed to use of stem cells or human blood cells and microinjection, the microinjection procedures may also be used with cultured plant cells or protoplasts using any plant species, including those disclosed herein. Mononuclear cells are isolated from human umbilical cord blood of normal donors using Ficoll Hypaque (Pharmacia Biotech, Uppsala, Sweden) density centrifugation. CD34+ cells are immunomagnetically purified from mononuclear cells using either the progenitor or Multisort Kits (Miltenyi Biotec, Auburn, Calif.). Lin
[0097] 35 mm dishes are coated overnight at 4° C. with 50 μg/ml Fibronectin (FN) fragment CH-296 (Retronectin; TaKaRa Biomedicals, Panvera, Madison, Wis.) in phosphate buffered saline and washed with IMDM containing glutamine/penicillin/streptomycin. 300 to 2000 cells are added to cloning rings and attached to the plates for 45 minutes at 37° C. prior to microinjection. After incubation, cloning rings are removed and 2 ml of S Medium are added to each dish for microinjection. Pulled injection needles with a range of 0.22 μm to 0.3 μm outer tip diameter are used. Cells are visualized with a microscope equipped with a temperature controlled stage set at 37° C. and injected using an electronically interfaced Eppendorf Micromanipulator and Transjector. Successfully injected cells are intact, alive and remain attached to the plate post injection. Molecules that are flourescently labeled allow determination of the amount of oligonucleotide delivered to the cells.
[0098] For in vitro erythropoiesis from Lin
[0099] Alternatively, non-stem cell populations of cultured cells can be manipulated using any method known to those of skill in the art including, for example, the use of polycations, cationic lipids, liposomes, polyethylenimine (PEI), electroporation, biolistics, calcium phosphate precipitation, or any other method known in the art.
[0100] Biolistic delivery of oligonucleotide into plant cells may be accomplished according to the following method. One milliliter of packed cell volume of plant cell suspensions are subcultured onto plates containing solid medium [with Murashige and Skoog salts from Gibco/BRL, 500 mg/liter Mes, 1 mg/liter thiamin, 100 mg/liter myo-inositol, 180 mg/liter KH2PO4, 2.21 mg/liter 2,4-dichlorophenoxyacetic acid (2,4-D), and 30 g/liter sucrose (pH 5.7) and having 8 g/liter agar-agar from Sigma added before autoclaving]. By using a helium-driven particle gun such as that from BioRad and following manufacturers directions, oligonucleotides may be introduced to cells after precipitation onto 1 micrometer or comparable gold microcarriers (Bio-Rad). To precipitate onto microcarriers, 35 microliters of a particle suspension (60 mg of microcarriers per ml of 100% ethanol) is transferred to a 1.5 ml microcentrifuge tube, which is agitated on a vortex mixer. Then 40 microliter of resuspended oligonucleotide (60 ng/microliter water) is added; then 75 microliter of ice-cold 2.5 M CaCl2 is added; then 75 microliter of ice-cold 0.1 M spermidine is added. The tube is mixed vigorously or a vortex mixer for 10 min at room temperature. The particles are allowed to settle for 10 min and are centrifuged at 11,750 g for 30 sec. The supernatant is removed and the particles are resuspended in 50 microliter of 100% ethanol. An aliquot of 10 microliter of the resuspended particles are applied to each macro-projectile which is used to bombard each plate once at 900 psi (1 psi=6.89 kPa) with a gap distance (distance from power source to macroprojectile) of 1 cm and a target distance (distance from microprojectile launch site to target material) of 10 cm.
[0101] An alternative method of delivery can be used as follows. Cultured cells are suspended in liquid N6 medium and then plated on a VWR Scientific glass fiber filter. About 0.4 microgram of oligonucleotide are precipitated with 15 microliter of 2.5 mM CaCl2 and 5 microliter of 0.1 M spermidine onto 25 microgram of 1.0 micrometer gold particles. Microprojectile bombardment is performed by using a Bio-Rad PDS-1000 He particle delivery system or comparable machine following manufacturers instructions. Alterations in oligonucleotide concentrations can be employed to determine the optimum concentration of oligonucleotide according to the procedures described herein for any particular oligonucleotide of the invention.
[0102] Alternatively, the oligonucleotide of the invention may be delivered to a plant cell by electroporation of a protoplast derived from a plant part. The protoplasts may be formed by enzymatic treatment of a plant part, particularly a leaf, according to techniques such as those in Gallois et al., Methods in Molecular Biology 55: 89-107 by Humana Press. Such conditions for electroporation use about 3×10
[0103] The oligonucleotides of the invention can also be used to repair or direct a mutagenic event in plants and animal cells. Although little information is available on plant mutations amongst natural cultivars, the oligonucleotides of the invention can be used to produce “knock out” mutations by modification of specific amino acid codons to produce stop codons (e.g., a CAA codon specifying Gln can be modified at a specific site to TAA; a AAG codon specifying Lys can be modified to UAG at a specific site; and a CGA codon for Arg can be modified to a UGA codon at a specific site). Such base pair changes will terminate the reading frame and produce a defective truncated protein, shortened at the site of the stop codon.
[0104] Alternatively, frameshift additions or deletions can be directed into the genome at a specific sequence to interrupt the reading frame and produce a garbled downstream protein. Such stop or frameshift mutations can be introduced to determine the effect of knocking out the protein in either plant or animal cells.
[0105] For introduction of a T-DNA, including the T-DNA in the plasmid of
[0106]
[0107] All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
[0108] Notes on the Tables Presented Below:
[0109] Each of the following tables presents, for the specified gene, a plurality of mutations that are known to confer a relevant phenotype and, for each mutation, the oligonucleotides that can be used to correct the respective mutation site-specifically in the genome according to the present invention.
[0110] The left-most column identifies each alteration or mutation and the phenotype that the alteration/mutation confers.
[0111] For most entries, the mutation/alteration is identified at both the nucleic acid and protein level. At the amino acid level, mutations are presented according to the following standard nomenclature. The centered number identifies the position of the mutated codon in the protein sequence; to the left of the number is the wild type residue and to the right of the number is the mutant codon. Terminator codons are shown as “TERM”. At the nucleic acid level, the entire triplet of the wild type and mutated codons is shown.
[0112] The middle column presents, for each mutation, four oligonucleotides capable of repairing the mutation site-specifically in the genome or in cloned DNA including DNA in artificial chromosomes, episomes, plasmids, or other types of vectors. The oligonucleotides of the invention, however, may include any of the oligonucleotides sharing portions of the sequence of the 121 base sequence. Thus, oligonucleotides of the invention for each of the depicted targets may be 18, 19, 20 up to about 121 nucleotides in length. Sequence may be added non-symmetrically.
[0113] All oligonucleotides are presented, per convention, in the 5′ to 3′ orientation. The nucleotide that effects the change in the genome is underlined and presented in bold.
[0114] The first of the four oligonucleotides for each mutation is a 121 nt oligonucleotide centered about the repair/altering nucleotide. The second oligonucleotide, its reverse complement, targets the opposite strand of the DNA duplex for repair/alteration. The third oligonucleotide is the minimal 17 nt domain of the first oligonucleotide, also centered about the repair/alteration nucleotide. The fourth oligonucleotide is the reverse complement of the third, and thus represents the minimal 17 nt domain of the second.
[0115] The third column of each table presents the SEQ ID NO: of the respective repair oligonucleotide.
[0116] Chemical weed control is an important tool of modern agriculture and many herbicides have been developed for this purpose. Their use has resulted in substantial increases in the yields of many crops, including, for example, maize, soybeans, and cotton. Thus while the use of fertilizers and new high-yielding crop varieties have contributed greatly to the “green revolution,” chemical weed control has also been at the forefront of technological achievement.
[0117] Herbicides having broad-spectrum activity are particularly useful because they obviate the need for multiple herbicides targeting different classes of weeds. The problem with such herbicides is that they typically also affect crops which are exposed to the herbicide. One way to overcome this is to generate plants which are resistant to one or more broad-spectrum herbicides. Such herbicide-tolerant plants may reduce the need for tillage to control weeds, thereby effectively reducing soil erosion and can reduce the quantity and number of different herbicides applied in the field.
[0118] Common herbicides used, for example, include those that inhibit the enzyme 5-enolpyruvyl-3-phosphoshikimic acid synthase (EPSPS), for example N-phosphonomethyl-glycine (e.g. glyphosate), those that inhibit acetolactate synthase (ALS) activity, for example the sulfonylureas and related herbicides, and those that inhibit dihydropteroate synthase, for example methyl[(4-amino-phenyl)sulfonyl]carbamate (e.g. Asulam). Herbicide-tolerant plants can be produced by several methods, including, for example, introducing into the genome of the plant the ability to degrade the herbicide, the capacity to produce a higher level of the targeted enzyme, and/or expressing an herbicide-tolerant allele of the enzyme.
[0119] The attached tables disclose exemplary oligonucleotides base sequences which can be used to generate site-specific mutations in plant genes that confer herbicide resistance.
TABLE 10 Genome-Altering Oligos Conferring Glyphosate Resistance Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: Glyphosate Resistance AAGCGTCGGAGATTGTACTTCAACCCATTTAGAGAAATCTCCGGTC 1 EPSPS TTATTAAGCTTCCTGCCTCCAAGTCTCTATCAAATCGGATCCTGC TTCTCGCTGCTCTGTCTGAGGTATATATCAC Gly97Ala GTGATATATACCTCAGACAGAGCAGCGAGAAGCAGGATCCGATT 2 GGC-GCC TGATAGAGACTTGGAGGCAGGAAGCTTAATAAGACCGGAGATTT CTCTAATGGGTTGAAGTACAATCTCCGACGCTT GCTTCCTG 3 ACTTGGAG 4 Glyphosate Resistance AAGCTTCAGAGATTGTGCTTCAACCAATCAGAGAAATCTCGGGTC 5 EPSPS TCATTAAGCTACCCGCATCCAAATCTCTCTCCAATCGGATCCTCC TTCTTGCCGCTCTATCTGAGGTACATATACT Gly93AIa AGTATATGTACCTCAGATAGAGCGGCAAGAAGGAGGATCCGATT 6 GGA-GCA GGAGAGAGATTTGGATGCGGGTAGCTTAATGAGACCCGAGATTT CTCTGATTGGTTGAAGCACAATCTCTGAAGCTT GCTACCCG 7 ATTIGGAT 8 Glyphosate Resistance AGCCCAACGAGATTGTGCTGCAACCCATCAAAGATATATCAGGC 9 EPSPS 1 ACTGTTAAATTGCCTGCTTCTAAATCCCTTTCCAATCGTATTCTCC TTCTTGCTGCCCTTTCTAAGGGAAGGACTGT Gly95Ala ACAGTCCTTCCCTTAGAAAGGGCAGCAAGAAGGAGAATACGATT 10 GGT-GCT GGAAAGGGATTTAGAA TTTGATGGGTTGCAGCACAATCTCGTIGGGCT ATTGCCTG 11 ATTTAGAA 12 Glyphosate Resistance ATTGTTTCCTTGGTACGAAATGTCCTCCTGTTCGAATTGTCAGCA 13 EPSPS 2 AGGGAGGCCTTCCCGCAGGGAAGGTAAAGCTCTCTGGATCAATT AGCAGCCAGTACTTGACTGCTCTGCTTATGGC Gly62Ala GCCATAAGCAGAGCAGTCAAGTACTGGCTGCTAATTGATCCAGA 14 GGA-GCA GAGCTTTACCTTCCCT GAACAGGAGGACATTTCGTACCAAGGAAACAAT CCTTCCCG 15 CCTTCCCG 16 Glyphosate Resistance ATTGTTTCCTTGGCACTGACTGGCCACCTGTTCGTGTCAATGGAA 17 EPSPS TCGGAGGGCTACCTG AGCAGTCAGTACTTGAGTGCCTTGCTGATGGC Gly168Ala GCCATCAGCAAGGCACTCAAGTACTGACTGCTGATGGAGCCAGA 18 GGT-GCT CAGCTTGACCTTGCCA GAACAGGTGGGCAGTCAGTGCCAAGGAAACAAT GCTACCTG 19 CCTTGCCA 20 Glyphosate Resistance ACTGTTTCCTTGGCACTGAATGCCCACCTGTTCGTGTCAAGGGA 21 EPSPS ATTGGAGGACTTCCTG CAGCAGTCAGTACTTGAGTGCCTTGCTGATGGC Gly115Ala GCCATCAGCAAGGCACTCAAGTACTGACTGCTGATGGAACCAGA 22 GGT-GCT GAGCTTAACCTTGCCAGCAGGAAGTCCTCCAATTCCCTTGACAC GAACAGGTGGGCATTCAGTGCCAAGGAAACAGT ACTTCCTG 23 CCTTGCCA 24 Glyphosate Resistance AGCCTTCTGAGATAGTGTTGCAACCCATTAAAGAGATTTCAGGCA 25 EPSPS CTGTTAAATTGCCTGCCTCTAAATCATTATCTAATAGAATTCTCCT TCTTGCTGCCTTATCTGAAGGMCAACTGT Gly93Ala ACAGTTGTTCCTTCAGATAAGGCAGCAAGAAGGAGAATTCTATTA 26 GGC-GCC GATAATGATTTAGAGGCAGGCAATTTAACAGTGCCTGAAATCTCT TTAATGGGTTGCAACACTATCTCAGAAGGCT ATTGCCTG 27 ATTTAGAG 28 Glyphosate Resistance AACCCCATGAGATTGTGCTAGNACCCATCAAAGATATATCTGGTA 29 EPSPS CTGTTAAATTACCCG TCTTGCTGCCCTTTCTGAGGGAAGGACTGT ACAGTCCTTCCCTCAGAAAGGGCAGCAAGAAGGAGAATACGATT 30 Gly97Ala GGAAAGGGATTTCGAA GGT-GCT TTTGATGGGTNCTAGCACAATCTGATGGGGTT ATTACCCG 31 ATTTCGAA 32 Glyphosate Resistance ATTGTTTCCTTGGCACTGACTGCCCACCTGTTCGKATCAACGGGA 33 EPSPS TTGGAGGGCTACCTGCTGGCAAGGTTAAGCTGTCTGGTTCCAIT AGCAGCCAATACTTGAGTTCCTTGCTGATGGC Gly107Ala GCCATCAGCAAGGAACTCAAGTATTGGCTGCTGATGGAACCAGA 34 GGT-GCT CAGCTTAACCTTGCCA AACAGGTGGGCAGTCAGTGCCAAGGAAACAAT GCTACCTG 35 CCTTGCCA 36
[0120]
TABLE 11 Genome-Altering Oligos Conferring Imidazolinone and Sulfonylurea Herbicide Resistance Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: Sulfonylurea AGCGGATTAGCCGATGCGTTGTTAGATAGTGTTCCTCTTGTAGCA 37 Resistance ATCACAGGACAAGTC ALS CAAGAGACTCCGATTGTTGAGGTAACGCGTT Arabidopsis thaliana AACGCGTTACCTCAACAATCGGAGTCTCTTGAAACGCATCTGTAC 38 Pro197Ser CAATCATACGACGAG CCT-TCT CACTATCTAACAACGCATCGGCTAATCCGCT GACAAGTCTC 39 ACGACGAG 40 Sulfonylurea AGCGGATTAGCCGATGCGTTGTTAGATAGTGTTCCTCTTGTAGCA 41 Resistance ATCACAGGACAAGTCC ALS CAAGAGACTCCGATTGTTGAGGTAACGCGTT AACGCGTTACCTCAACAATCGGAGTCTCTTGAAACGCATCTGTAC 42 Pro197GLN CAATCATACGACG CCT-CAG CACTATCTAACAACGCATCGGCTAATCCGCT ACAAGTCC 43 TACGACG 44 Sulfonylurea AGCGGATTAGCCGATGCGTTGTTAGATAGTGTTCCTCTTGTAGCA 45 Resistance ATCACAGGACAAGTCC ALS CAAGAGACTCCGATTGTTGAGGTAACGCGTT AACGCGTTACCTCAACAATCGGAGTCTCTTGAAACGCATCTGTAC 46 Pro197GLN CAATCATACGACG CCT-CAA CACTATCTAACAACGCATCGGCTAATCCGCT ACAAGTCC 47 TACGACG 48 Imidazolinone GACCTTACCTGTTGGATGTGATTTGTCCGCACCAAGAACATGTGT 49 Resistance TGCCGATGATCCCGA ALS AAGGAGATGGCCGGATTAAATACTGAGAGAT ATCTCTCAGTATTTAATCCGGCCATCTCCTTCCGTTATGACATCGT 50 Ser653Asn TGAAAGTGCCACC AGT-AAC GCGGACAAATCACATCCAACAGGTAAGGTC GATCCCGA 51 TGCCACC 52 Imidazolinone GACCTTACCTGTTGGATGTGATTTGTCCGCACCAAGAACATGTGT 53 Resistance TGCCGATGATCCCGA ALS AAGGAGATGGCCGGATTAAATACTGAGAGAT ATCTCTCAGTATTTAATCCGGCCATCTCCTTCCGTTATGACATCGT 54 Ser653Asn TGAAAGTGCCACC AGT-AAT GCGGACAAATCACATCCAACAGGTAAGGTC GATCCCGA 55 TGCCACC 56 Sulfonylurea TCCGCGCTCGCCGACGCGCTGCTCGACTCCGTCCCGATGGTCGC 57 Resistance CATCACGGGCCAGGTC ALS TCCAGGAGACGCCCATAGTCGAGGTCACCCGCT AGCGGGTGACCTCGACTATGGGCGTCTCCTGGAAGGCGTCGGTG 58 Pro171Ser CCGATCATGCGGCGGG CCC-TCC GGACGGAGTCGAGCAGCGCGTCGGCGAGCGCGGA GCCAGGTC 59 GCGGCGGG 60 Sulfonylurea CCGCGCTCGCCGACGCGCTGCTCGACTCCGTCCCGATGGTCGCC 61 Resistance ATCACGGGCCAGGTCC ALS CCAGGAGACGCCCATAGTCGAGGTCACCCGCTC GAGCGGGTGACCTCGACTATGGGCGTCTCCTGGAAGGCGTCGGT 62 Pro171Gln GCCGATCATGCGGCG CCC-CAA GGACGGAGTCGAGCAGCGCGTCGGCGAGCGCGG CCAGGTCC 63 TGCGGCG 64 Sulfonylurea CCGCGCTCGCCGACGCGCTGCTCGACTCCGTCCCGATGGTCGCC 65 Resistance ATCACGGGCCAGGTCC ALS CCAGGAGACGCCCATAGTCGAGGTCACCCGCTC GAGCGGGTGACCTCGACTATGGGCGTCTCCTGGAAGGCGTCGGT 66 Pro171Gln GCCGATCATGCGGCG CCC-CAG GGACGGAGTCGAGCAGCGCGTCGGCGAGCGCGG CCAGGTCC 67 TGCGGCG 68 Imidazolinone GGCCATACTTGTTGGATATCATCGTCCCGCACCAGGAGCATGTGC 69 Resistance TGCCTATGATCCCAA ALS ATGGTGATGGCAGGACTGTGTATTAATCTAT ATAGATTAATACACAGTCCTGCGATCACCATCCAGGATCATGTCCT 70 Ilee627Asn TGAATGCGCCCCCA ATT-AAT GCGGGACGATGATATCCAACAAGTATGGCC GATCCCAA 71 CGCCCCCA 72 Sulfonylurea TCCGCGCTCGCCGACGCGCTGCTCGATTCCGTCCCCATGGTCGC 73 Resistance CATCACGGGACAGGTG ALS TCCAGGAGACGCCCATCGTCGAGGTCACCCGCT AGCGGGTGACCTCGACGATGGGCGTCTCCTGGAAGGCGTCGGT 74 Pro165Ser GCCAATCATGCGTCGCG CCG-TCG GGACGGAATCGAGCAGCGCGTCGGCGAGCGCGGA GACAGGTG 75 GCGTCGCG 76 Sulfonylurea CCGCGCTCGCCGACGCGCTGCTCGATTCCGTCCCCATGGTCGCC 77 Resistance ATCACGGGACAGGTGC ALS CCAGGAGACGCCCATCGTCGAGGTCACCCGCTC GAGCGGGTGACCTCGACGATGGGCGTCTCCTGGAAGGCGTCGG 78 Pro165Gln TGCCAATCATGCGTCGC CCG-CAG GGGACGGAATCGAGCAGCGCGTCGGCGAGCGCGG ACAGGTGC 79 TGCGTCGC 80 Imidazolinone GGCCGTACCTCTTGGATATAATCGTCCCACACCAGGAGCATGTGT 81 Resistance TGCCTATGATCCCTA ALS ATGGTGATGGCAGGACTGTGTACTGATCTAA TTAGATCAGTACACAGTCCTGCCATCACCATCCAGGATCATATCCT 82 Ser621Asn TGAAAGCCCCACC AGT-AAT GTGGGACGATTATATCCAAGAGGTACGGCC GATCCCTA 83 CCCCACC 84 Imidazolinone GGCCGTACCTCTTGGATATAATCGTCCCACACCAGGAGCATGTGT 85 Resistance TGCCTATGATCCCTA ALS ATGGTGATGGCAGGACTGTGTACTGATCTAA TTAGATCAGTACACAGTCCTGCCATCACCATCCAGGATCATATCCT 86 Ser621Asn TGAAAGCCCCACC AGT-AAC GTGGGACGATTATATCCAAGAGGTACGGCC GATCCCTA 87 CCCCACC 88 Sulfonylurea TCCGCGCTCGCCGACGCCGTCCTCGACTCCATCCCCATGGTGGC 89 Resistance CATCACGGGGCAGGTC ALS TCCAGGAGACGCCCATCGTCGAGGTCACCCGCT AGCGGGTGACCTCGACGATGGGCGTCTCCTGGAAGGCGTCCGTG 90 Pro167Ser CCGATCATGCGGCGCG CCG-TCC GGATGGAGTVGAGGAGGGCCTCGGCGACCCCCCA GGCAGGTC 91 GCGGCGCG 92 Sulfonylurea CCGCGCTCGCCGACGCCCTCCTCGACTCCATCCCCATGGTGGCC 93 Resistance ATCACGGGGCAGGTCC ALS CCAGGAGACGCCCATCGTCGAGGTCACCCGCTC GAGCGGGTGACCTCGACGATGGGCGTCTCCTGGAAGGCGTCCGT 94 Pro167Gln GCCGATCATGCGGCGC CCG-CAG GGATGGAGTCGAGGAGGGCGTCGGCGAGCGCGG GCAGGTCC 95 TGCGGCGC 96 Imidazolinone CTGGGCCATACTTGTTGGATATCATCGTCCCTCACCAGGAGCATG 97 Resistance TGCTGCCTATGATCCCTA ALS TGGAAGGTGATGGCAGGATTTCGTATTAAAC GTTTAATACGAAATCCTGCCATCACCTTCCATGATAATGTCGTTGA 98 Ser623Asn AAGCACCACCG AGC-AAC GGGACGATGATATCCAACAAGTATGGCCCAG GATCCCTA 99 CACCACCG 100 Sulfonylurea TCCGCGCTCGCCGACGGTCTCCTCGACTCCATCGCCATGGTCGC 101 Resistance CATCACGGGCCAGGTC ALS TCCAGGAGACGCCCATAGTGGAGGTCACGCGCT AGCGCGTGACCTCCACTATGGGCGTCTCCTGGAACGCGTCCGTG 102 Pro68Ser CGGATCATGCGGCGTG CCA-TCA GGATGGAGTCGAGGAGAGCGTCGGCGAGCGCGGA GCCAGGTC 103 GCGGCGTG 104 Sulfonyurea CCGCGCTCGCCGACGCTCTCCTCGACTCCATCCCCATGGTCGCC 105 Resistance ATCACGGGCCAGGTCC ALS CCAGGAGACGCCCATAGTGGAGGTCACGCGCTC GAGCGCGTGACCTCCACTATGGGCGTCTCCTGGAACGCGTCCGT 106 Pro68Gln GCCGATCATGCGGCGT CCA-CAA GGATGGAGTCGAGGAGAGCGTCGGCGAGCGCGG CCAGGTCC 107 TGCGGCGT 108 Imidazolinone CCCAGGGCCGTACCTGCTGGATATCATTGTCCCGCATCAGGAGC 109 Resistance ACGTGCTGCCTATGATCCCAA ALS TCATGGAGGGTGATGGCAGGACCTCGTACTGA TCAGTACGAGGTCCTGCCATTCACCCTCCATGATCATGTCCTTGAA 110 Ser524Asn AGCACCACCG AGC-AAC GGACAATGATATCCAGCAGGTACGGCCCTGGG GATCCCAA 111 CACCACCG 112 Sulfonylurea AGTGGTCTCGCTGATGCAATGCTCGATAGTATCCCTCTCGTGGCG 113 Resistance ATCACTGGTCAAGTC ALS CAGGAAACTCCAATTGTTGAGGTAACAAGGT ACCTTGTTACCTCAACAATTGGAGTTTCCTGGAAAGCATCGGTAC 114 Pro186Ser CGATCATCCGACGAG CCT-TCT ATACTATCGAGCATTGCATCAGCGAGACCACT GTCAAGTC 115 CCGACGAG 116 Sulfonylurea GTGGTCTCGCTGATGCAATGGTCGATAGTATCCCTCTCGTGGCGA 117 Resistance TCACTGGTCAAGTCC ALS AGGAAACTCCAATTGTTGAGGTAACAAGGTC GACCTTGTTACCTCAACAATTGGAGTTICCTGGAAAGCATCGGTA 118 Pro186Gln CCGATCATCCGACG CCT-CAA GATACTATCGAGCATTGCATCAGCGAGACCAC TCAAGTCC 119 TCCGACG 120 Sulfonylurea GTGGTCTCGCTGATGCAATGCTCGATAGTATCCCTCTCGTGGCGA 121 Resistance TCACIGGTCAAGTCC ALS AGGAAACTCCAATTGTTGAGGTAACAAGGTC GACCTTGTTACCTCAACAATTGGAGTTTCCTGGAAAGCATCGGTA 122 Pro186Gln CCGATCATCCGACG CCT-CAG GATACTATCGAGCATTGCATCAGCGAGACCAC TCAAGTCC 123 TCCGACG 124 Imidazolinone GACCTTACTTGTTGGATGTGATTGTCCCACATCAAGAACATGTCCT 125 Resistance GCCTATGATCCCCA ALS GGGTGATGGAAGAACACAATATTGACCTCA TGAGGTCAATATTGTGTTCTTCCATCACCCTCTGTGATCACATCTT 126 Ser642Asn TGAAAGCGCCTCCA AGT-AAT GTGGGACAATCACATCCAACAAGTAAGGTC GATCCCCA 127 CGCCTCCA 128 Sulfonylurea TCTGGTCTTGCTGATGCACTTCTTGACTCAGTCCCTCTTGTCGCCA 129 Resistance TTACTGGGCAAGTT ALS AGAGACTCCAATTGTTGAGGTAACTCGAT ATCGAGTTACCTCAACAATTGGAGTCTCTTGAAAAGCATCAGTACC 130 AATCATACGCCGGG Pro192Ser CTGAGTCAAGAAGTGCATCAGCAAGACCAGA CCC-TCC GGCAAGTT 131 ACGCCGGG 132 Sulfonylurea CTGGTCTTGCTGATGCACTTCTTGACTCAGTCCCTCTTGTCGCCAT 133 Resistance TACTGGGCAAGTTC ALS AGAGACTCCAATTGTTGAGGTAACTCGATC GATCGAGTTACCTCAACAATTGGAGTCTCTTGAAAAGCATCAGTAC 134 CAATCATACGCCG Pro192Gln CTGAGTCAAGAAGTGCATCAGCAAGACCAG CCC-CAA GCAAGTTC 135 TACGCCG 136 Sulfonylurea CTGGTCTTGCTGATGCACTTCTTGACTCAGTCCCTCTTGTCGCCAT 137 Resistance TACTGGGCAAGtTC ALS AGAGACTCCAATTGTTGAGGTAACTCGATC GATCGAGTTACCTCAACAATTGGAGTCTCTTGAAAAGCATCAGTAC 138 CAATCATACGCCG Pro192Gln ACTGAGTCAAGAAGTGCATCAGCAAGACCAG CCC-CAG GCAAGTTC 139 TACGCCG 140 Imidazolinone GACCGTATCTTGCTGGATGTTAATCGTACCACATCAGGAGCATGTGC 141 Resistance TGCCTAIGATCCCTA ALS AGGGTGATGGAAGAAGGGGTTATTAGTTGGT ACCAACTAATAAGCCCTTCTTCCATTCACCCTCTGTTATGGTGTCCT 142 TGAAGGCGGCACCG Ser652Asn TGTGGTACGATTACATCCAGCAGATACGGTC AGC-AAC GATCCCTA 143 CGGCACCG 144 Sulfonylurea AGCGGCCTCGCTGACGCGCTACTGGATAGCGTCCCCATTGTTGC 145 Resistance TATAACAGGTCAAGTG ALS 1 CAGGAAACTCCTATTGTITGAGGTAACTAGAT ATCTAGTTACCTCAACAATAGGAGTTTCCTGAAAAGCATCAGTACC 146 Pro194Ser TATCATCCTACGTG CCA-TCA GCTATCCAGTAGCGCGTCAGCGAGGCCGCT GTCAAGTG 147 CCTACGTG 148 Sulfonylurea GCGGCCTCGCTGACGCGCTACTGGATAGCGTCCCCATTGTTGCT 149 Resistance ATAACAGGTCAAGTGC ALS 1 CAGGAAACTCCTATTGTTGAGGTAACTAGATC GATCTAGTTACCTCAACAATAGGAGTTTCCTGAAAAGCATCAGTAC 150 Pro194Gln CTATCATCCTACGT CCA-CAA CGCTATCCAGTAGCGCGTCAGCGAGGCCGC TCAAGTGC 151 TCCTACGT 152 Imidazolinone GGCCATACTTGTTGGATGTGATTGTACCTCATCAGGAACATGTTTT 153 Resistance ACCTATGATTCCCA ALS 1 GGGTGACGGGAGAAGTTCCTATTGAGTTTG CAAACTGAATAGGAACTTCTCCCGTCACCCTCTGTGATCACATCTT 154 Ser650Asn TGAAAGCTCCGCCA AGT-AAT GAGGTACAATCACATCCAACAAGTATGGCC GATTCCCA 155 CTCCGCCA 156 Sulfonylurea AGTGGCCTCGCGGACGCCCTACTGGATAGCGTCCCCATTGTTGC 157 Resistance TATAACCGGTCAAGTG ALS 2 TCAGGAAACTCCGATTGTTGAGGTAACTAGAT ATCTAGTTACCTCAACAATCGGAGTTTCCTGAAAAGCATCAGTACC 158 Pro191Ser GATCATCCTACGTG CCA-TCA GCTATCCAGTAGGGCGTCCGCGAGGCCACT GICAAGTG 159 CCTACGTG 160 Sulfonylurea GTGGCCTCGCGGACGCCCTACTGGATAGCGTCCCCATTGTTGCT 161 Resistance ATAACCGGTCAAGTGC ALS 2 CAGGAAACTCCGATTGTTGAGGTAACTAGATC GATCTAGTTACCTCAACAATCGGAGTTTCCTGAAAAGCATCAGTAC 162 Pro191Gln CGATCATCCTACGT CCA-CAA CGCTATCCAGTAGGGCGTCCGCGAGGCCAC TCAAGTGC 163 TCCTACGT 164 Imidazolinone GGCCATACTTGTTGGATGTGATTGTACCTCATCAGGAACATGTTCT 165 Resistance ACCTATGATTCCCA ALS 2 GGGTGACGGGAGAAGTTCCTATTGACTTTG CAAAGTCAATAGGAACTTCTCCCGTCACCCTCTGTGATCACATCTT 166 Ser647Asn TGAAAGCCCCGCCA AGT-AAT GAGGTACAATCACATCCAACAAGTATGGCC GATTCCCA 167 CCCCGCCA 168 Sulfonylurea AGTGGTCTTGCTGATGCTTTATTAGACAGTGTTCCAATGGTTGCTA 169 Resistance TTACTGGTCAAGTT ALS AAGAAACCCCTATTGTTGAGGTAACACGTT Xanthium spp. AACGTGTTACCTCAACAATAGGGGTTTCTTGAAACGCATCTGTTCC 170 Pro175Ser AATCATTCTCCTGG CCC-TCC CTGTCTAATAAAGCATCAGCAAGACCACT GTCAAGTT 171 TCTCCTGG 172 Sulfonylurea GTGGTCTTGCTGATGCTTTATTAGACAGTGTTCCAATGGTTGCTAT 173 Resistance TACTGGTCAAGTTC ALS AGAAACCCCTATTGTTGAGGTAACACGTTC Xanthium spp. GAACGTGTTACCTCAACAATAGGGGTTTCTTGAAACGCATCTGTTC 174 Pro175Gln CAATCATTCTCCT CCC-CAA ACTGTCTAATAAAGCATCAGCAAGACCAC TCAAGTTC 175 TTCTCCT 176 Sulfonylurea GTGGTCTTGCTGATGCTTTATTAGACAGTGTTCCAATGGTTGCTAT 177 Resistance TACTGGTCAAGTTC ALS AGAAACCCCTATTGTTGAGGTAACACGTTC Xanthium spp. GAACGTGTTACCTCAACAATAGGGGTTTCTTGAAACGCATCTGTTC 178 Pro175Gln CAATCATTCTCCT CCC-CAG ACTGTCTAATAAAGCATCAGCAAGACCAC TCAAGTTC 179 TTCTCCT 180 Imidazolinone GGGCCTTACTTGTTGGATGTGATCGTGCCCCATCAAGAACATGTG 181 Resistance TTGCCCATGATCCCG ALS GAAGGCGACGGCAGAATGAAATATTGAGCTT Xanthium spp. AAGCTCAATATTTCATTCTGCCGTCGCCTTCGGTGATCACATCCAT 182 Ala631Asn GAAACCTCCACCA GCT-AAT GGGCACGATCACATCCAACAAGTAAGGCCC TGATCCCG 183 TCCACCA 184 Sulfonylurea TCCGGGTTTGCTGATGCTTTGCTCGATTCCGTTCCACTGGTGGCG 185 Resistance ATCACGGGGCAGGTG ALS TCAGGAGACTCCTATTGTTGAGGTAACACGGT ACCGTGTTACCTCAACAATAGGAGTCTCCTGAAAAGCATCCGTCC 186 Pro189Ser CAATCATTCGCCGCG CCG-TCG ACGGAATCGAGCAAAGCATCAGCAAACCCGGA GGCAGGTG 187 TCGCCGCG 188 Sulfonylurea CCGGGTTTGGTGATGCTTTGCTCGATTCCGTTCCACTGGTGGCGA 189 Resistance TCACGGGGCAGGTGC ALS CAGGAGACTCCTATTGTTGAGGTAACACGGTC GACCGTGTTACCTCAACAATAGGAGTCTCCTGAAAAGCATCCGTC 190 Pro189Gln CCAATCATTCGCCGC CCG-CAG AACGGAATCGAGCAAAGCATCAGCAAACCCGG GCAGGTGC 191 TTCGCCGC 192 Imidazolinone GACCTTACCTGCTTGATGTGATTGTACCTCATCAGGAGCATGTGC 193 Resistance TGCCTATGATTCCTA ALS AGGTGATGGAAGAACAAGTTATTGATGTTC GAACATCAATAACTTGTTCTTCCATCACCTTCGTTAATGATATCCTT 194 Ser649Asn GAAGGCTGCACCA AGT-AAT AGGTACAATCACATCAAGCAGGTAAGGTC GATTCGTA 195 CTGCACCA 196 Sulfonylurea AGCGGGTTAGCAGACGCGATGCTTGACAGTGTTCCTCTTGTCGCC 197 Resistance ATTACAGGACAGGTC ALS 1 CAAGAGACACCAATCGTTGAGGTAACGAGGT ACCTCGTTACCTCAACGATTGGTGTCTCTTGGAAGGCGTCAGTAC 198 Pro182Ser CGATCATCCGGCGAG CCT-TCT ACACTGTCAAGCATCGCGTCTGCTAACCCGCT GACAGGTC 199 CCGGCGAG 200 Sulfonylurea GCGGGTTAGCAGACGCGATGCTTGACAGTGTTCCTCTTGTCGCCA 201 Resistance TTACAGGACAGGTCC ALS 1 CAAGAGACACCAATCGTTGAGGTAACGAGGTC GACCTCGTTACCTCAACGATTGGTGTCTCTTGGAAGGCGTCAGTA 202 Pro182Gln CCGATCATCCGGCG CCT-CAA AACACTGTCAAGCATCGCGTCTGCTAACCCGC ACAGGTCC 203 TCCGGCG 204 Sulfonylurea GCGGGTTAGCAGACGCGATGCTTGACAGTGTTCCTCTTGTCGCCA 205 Resistance TTACAGGACAGGTCC ALS 1 CAAGAGACACCAATCGTTGAGGTAACGAGGTC GACCTCGTTACCTCAACGATTGGTGTCTCTTGGAAGGCGTCAGTA 206 Pro182Gln CCGATCATCCGGCG CCT-CAG AACACTGTCAAGCATCGCGTCTGCTAACCCGC ACAGGTCC 207 TCCGGCG 208 Imidazolinone GACCATACCTGTTGGATGTGATATGTCCGCACCAAGAACATGTGT 209 Resistance TACCGATGATCCCAA ALS 1 AAGGGGATGGTCGCACTAAGTACTGAGAGAT ATCTCTCAGTACTTAGTGCGACCATCCCCTTCTGTTATTACATCTTT 210 Ser638Asn GAAAGTGCCACCA AGT-AAT CGGACATATCACATCCAACAGGTATGGTC GATCCCAA 211 TGCCACCA 212 Sulfonylurea CAGCGGGTTAGCAGACGCGATGCTTGACAGTGTTCCTCTTGTCGC 213 Resistance CATTACAGGACAGGT ALS 2 CCAAGAGACACCAATCGTTGAGGTAACGAGG CCTCGTTACCTCAACGATTGGTGTCTCTTGGAAGGCGTCAGTACC 214 Pro126Ser GATCATCCGGCGAGG CCC-TCC CACTGTCAAGCATCGCGTCTGCTAACCCGCTG GGACAGGT 215 CGGCGAGG 216 Sulfonylurea AGCGGGTTAGCAGACGCGATGCTTGACAGTGTTCCTCTTGTCGCC 217 Resistance ATTACAGGACAGGTC ALS 2 CAAGAGACACCAATCGTTGAGGTAACGAGGT ACCTCGTTACCTCAACGATTGGTGTCTCTTGGAAGGCGTCAGTAC 218 Pro126Gln CGATCATCCGGCGAG CCC-CAG ACACTGTCAAGCATCGCGTCTGCTAACCCGCT GACAGGTC 219 CCGGCGAG 220 Imidazolinone GACCATACCTGTTGGATGTGATATGTCCGCACCAAGAACATGTGT 221 Resistance TACCGATGATCCCAA ALS 2 AAGGGGATGGTCGCACTAAGTACTGAGAGAT ATCTCTCAGTACTTAGTGCGACCATCCCCTTCTGTTATTACATCTTT 222 Ser582Asn GAAAGTGCCACCA AGT-AAT CGGACATATCACATCCAACAGGTATGGTC GATCCCAA 223 TGCCACCA 224 Sulfonylurea AGCGGGTTAGCCGACGCGATGCTTGACAGTGTTCCTCTCGTCGC 225 Resistance CATCACAGGACAGGTC ALS 3 TCCAAGAGACGCCAATCGTTGAGGTAACGAGGT ACCTCGTTACCTCAACGATTGGCGTCTCTTGGAACGCGTCAGTAC 226 Pro179Ser CGATCATCCGGCGAG CCT-TCT ACACTGTCAAGCATCGCGTCGGCTAACCCGCT GACAGGTC 227 CCGGCGAG 228 Sulfonylurea GCGGGTTAGCCGACGCGATGCTTGACAGTGTTCCTCTCGTCGCC 229 Resistance ATCACAGGACAGGTCC ALS 3 CCAAGAGACGCCAATCGTTGAGGTAACGAGGTC GACCTCGTTACCTCAACGATTGGCGTCTCTTGGAACGCGTCAGTA 230 Pro179Gln CCGATCATCCGGCG CCT-CAA AACACTGTCAAGCATCGCGTCGGCTAACCCGC ACAGGTCC 231 TCCGGCG 232 Sulfonylurea GCGGGTTAGCCGACGCGATGCTTGACAGTGTTCCTCTCGTCGCC 233 Resistance ATCACAGGACAGGTCC ALS 3 CCAAGAGACGCCAATCGTTGAGGTAACGAGGTC GACCTCGTTACCTCAACGATTGGCGTCTCTTGGAACGCGTCAGTA 234 Pro179Gln CCGATCATCCGGCG CCT-CAG AACACTGTCAAGCATCGCGTCGGCTAACCCGC ACAGGTCC 235 TCCGGCG 236 Imidazolinone GACCGTACCTGTTGGATGTCATCTGTCCGCACCAAGAACATGTGT 237 Resistance TACOGATGATCCCAA ALS 3 AAGGGGATGGTCGCACTAAGTACTGAGAGAT ATCTCTCAGTACTTAGTGCGACCATCCCCTTCGGTTATTACATCTT 238 Ser635Asn TGAAAGTGCCACCA AGT-AAT GCGGACAGATGACATCCAACAGGTACGGTC GATCCCAA 239 TGCCACCA 240 Sultonylurea TCCGCGCTCGCCGACGCGCTGCTCGACTCCGTCCCGATGGTCGC 241 Resistance CATCACGGGCCAGGTC ALS TCCAGGAGACGCCCATAGTCGAGGTCACCCGCT AGCGGGTGACCTCGACTATGGGCGTCTCCTGGAAGGCGTCGGTG 242 Prol7l Ser CCGATCATGCGGCGGG CCC-TCC GGACGGAGTCGAGCAGCGCGTCGGCGAGCGCGGA GCCAGGTC 243 GCGGCGGG 244 Sulfonylurea CCGCGCTCGCCGACGCGCTGCTCGACTCCGTCCCGATGGTCGCC 245 Resistance ATCACGGGCCAGGTCC ALS CCAGGAGACGCCCATAGTCGAGGTCACCCGCTC GAGCGGGTGACCTCGACTATGGGCGTCTCCTGGAAGGCGTCGGT 246 Pro171Gln GCCGATCATGCGGCG CCC-CAA GGACGGAGTCGAGCAGCGCGTCGGCGAGCGCGG CCAGGTCC 247 TGCGGCG 248 Sulfonylurea CCGCGCTCGCCGACGCGCTGCTCGACTCCGTCCCGATGGTCGCC 249 Resistance ATCACGGGCCAGGTCC ALS CCAGGAGACGCCCATAGTCGAGGTCACCCGCTC GAGCGGGTGACCTCGACTATGGGCGTCTCCTGGAAGGCGTCGGT 250 Pro171Gln GCCGATCATGCGGCG CCC-CAG GGACGGAGTCGAGCAGCGCGTCGGCGAGCGCGG CCAGGTCC 251 TGCGGCG 252 Imidazolinone GGCCATACTTGTTGGATATCATCGTCCCGCACCAGGAGCATGTGC 253 Resistance TGCCTATGATCCCAA ALS ATGGTGATGGCAGGACTGTGTATTAATCTAT ATAGATTAATACACAGTCCTGCCATCACCATCCAGGATCATGTCCT 254 Ser627Asn TGAATGCGCCCCCA AGT-AAT GCGGGACGATGATATCCAACAAGTATGGCC GATCCCAA 255 CGCCCCGA 256 Sulfonylurea TCTGCGCTCGCAGACGCGTTGCTCGACTCCGTCCCCATGGTCGC 257 Resistance CATCACGGGACAGGTG ALS TTCAGGAGACGCCCATCGTCGAGGTCACCCGCT AGCGGGTGACCTCGACGATGGGCGTCTCCTGAAAGGCGTCGGTG 258 Pro165Ser CCAATCATGCGTCGCG CCG-TCG GACGGAGTCGAGCAACGCGTCTGCGAGCGCAGA GACAGGTG 259 GCGTCGCG 260 Sulfonylurea CTGCGCTCGCAGACGCGTTGCTCGACTCCGTCCCCATGGTCGCC 261 Resistance ATCACGGGACAGGTGC ALS TCAGGAGACGCCCATCGTCGAGGTCACCCGCTC GAGCGGGTGACCTCGACGATGGGCGTCTCCTGAAAGGCGTCGGT 262 Pro165Gln GCCAATCATGCGTCGC CCG-CAG GGACGGAGTCGAGCAACGCGTCTGCGAGCGCAG ACAGGTGC 263 TGCGTCGC 264 Imidazolinone GGCCGTACCTCTTGGATATAATCGTCCCGCACCAGGAGCATGTGT 265 Resistance TGCCTATGATCCCTA ALS ATGGTGATGGCAGGACTGTGTATTGATCCGT ACGGATCAATACACAGTCCTGCCATCACCATCCAGGATCATATCC 266 Ser621Asn TTGAAAGCCCCACCA AGT-AAT TGCGGGACGATTATATCCAAGAGGTACGGCC GATCCCTA 267 CCCCACCA 268 Sulfonylurea AGTGGTCTCGCTGATGCAATGCTCGATAGTATCCCTCTCGTGGCG 269 Resistance ATCACTGGICAAGTC ALS CAGGAAACTCCAATTGTTGAGGTAACAAGGT ACCTTGTTACCTCAACAATTGGAGTTTCCTGGAAAGCATCGGTAC 270 Pro186Ser CGATCATCCGACGAG CCT-TCT ATACTATGGAGCATTGCATCAGCGAGACCACT GTCAAGTCTC 271 CCGACGAGAG 272 Sulfonylurea GTGGTCTCGCTGATGCAATGCTCGATAGTATCCCTCTCGTGGCGA 273 Resistance TCACTGGTCAAGTCC ALS AGGAAACTCCAATTGTTGAGGTAACAAGGTC GACCTTGTTACCTTAACAATTGGAGTTTCCTGGAAAGCATCGGTA 274 Pro186Gln CCGATCATCCGACG CCT-CAA GATACTATCGAGCATTGCATCAGCGAGACCAC TCAAGTCC 275 TTCCGACG 276 Sulfonylurea GTGGTCTCGCTGATGCAATGCTCGATAGTATCCCTCTCGTGCCGA 277 Resistance TCACTGGTCAAGTCC ALS AGGAAACTCCAATTGTTGAGGTAACAAGGTC GACCTTGTTACCTCAACAATTGGAGTTTCCTGGAAAGCATCGGTA 278 Pro186Gln CCGATCATCCGACG CCT-CAG GATACTATCGAGCATTGCATCAGCGAGACCAC TCAAGTCC 279 TCCGACG 280 Imidazolinone GACCTTACTTGTTGGATGTGATTGTCCCACATCAAGAACATGTCCT 281 Resistance GCCTATGATCCCCA ALS GGGTGATGGAAGAACACAATATTGACCTCA TGAGGTCAATATTGTGTTCTTCCATCACCCTCTGTGATCACATCTT 282 Ser642Asn TGAAAGCCCCTCCA AGT-AAT GTGGGACAATCACATCCAACAAGTAAGGTC GATCCCCA 283 CCCCTCCA 284 Sulfonylurea TCTGGTCTTGCTGATGCACTTCTTGACTCAGTCCCTCTTGTCGCCA 285 Resistance TTACTGGGCAAGTT ALS AGAGACTCCAATTGTTGAGGTAACTCGAT ATCGAGTTACCTCAACAATTGGAGTCTCTTGAAAAGCATCAGTACC 286 Pro192Ser AATCATACGCCGGG CCC-TCC CTGAGTCAAGAAGTGCATCAGCAAGACCAGA GGCAAGTT 287 ACGCCGGG 288 Sulfonymurea CTGGTCTTGCTGATGCACTTCTTGACTCAGTCCCTCTTGTCGCCAT 289 Resistance TACTGGGC ALS AGAGACTCCAATTGTTGAGGTAACTCGATC GATCGAGTTACCTCAACAATTGGAGTCTCTTGAAAAGCATCAGTAC 290 Pro192Gln CAATCATACGCCG CCC-CAA CTGAGTCAAGAAGTGCATCAGCAAGACCAG GCAAGTTC 291 TACGCCG 292 Sulfonylurea CTGGTCTTGCTGATGCACTTCTTGACTCAGTCCCTCTTGTCGCCAT 293 Resistance TACTGGGCAAGTTC ALS AGAGACTCCAATTGTTGAGGTAACTCGATC GATCGAGTTACCTCAACAATTGGAGTCTCTTGAAAAGCATCAGTAC 294 Pro192Gln CAATCATACGCCG CCC-CAG ACTGAGTCAAGAAGTGCATCAGCAAGACCAG GCAAGTTC 295 TACGCCG 296 Imidazolinone GACCGTATCTGCTGGATGTAATCGTACCACATCAGGAGCATGTGC 297 Resistance TGCCTATGATCCCTA ALS AGGGTGATGGAAGAAGGGCTTATTAGTTGGT ACCAACTAATAAGCCCTTCTTCCATCACCCTCTGTTATGGIGTCCT 298 Ser652Asn TGAAGGCGGCACCG AGC-AAC TGTGGTACGATTACATCCAGCAGATACGGTG GATCCCTA 299 CGGCACCG 300
[0121]
TABLE 12 Genome-Altering Oligos Conferring Porphyric Herbicide Resistance Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: Porphyric Herbicide TCTTGCGCCCTCTTTCTGAATCTGCTGCAAATGCACTCTCAAAACT 301 Resistant ATATTACCCACCA PPO AGCAATCCGAACAGAATGTTTGATAGATGG CCATCTATCAAACATTCTGTTCGGATTGCTTCTTTCGGGTACGAGA 302 Val365Met TAGATACTGCTG GTT-ATG TGCAGCAGATTCAGAAAGAGGGCGCAAGA CCCACCA 303 CTGCTGC 304 Porphyric Herbicide TATTACGTCCTCTTTCGGTTGCCGCAGCAGATGCACTTTCAAATTT 305 Resistant CTACTAICCCCCA PPO GCTATTCGTGATGAGCGTCTGGTTGATGG CCATCAACCAGACGCTCATCACGAATAGCTTCTTGAGGATATGAA 306 Val376Met ATTGTGACTGCTCC GTT-ATG TCTGCTGCGGCAACCGAAAGAGGACGTAATA TCCCCCA 307 CTGCTCC 308 Porphyric Herbicide TGTTGCGTCCGCTTTCGTTGGGTGCAGCAGATGCATTGTCAAAAT 309 Resistant TTTATTATCCTCCG PPO CGGAATTCGTGCTGACCGGCTGATTGATGG CCATCAATCAGCCGGTCAGCACGAATTGCGTCTTTTGGATATGAA 310 Val383Met ATTGATACAGCTGC GTT-ATG CTGCTGCACCCAACGAAAGCGGACGCAACA TCCTCCG 311 CAGCTGC 312 Porphyric Herbicide TCCTTCGTCCACTTTCAGATGTCGCCGCAGAATCTCTTTCAAAATT 313 Resistant TCATTATCCACCA PPO GCAATTAGATCAGAGTGCTTGATTGACGG CCGTCAATCAAGCACTCTGATCTAATTGCTTCTTTAGGATAGGAAA 314 Val390Met GTGACACAGCTGC GTT-ATG CTGCGGCGACATCTGAAAGTGGACGAAGGA TCCACCA 315 CAGCTGC 316 Porphyric Herbicide TTTTGCGTCCACTTTCAAGCGATGCTGCAGATGCTCTATCAAGATT 317 Resistant CTATTATCCACCG PPO GCAATTAGAAAAGAATGCTTAATTGATGG CGATCAATTAAGCATTCTTTTCTAATTGCTTCCTTTGGATACGAAAC 318 Val363Met AGTTACAGCAGC GTT-ATG TGCAGCATCGCTTGAAAGTGGACGCAAAA TCCACCG 319 CAGCAGC 320 Porphyric Herbicide TCTTGCGGCCACTTTCAAGTGATGGAGCAGATGCTCTGTCAATATT 321 Resistant CTATTATCCACCA PPO GCAATTAGAAAAGAATGCTTAATTGACGG CCGTCAATTAAGCATTCTTTTCTAATTGCTTCTTTTGGATATGAAAC 322 Val364Met AGTTACAGCAGC GTT-ATG TGCTGCATCACTTGAAAGTGGCCGCAAGA TCCACCA 323 CAGCAGCCA 324 Porphyric Herbicide CTGGTCAAGGAGCAGGCGCCCGCCGCCGCCGAGGCCCTGGGCT 325 Resistant CCTTCGACTACCCGCCG PPO CTGAGCGCCGTGCGGGAGGAGCGCAAGGCCTCGG CCGAGGCCTTGCGCTCCTCCCGCACGGCGCTCAGCGGGTACGAC 326 AGCGTCACGGCGCCCA Val389Met CCTCGGCGGCGGCGGGCGCCTGCTCCTTGACCAG GTG-ATG ACCCGCCG 327 GGCGCCCA 328
[0122]
TABLE 13 Genome-Altering Oligos Conferring Triazine Resistance Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: Triazine Resistant AAACTTACAACATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT 329 D1 Protein TTTCCAATATGCTA AGCGGCTTGGCCGGTAGTAGGTATTTG Ser264Thr CAAATACCTACTACCGGCCAAGCCGCTAAGAAGAAATGTAAAGAA 330 AGT-ACT CGAGAATIGTTGAAA AACCGTGAGCAGCTACAATGTTGTAAGTTT ATATGCTA 331 TGTTGAAA 332 Triazine Resistant AAACTTATAACATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT 333 D1Protein CTTCCAATATGCTA TAGCTGCTTGGCCTGTAGTAGGTATCTG Ser264Thr CAGATACCTACTACAG 334 AGT-ACT CGAGAGtTGTIGAAA TAACCATGAGCGGCTACGATGTTATAAGTTT ATATGCTA 335 TGTTGAAA 336 Triazine Resistant AAACTTATAATATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT 337 D1Protein CTTCCAATATGCTA TAGCTGCTTGGCCTGTAGTAGGTATCTG Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAAGAAGAAATGTAAAGAG 338 AGT-ACT CGAGAGTTGTTAAAA TAACCATGAGCGGCTACGATATTATAAGTTT ATATGCTA 339 TGTTAAAA 340 Triazine Resistant AAACTTATAATATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT 341 D1Protein CTTCCAATATGCTA TAGCTGCTTGGCCTGTAGTAGGTATCTG Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAGTGTAACGAA 342 AGT-ACT CGAGAGTTGTTGAAA TAACCATGAGCGGCTACGATATTATAAGTTT ATATGCTA 343 TGTTGAAA 344 Triazine Resistant AAACTTATAAIATCGTAGCTGCTCATGGTTATTTTGGCCGATTGAT 345 D1Protein CTTCCAATATGCTA TAGCTGCTTGGCCTGTAGTAGGTATCTG Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAATGTAAAGAA 346 AGT-ACT CGAGAATTGTTGAAA TAACCATGAGCAGCTACGATATTATAAGTTT ATATGCTA 347 TGTTGAAA 348 Triazine Resistant AAACCTATAATATTGTAGCAGCTCATGGTTATTTTGGCCGATTGAT 349 D1Protein CTTCCAATATGCTA TAGCTGCTTGGCCTGTAGTAGGTATCTG Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAATGTAAAGAA 350 AGT-ACT CGAGAGTTGTTGAAA TAAGCATGAGCTGCTACAATATTATAGGTTT ATATGCTA 351 TGTTGAAA+E,us 1352 Triazine Resistant AAACCTATAATATTGTAGCTGCTCATGGTTATTTGGCCGATTGAT 353 D1Protein CTTCCAATATGCAA TAGCTGCTTGGCCTGTAGTAGGTATTTG Ser264Thr CAAATACCTACTACAGGCCAAGCAGCTAAGAAGAAATGTAAAGAA 354 AGT-ACT CGAGAATTGTTGAAA TAACCATGAGCAGCTACAATATTATAGGTTT ATATGCAA 355 TGTTGAAA 356 Triazine Resistant AAACTTACAACATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT 357 D1Protein CTTCCAATATGCT TAGCGGCTTGGCCGGTAGTAGGTATTTG Gly264Thr CAAATACCTACTACCGGCCAAGCCGCTAAGAAGAAATGTAAAGAA 358 GGT-ACT CGAGAAITGTTGAAA TAACCGTGAGCAGCTACAATGTTGTAAGTTT ATATGCT 359 TGTTGAAA 360 Triazine Resistant AAACTTATAATATTGTGGCCGCTCATGGTTATTTTGGCCGATTAAT 361 D1Protein CTTCCAATATGCTA TGGCTGCTTGGCCTGTAGTAGGGATTTG Ser264Thr CAAATCCCTACTACAGGCCAAGCAGCCAAGAAGAAGTGTAAAGAA 362 AGT-ACT CGAGAGTTGTTAAAA AACCATGAGCGGCCACAATATTATAAGTTT ATATGCTA 363 TGTTAAAA 364 Triazine Resistant AGACTTATAATATTGTGGCTGCTCACGGTTATTTTGGTCGATTAAT 365 D1Protein CTTCCAATATGCTA TGGCTGCTtGGCCTGTAGTAGGGATCtG Ser264Thr CAGATCCCTACTACAGGCCAAGCAGCCAAGAAGAAGTGTAAAGAA 366 AGT-ACT CGAGAATTGTTGAAA AACCGTGAGCAGCCACAATATTATAAGTCT ATATGCTA 367 TGTTGAAA 368 Triazine Resistant AAACTTACAACATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT 369 D1Protein TTTCCAATATGCTA AGCGGCTTGGCCGGTAGTAGGTATTTG Ser264Thr CAAATACCTACTACCGGCCAAGCCGCTAAGAAGAAATGTAAAGAA 370 AGT-ACT CGAGAATTGITGAAA AACCGTGAGCAGCTACAATGTTGTAAGTTT ATATGCTA 371 TGTTGAAA 372 Triazine Resistant AAACTTATAACATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT 373 D1Protein CTTCCAATATGCTA TAGCTGCTTGGCCTGTAGTAGGTATCTG Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAGTGTAACGAA 374 AGT-ACT CGAGAGTTGTTGAAA TAACCATGAGCGGCTACGATGTTATAAGTTT ATATGCTA 375 TGTTGAAA 376 Triazine Resistant AAACTTATAATATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT 377 D1Protein CTTCCAATATGCTA TAGCTGCTTGGCCTGTAGTAGGTATCTG Ser264Thr CAGATACCTACTACAGGCCAAGCAGGTAAGAAGAAATGTAAAGAG 378 AGT-AGT CGAGAGTTGTTAAAA TAACCATGAGCGGCTACGATATTATAAGTTT ATATGCTA 379 TGTTAAAA 380 Triazine Resistant AAACTTATAATATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT 381 D1Protein CTTCCAATATGCTA TAGCTGGTTGGCCTGTAGTAGGTATCTG Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAGTGTAACGAA 382 AGT-ACT CGAGAGTTGTTGAAA TAACCATGAGCGGCTACGATATTATAAGTTT ATATGCTA 383 TGTTGAAA 384 Triazine Resistant AAACTTATAATATCGTAGCTGCTCATGGTTATTTTGGCCGATTGAT 385 D1Protein CTTCCAATATGCTA TAGCTGCTTGGCCTGTAGTAGGTATCTG Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAATGTAAAGAA 386 AGT-ACT CGAGAATTGTTGAAA TAACCATGAGCAGCTACGATATTATAAGTTT ATATGCTA 387 TGTTGAAA 388 Triazine Resistant AAACCTATAATATTGTAGCAGCTCATGGTTATTTTGGCCGATTGAT 389 D1Protein CTTCCAATATGCTA TAGCTGCTTGGCCTGTAGTAGGTATCTG Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAATGTAAAGAA 390 AGT-ACT CGAGAGTTGTTGAAA TAACCATGAGCTGCTACAATATTATAGGTTT ATATGCTA 391 TGTTGAAA 392 Triazine Resistant AAACCTATAATATTGTAGCTGCTCATGGTTATTTTGGCCGATTGAT 393 D1Protein CTTCCAATATGCAA TAGCTGCTTGGCCTGTAGTAGGTATTTG Ser264Thr CAAATACCTACTACAGGCCAAGCAGCTAAGAAGAAATGTAAAGAA 394 AGT-ACT CGAGAATTGTTGAAA TAACCATGAGCAGCTACAATATTATAGGTTT ATATGCAA 395 TGTTGAAA 396 Triazine Resistant AAACTTACAACATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT 397 D1Protein CTTCCAATATGCT TAGCGGCTTGGCCGGTAGTAGGTATTTG Gly264Thr CAAATACCTACTACCGGCCAAGCCGCTAAGAAGAAATGTAAAGAA 398 GGT-ACT CGAGAATTGTTGAAA TAACCGTGAGCAGCTACAATGTTGTAAGTTT ATATGCT 399 TGTTGAAA 400 Triazine Resistant AAACTTATAATATTGTGGCCGCTCATGGTTATTTTGGCCGATTAAT 401 D1Protein CTTCCAATATGCTA TGGCTGCTTGGCCTGTAGTAGGGATTTG Ser264Ihr CAAATCCCTACTACAGGCCAAGCAGCCAAGAAGAAGTGTAAAGAA 402 AGT-ACT CGAGAGTTGTTAAAA AACCATGAGCGGCCACAATATTATAAGTTT ATATGCTA 403 TGTTAAAA 404 Triazine Resistant AGACTTATAATATTGTGGCTGCTCACGGTTATTTTGGTCGATTAAT 405 D1Protein CTTCCAATATGCTA TGGCTGCTTGGCCTGTAGTAGGGATCTG Ser264Thr CAGATCCCTACTACAGGCCAAGCAGCCAAGAAGAAGTGTAAAGAA 406 AGT-ACT CGAGAATTGTTGAAA AACCGTGAGCAGCCACAATATTATAAGTCT ATATGCTA 407 TGTTGAAA 408 Triazine Resistant AAACTTACAACATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT 409 D1Protein TTTCCAATATGCTA AGCGGCTTGGCCGGTAGTAGGTATTTG Ser264Thr CAAATACCTACTACCGGCCAAGCCGCTAAGAAGAAATGTAAAGAA 410 AGT-ACT CGAGAATTGTTGAAA AACCGTGAGCAGCTACAATGTTGTAAGTTT ATATGCTA 411 TGTTGAAA 412 Triazine Resistant AAACCTACAATATTGTGGCTGCTCACGGTTATTTCGGCCGATTGAT 413 D1Protein CTTCCAGTATGCTA TAGCTGCTTGGCCCGTAGCAGGTATCTG Ser264Thr CAGATACCTGCTACGGGCCAAGCAGCTAAGAAGAAATGTAAAGAA 414 AGT-ACT CGGGAGTTGTTGAAA TAACCGTGAGCAGCCACAATATTGTAGGTTT GTATGCTA 415 TGTTGAAA 416 Triazine Resistant AAACCTATAATATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT 417 D1Protein CTTCCAATATGCTA TAGCTGCTTGGCCTGTAGTAGGTATCTG Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAATGTAAAGAG 418 AGT-ACT CGAGAATTGTTGAAA TAACCGTGAGCAGCTACAATATTATAGGTTT ATATGCTA 419 TGTTGAAA 420 Triazine Resistant AGACTTATAATATTGTGGCTGCTCATGGTTATTTTGGCCGATTAAT 421 D1Protein CTTCCAATATGCTA TGGCTGCTTGGCCTGTAGTAGGAATCTG Ser264Thr CAGATTCCTACTACAGGCCAAGCAGCCAAGAAGAAGTGTAAAGAA 422 AGT-ACT CGAGAGTTGTTGAAAGTAGCATATTGGAAGATTAATCGGCCAAAA TAACCATGAGCAGCCACAATATTATAAGTCT ATATGCTACTTTCAACA 423 TGTTGAAAGTAGCATAT 424 Triazine Resistant AAACTTATAATATTGTGGCTGCTCATGGTTATTTTGGCCGATTAAT 425 D1Protein CTTCCAATATGCTACTTTCAACAACTCTCGTTCTTTACACTTCTTCT TGGCTGCTTGGCCTGTAGTAGGAATCTG Ser264Thr CAGATTCCTACTACAGGCCMGCAGCCAAGAAGAAGTGTAAAGAA 426 AGT-ACT CGAGAGTTGTTGAAA TAACCATGAGCAGCCACAATATTATAAGTTT ATATGCTA 427 TGTTGAAA 428 Triazine Resistant AAACTTATAATATTGTAGCTGCTCATGGTTATTTTGGCCGATTAATC 429 D1Protein TTCCAATATGCAA AGCTGCTTGGCCTGTAGTAGGTATTTG Ser264Thr CAAATACCTACTACAGGCCAAGCAGCTAGGAAGAAATGTAAAGAA 430 AGT-ACT CGAGAATTGTTGAAA AACCATGAGCAGCTACAATATTATAAGTTT ATATGCAA 431 TGTTGAAA 432 Triazine Resistant AAACCTATAATATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT 433 D1Protein CTTCCAATATGCAA TAGCTGCTTGGCCTGTTGTAGGTATCTG Ser264Thr CAGATACCTACAACAGGCCAAGCAGCTAAGAAGAAGTGTAAAGAA 434 AGT-ACT CGAGAGTTGTTGAAA TAACCGTGAGCAGCTACAATATTATAGGTTT ATATGCAA 435 TGTTGAAA 436 Triazine Resistant AAACTTACAACATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT 437 D1Protein CTTCCAATATGCTA TAGCGGCTTGGCCGGTAGTAGGTATTTG Ser264Thr CAAATACCTACTACCGGCCAAGCCGCTAAGAAGAAATGTAAAGAA 438 AGT-ACT CGAGAATTGTTGAAA TAACCGTGAGCAGCTACAATGTTGTAAGTTT ATATGCTA 439 TGTTGAAA 440 Triazine Resistant AAACCTATAATATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT 441 D1Protein CTTCCAATATGCTA TAGCTGCTTGGCCTGTAGTAGGTATCTG Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTIAGGAAGAAATGTAAAGAG 442 AGt-ACT CGAGAATTGTTGAAAGTAGCAtATTGGAAGATCAATCGGCCAAAA TAACCGTGAGCAGCTACAATATTATAGGTTT ATATGCTA 443 TGTTGAAA 444 Triazine Resistant AAACTTATAATATCGTAGGTGCTCATGGTTATTTTGGTCGATTGAT 445 D1Protein CTTCCAATATGCTA TAGCTGCTTGGCCTGIAGTAGGTATTTG Ser264Thr CAAATACCTACTACAGGCCAAGCAGCTAAGAAGAAGTGTAAAGAA 446 AGT-ACT CGAGAGTTGTTGAAA TAACCATGAGCAGGTACGATATTATAAGTTT ATATGCTA 447 TGTTGAAA 448 Triazine Resistant AAACTTATAACATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT 449 D1Protein CTTCCAATATGCTA TAGCTGCTTGGCCTGTAGTAGGTATCTG Ser264Thr CAGAtACCtACTACAGGCGAAGCAGCtAGGAAGAAGTGTAACGAA 450 AGT-ACT CGAGAGtTGTTGAAA TAACCATGAGCGGCTACGATGTTATAAGTTT ATATGCTA 451 TGTTGAAA 452 Triazine Resistant AAACTTATAATATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT 453 D1Protein CTTCCAATATGCTA TAGCTGCTTGGCCTGTAGTAGGTATCTG Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAGTGTAACGAA 454 AGT-ACT CGAGAGTTGTTGAAA TAACCATGAGCGGCTACGATATTATAAGTTT ATATGCTA 455 TGTTGAAA 456 Triazine Resistant AAACTTATAACATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT 457 D1Protein CTTCCAATATGCTA TAGCTGCTTGGCCTGTAGTAGGTATCTG CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAGTGTAACGAA 458 Ser264Thr CGAGAGTTGTTGAAA AGT-ACT TAACCATGAGCGGCTACGATGTTATAAGTTT ATATGCTA 459 TGTTGAAA 460
[0123] Flower development in distantly related dicot plant species is increasingly better understood and appears to be regulated by a family of genes which encode regulatory proteins. These genes include, for example, AGAMOUS (AG), APETALA1 (AP1), and APETALA3 (AP3) and PISTILLATA (PI) in
[0124] Altering the expression of these genes results in altered floral morphology. For example, mutations in AP3 and PI result in male-sterile flowers because petals develop in place of stamens.
[0125] The attached tables disclose exemplary oligonucleotide base sequences which can be used to generate site-specific mutations that confer altered floral structures in plants.
TABLE 14 Oligonucleotides to produce male-sterile plants Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: Male-sterile TTGTCCTCTCCACCAAATCTCTTCAACAAAAAGATTAAACAAAGAG 461 AP3 AGAAGAATATGGCG ACCAGACAAACAGACAAGTGACGTATTCAA Arg3Term TTGAATACGTCACTTGTCTGTTTGTCTGGTTCTCTATCCTCTTGATC 462 AGA-TGA TGGATCTTCCCTC GTTGAAGAGATTTGGTGGAGAGGACAA ATATGGCG 463 CTTCCCTC 464 Male-sterile TCTCCACCAAATCTCTTCAACAAAAAGATTAAACAAAGAGAGAAGA 465 AP3 ATATGGCGAGAGGG CAAACAGACAAGTGACGTATTCAAAGAGAA Lys5Term TTCTCTTTGAATACGTCACTTGTCTGTTTGTCTGGTTCTCTATCCTC 466 AAG-TAG TTGATCTGGATCT CTTTTTGTTGAAGAGATTTGGTGGAGA CGAGAGGG 467 CTGGATCT 468 Male-sterile CCAAATCTCTTCAACAAAAAGATTAAACAAAGAGAGAAGAATATGG 469 AP3 CGAGAGGGAAGATC GACAAGTGACGTATTCAAAGAGAAGGAATG Gln7Term CATTCCTTCTCTTTGAATACGTCACTTGTCTGTTTGTCTGGTTCTCT 470 CAG-TAG ATCCTCTTGATCT TTTAATCTTTTTGTTGAAGAGATTTGG GGAAGATC 471 CTTGATCT 472 Male-sterile CTCTTCAACAAAAAGATTAAACAAAGAGAGAAGAATATGGCGAGAG 473 AP3 GGAAGATCCAGATC TGACGTATTCAAAGAGAAGGAATGGTTTAT Lys9Term ATAAACCATTCGTTCTCTTTGAATACGTCACTTGTCTGTTTGTCTGG 474 AAG-TAG TTCTCTATCCTCT TCTTTGTTTAATCTTTTTGTTGAAGAG TCCAGATC 475 TATCCTCT 476 Male-sterile AGAGGGAAGATCGAGATGAAGAGGATAGAGAACGAGAGGAACCG 477 AP3 ACAAGTGACGTATTCT CACGAGCTTACAGTTTTATGTGATGCTAGGG Lys23Term CCCTAGCATCACATAAAACTGTAAGCTCGTGAGCTTTCTTGAACAA 478 AAG-TAG ACCATTTCTTCTCT TCTATCCTCTTGATCTGGATCTTCCCTCT CGTATTCT 479 TCTTCTCT 480 Male-sterile GGGAAGATCCAGATCAAGAGGATAGAGAACCAGACCAACCGACAA 481 AP3 GTGACGTATTCTAAG AGCTTACAGTTTTATGTGATGCTAGGGTTT Arg24Term AAACCCTAGCATCACATAAAACTGTAAGCTCGTGAGCTTTCTTGAA 482 AGA-TGA CAAACCATTTCTTC TTCTCTATCCTCTTGATCTGGATCTTCCC ATTCTAAG 483 ATTTCTTC 484 Male-sterile AAGATCCAGATCAAGAGGATAGAGAACCAGACCAACCGACAAGTG 485 AP3 ACGTATTCTAAGAGA TTACAGTTTTATGTGATGCTAGGGTTTCGA Arg25Term TCGAAACCCTAGCATCACATAAAACTGTAAGCTCGTGAGCTTTCTT 486 AGA-TGA GAACAAACCATTTC TGGTTCTCTATGCTCTTGATCTGGATCTT CTAAGAGA 487 ACCATTTC 488 Male-sterile TCAAGAGGATAGAGAACCAGACCAACCGACAAGTGACGTATTCTA 489 AP3 AGAGAAGAAATGGTT ATGTGATGCTAGGGTTTCGATTATCATGTT Leu28Term AACATGATAATCGAAACCCTAGCATCACATAAAACTGTAAGCTCGT 490 TTG-TAG GAGCTTTCTTGAAC CGGTTGGTCTGGTTCTCTATCCTCTTGA AAATGGTT 491 TCTTGAAC 492 Male-sterile GGCTCGAGGGAAGATCCAGATTAAGAGGATAGAGAACCAAACAAA 493 AP3 CAGGCAGGTCACCTA AGCACACGAGCTCTCTGTTCTCTGTGATGCT Tyr21Term AGCATCACAGAGAACAGAGAGCTCGTGTGCTTTCTTGAACAAACC 494 TAC-TAG ATTTCTTCTCTTGGA TCCTCTTAATCTGGATCTTCCCTCGAGCC GTCACCTA 495 CTCTTGGA 496 Male-sterile CGAGGGAAGATCCAGATTAAGAGGATAGAGAACCAAACAAACAGG 497 AP3 CAGGTCACCTACTCC ACGAGCTCTCTGTTCTCTGTGATGCTAAAG Lys23Term CTTTAGCATCACAGAGAACAGAGAGCTCGTGTGCTTTCTTGAACAA 498 AAG-TAG ACCATTTCTTCTCT TCTATCCTCTTAATCTGGATCTTCCCTCG CCTACTCC 499 TCTTCTCT 500 Male-sterile GGGAAGATCCAGATTAAGAGGATAGAGAACCAAACAAACAGGCAG 501 AP3 GTCACCTACTCCAAG AGCTCTCTGTTCTCTGTGATGCTAAAGTTT Arg24Term AAACTTTAGCATCACAGAGAACAGAGAGCTCGTGTGCTTTCTTGAA 502 AGA-TGA CAAACCATTTGTTC TTCTCTATCCTCTTAATCTGGATCTTCCC ACTCCAAG 503 ATTTCTTC 504 Male-sterile AAGATCCAGATTAAGAGGATAGAGAACCAAACAAACAGGCAGGTC 505 AP3 ACCTACTCCAAGAGA CTCTCTGTTCTCTGTGATGCTAAAGTTTCCA Arg25Term TGGAAACTTTAGCATCACAGAGAACAGAGAGCTCGTGTGCTTTCTT 506 AGA-TGA GAACAAACCATTTC TGGTTCTCTATCCTCTTAATCTGGATCTT CCAAGAGA 507 ACCATTTC 508 Male-sterile GGAGAGAAAGGAAAGCTGGAAGAAGAAAACAAGAGCAGTAGTGG 509 DEFA TAGTGGTTCGATGGCT GAACCAAACAAACAGGCAGGTCACCTACTCCA Arg3Term TGGAGTAGGTGACCTGCCTGTTTGTTTGGTTCTCTATCCTCTTAAT 510 CGA-TGA CTGGATCTTCCCTC TTTTCTTCTTCCAGCTTTCCTTTCTCTCC CGATGGCT 511 CTTCCCTC 512 Male-sterile AAAGGAAAGCTGGAAGAAGAAAACAAGAGCAGTAGTGGTAGTGGT 513 DEFA TCCATGGCTCGAGGG ACAAACAGGCAGGTCACCTACTCCAAGAGAA Lys5Term TTCTCTTGGAGTAGGTGACCTGCCTGTTTGTTTGGTTCTCTATCCT 514 AAG-TAG CTTAATCTGGATCT CTCTTGTTTTCTTCTTCCAGCTTTCCTTT CTCGAGGG 515 CTGGATCT 516 Male-sterile AAGCTGGAAGAAGAAAACAAGAGCAGTAGTGGTAGTGGTTCGATG 517 DEFA GCTCGAGGGAAGATC AGGCAGGTCACCTACTCCAAGAGAAGAAATG Gln7Term CATTTCTTCTCTTGGAGTAGGTGACCTGCCTGTTTGTTTGGTTCTC 518 CAG-TAG TATCCTCTTAATCT CTACTGCTCTTGTTTTCTTCTTCCAGCTT GGAAGATC 519 CTTAATCT 520 Male-sterile GAAGAAGAAAACAAGAGCAGTAGTGGTAGTGGTTCGATGGCTCGA 521 DEFA GGGAAGATCCAGATT GTCACCTACTCCAAGAGAAGAAATGGTTTGT Lys9Term ACAAACCATTTCTTCTCTTGGAGTAGGTGACCTGCCTGTTTGTTTG 522 AAG-TAG GTTCTCTATCCTCT CTACCACTACTGCTCTTGTTTTCTTCTTC TCCAGATT 523 TATCCTCT 524 Male-sterile TCAGTAATTCTTAAGATCTCAAACTTTGAGCAAAAAGAAAAAAAAAC 525 AP3 TATGGCTCGTGGG AAACAGACAAGTCACTTATTCTAAGAGAA Lys5Term TTCTCTTAGAATAAGTGACTTGTCTGTTTGTTTGGTTCTCTATTCTC 526 AAG-TAG TTGATCTGGATCT AAAGTTTGAGATCTTAAGAATTACTGA CTCGTGGG 527 CTGGATCT 528 Male-sterile ATTCTTAAGATCTCAAACTTTGAGCAAAAAGAAAAAAAAACTATGGC 529 AP3 TCGTGGGAAGATC ACAAGTCACTTATTCTAAGAGAAGAAATG Gln7Term CATTTCTTCTCTTAGAATAAGTGACTTGTCTGTTTGTTTGGTTCTCT 530 CAG-TAG ATTCTCTTGATCT TTGCTCAAAGTTTGAGATCTTAAGAAT GGAAGATC 531 CTTGATCT 532 Male-sterile AAGATCTCAAACTTTGAGCAAAAAGAAAAAAAAACTATGGCTCGTG 533 AP3 GGAAGATCCAGATC TCACTTATTCTAAGAGAAGAAATGGACTTT Lys9Term AAAGTCCATTTCTTCTCTTAGAATAAGTGACTTGTCTGTTTGTTTGG 534 AAG-TAG TTCTCTATTCTCT TTCTTTTTGCTCAAAGTTTGAGATCTT TCCAGATC 535 TATTCTCT+E,un 536 Male-sterile ATCTCAAACTTTGAGCAAAAAGAAAAAAAAACTATGGCTCGTGGGA 537 AP3 AGATCCAGATCAAG CTTATTCTAAGAGAAGAAATGGACTTTTCA Arg10Term TGAAAAGTCCATTTCTTCTCTTAGAATAAGTGACTTGTCTGTTTGTT 538 AGA-TGA TGGTTCTCTATTC TTTTTTCTTTTTGCTCAAAGTTTGAGAT AGATCAAG 539 CTCTATTC 540 Male-sterile GGCTCGAGGAAAGATCCAGATCAAGAGAATAGAGAACACAACGAA 541 AP3 CAGACAAGTAACTTA GCCAATGAGCTCACTGTTCTTTGTGATGCT Tyr21Term AGCATCACAAAGAACAGTGAGCTCATTGGCCTTCTTGAAAAGACCA 542 TAC-TAG TCCCTTCGTTTTGA TCTCTTGATCTGGATCTTTCCTCGAGCC GTAACTTA 543 CGTTTTGA 544 Male-sterile CTCGAGGAAAGATCCAGATCAAGAGAATAGAGAACACAACGAACA 545 AP3 GACAAGTAACTTACT CCAATGAGCTCACTGTTCTTTGTGATGCTAA Ser22Term TTAGCATCACAAAGAACAGTGAGCTCATTGGCCTTCTTGAAAAGAC 546 TCA-TGA CATCCCTTCGTTTT ATTCTCTTGATCTGGATCTTTCCTCGAG AACTTACT 547 TTCGTTTT+E,un 548 Male-sterile CGAGGAAAGATCCAGATCAAGAGAATAGAGAACACAACGAACAGA 549 AP3 CAAGTAACTTACTCA ATGAGCTCACTGTTCTTTGTGATGCTAAGG Lys23Term CCTTAGCATCACAAAGAACAGTGAGCTCATTGGCCTTCTTGAAAAG 550 AAA-TAA ACCATCCCTTCGTT CTATTCTCTTGATCTGGATCTTTCCTCG CTTACTCA 551 CCTTCGTT 552 Male-sterile GGAAAGATCCAGATCAAGAGAATAGAGAACACAACGAACAGACAA 553 AP3 GTAACTTACTCAAAA AGCTCACTGTTCTTTGTGATGCTAAGGTTT Arg24Term AAACCTTAGCATCACAAAGAACAGTGAGCTCATTGGCCTTCTTGAA 554 CGA-TGA AAGACCATCCCTTC TCTCTATTCTCTTGATCTGGATCTTTCC ACTCAAAA 555 ATCCCTTC 556 Male-sterile GGCTCGTGGTAAGATCCAGATCAAGAAAATAGAAAACCAAACAAAT 557 DEF4 AGGCAAGTGACTTA GCTAATGAACTTACAGTTCTTTGTGATGCT Tyr21Term AGCATCACAAAGAACTGTAAGTTCATTAGCCTTCTTGAATAGCCCA 558 TAT-TAG TTTCTTCTCTTTGA TTCTTGATCTGGATCTTACCACGAGCC GTGACTTA 559 CTCTTTGA 560 Male-sterile CTCGTGGTAAGATCCAGATCAAGAAAATAGAAAACCAAACAAATAG 561 DEF4 GCAAGTGACTTATT TAATGAACTTACAGTTCTTTGTGATGCTAA Ser22Term TTAGCATCACAAAGAACTGTAAGTTCATTAGCCTTCTTGAATAGCC 562 TCA-TGA CATTTCTTCTCTTT TTTTCTTGATCTGGATCTTACCACGAG GACTTATT 563 TTCTCTTT 564 Male-sterile CGTGGTAAGATCCAGATCAAGAAAATAGAAAACCAAACAAATAGG 565 DEF4 CAAGTGACTTATTCA ATGAACTTACAGTTCTTTGTGATGCTAAAG Lys23Term CTTTAGCATCACAAAGAACTGTAAGTTCATTAGCCTTCTTGAATAG 566 AAG-TAG CCCATTTCTTCTCT CTATTTTCTTGATCTGGATCTTACCACG CTTATTCA 567 TCTTCTCT 568 Male-sterile GGTAAGATCCAGATCAAGAAAATAGAAAACCAAACAAATAGGCAA 569 DEF4 GTGACTTATTCAAAG AACTTACAGTTCTTTGTGATGCTAAAGTTT Arg24Term AAACTTTAGCATCACAAAGAACTGTAAGTTCATTAGCCTTCTTGAAT 570 AGA-TGA AGCCCATTTCTTC TTCTATTTTCTTGATCTGGATCTTACC ATTCAAAG 571 ATTTCTTC 572 Male-sterile GCTAATGAACTTACTGTTCTTTGTGATGCTAAAGTTTCAATTGTTAT 573 AP3 GATTTCTAGTACT CGACCAAACAATTGTTCGATCTGTACC GGTACAGATCGAACAATTGTTTGGTCGTGATAGAGGGACTTATAAA 574 Gly27Term CTCATGAAGTTTTC GGA-TGA CATCACAAAGAACAGTAAGTTCATTAGC CTAGTACT 575 AAGTTTTC 576 Male-sterile AATGAACTTACTGTTCTTTGTGATGCTAAAGTTTCAATTGTTATGAT 577 AP3 TTCTAGTACTGGA CCAAACAATTGTTCGATCTGTACCAGA TCTGGTACAGATCGAACAATTGTTTGGTCGTGATAGAGGGACTTAT 578 Lys28Term AAACTCATGAAGTT AAA-TAA TAGCATCACAAAGAACAGTAAGTTCATT GTACTGGA 579 ATGAAGTT 580 Male-sterile ACTGTTCTTTGTGATGCTAAAGTTTCAATTGTTATGATTTCTAGTAC 581 AP3 TGGAAAACTTCAT TGTTCGATCTGTACCAGAAGACTATTG CAATAGTCTTCTGGTACAGATCGAACAATTGTTTGGTCGTGATAGA 582 Glu31Term GGGACTTATAAACT GAG-TAG ATTGAAACTTTAGCATCACAAAGAACAGT AACTTCAT 583 TATAAACT 584 Male-sterile ATTGTTATGATTTCTAGTACTGGAAAACTTCATGAGTTTATAAGTCC 585 AP3 CTCTATCACGACC GGAGTTGATATTTGGACTACTCACTATG CATAGTGAGTAGTCCAAATATCAACTCCAATAGTCTTCTGGTACAG 586 Lys40Term ATCGAACAATTGTT AAA-TAA AGTTTTCCAGTACTAGAAATCATAACAAT TCACGACC 587 CAATTGTT 588 Male-sterile GGGGCGGGGGAAGATTGAGATAAAGCGGATCGAGAACGCCACCA 589 AP3 ACAGGCAGGTGACCTA AAGGCGCGGGAGCTCACCGTGCTCTGCGACGCC Tyr21Term GGCGTCGCAGAGCACGGTGAGCTCCCGCGCCTTCTTCATGATCC 590 TAC-TAG CCGACCGGCGCTTGGA CGATCCGCTTTATCTCAATCTTCCCCCGCCCC GTGACCTA 591 CGCTTGGA 592 Male-sterile CGGGGGAAGATTGAGATAAAGCGGATCGAGAACGCCACCAACAG 593 AP3 GCAGGTGACCTACTCC CGCGGGAGCTCACCGTGCTCTGCGACGCCCAGG Lys23Term CCTGGGCGTCGCAGAGCACGGTGAGCTCCCGCGCCTTCTTCATG 594 AAG-TAG ATCCCCGACCGGCGCT GTTCTCGATCCGCTTTATCTCAATCTTCCCCCG CCTACTCC 595 CCGGCGCT 596 Male-sterile TTGAGATAAAGCGGATCGAGAACGCCACCAACAGGCAGGTGACCT 597 AP3 ACTCGAAGCGCCGGT ACCGTGCTCTGCGACGCCCAGGTCGCCATCAT Ser26Term ATGATGGCGACCTGGGCGTCGCAGAGCACGGTGAGCTCCCGCGC 598 TCG-TAG CTTCTTCATGATCCCC GTTGGTGGCGTTGTCGATCCGCTTTATCTCAA GCGCCGGT 599 TGATCCCC 600 Male-sterile CGGATCGAGAACGCCACCAACAGGCAGGTGACCTACTCCAAGCG 601 AP3 CCGGTCGGGGATCATG GCGACGCCCAGGTCGCCATCATCATGTTCTCCT Lys30Term AGGAGAACATGATGATGGCGACCTGGGCGTCGCAGAGCACGGTG 602 AAG-TAG AGCTCCCGCGCCTTCT GTCACCTGCCTGTTGGTGGCGTTGTCGATCCG GGATCATG 603 CGCCTTCT 604 Male-sterile GGGGCGCGGCAAGATCGAGATCAAGCGGATCGAGAACGCCACCA 605 Silky1 ACCGCCAGGTGACCTA AAGGCACGCGAGCTCACCGTGCTCTGCGACGCC Tyr21Term GGCGTCGCAGAGCACGGTGAGCTCGCGTGCCTTCTTCATGATCCC 606 TAG-TAG CGTCCGGCGCTTGGA CGATCGGCTTGATCTCGATCTTGCCGCGCCCC GTGACCTA 607 CGCTTGGA 608 Male-sterile CGCGGCAAGATCGAGATCAAGCGGATCGAGAACGCCACCAACCG 609 Silky1 CCAGGTGACCTACTCC CACGCGAGCTCACCGTGCTCTGCGACGCCCAGG Lys23Term CCTGGGCGTCGCAGAGCACGGTGAGCTCGCGTGCCTTCTTCATG 610 AAG-TAG ATCCCCGTCCGGCGCT GTTCTCGATCCGCTTGATCTCGATCTTGCCGCG CCTACTCC 611 CCGGCGCT 612 Male-sterile CGGATCGAGAACGCCACCAACCGCCAGGTGACCTACTCCAAGCG 613 Silky1 CCGGACGGGGATCATG GCGACGCCCAGGTCGCCATCATCATGTTCTCCT Lys30Term AGGAGAACATGATGATGGCGACCTGGGCGTCGCAGAGCACGGTG 614 AAG-TAG AGCTCGCGTGCCTTCT GTCACCTGGCGGTTGGTGGCGTTCTCGATCCG GGATCATG 615 TGCCTTCT 616 Male-sterile ATCGAGAACGCCACCAACCGCCAGGTGACGTACTCCAAGCGCCG 617 Silky1 GACGGGGATCATGAAG ACGCCCAGGTCGCCATCATCATGTTCTCCTCCA Lys31Term TGGAGGAGAACATGATGATGGCGACCTGGGCGTCGCAGAGCACG 618 AAG-TAG GTGAGCTCGCGTGCCT TAGGTCACCTGGCGGTTGGTGGCGTTCTCGAT TCATGAAG 619 GCGTGCCT 620 Male-sterile GCTAGCTGCATTGTCCGGCGAGAGAGATAGCTGCTGCAGGGGGC 621 AP3 GGCCATGGGGAGGGGC CGACCAACAGGCAGGTGACCTACTCGAAGCGCC Lys5Term GGCGCTTGGAGTAGGTCACCTGCCTGTTGGTCGCGTTCTCGATCC 622 AAG-TAG GCTTGATCTCGATCT GCTATCTCTCTCGCCGGACAATGCAGCTAGC GGAGGGGC 623 CTCGATCT 624 Male-sterile TGCATTGTCCGGCGAGAGAGATAGCTGCTGCAGGGGGCGGCCAT 625 AP3 GGGGAGGGGCAAGATC ACAGGCAGGTGACCTACTCGAAGCGCCGCACGG Glu7Term CCGTGCGGCGCTTCGAGTAGGTCACCTGCCTGTTGGTCGCGTTCT 626 GAG-TAG CGATCCGCTTGATCT GCAGCAGCTATCTCTCTCGCCGGACAATGCA GCAAGATC 627 CTTGATCT 628 Male-sterile GTCCGGCGAGAGAGATAGCTGCTGCAGGGGGCGGCCATGGGGA 629 AP3 GGGGCAAGATCGAGATC CAGGTGACCTACTCGAAGCGCCGCACGGGGATCA Lys9Term TGATCCCCGTGCGGCGCTTCGAGTAGGTCACCTGCCTGTTGGTCG 630 AAG-TAG CGTTCTCGATCCGCT CCCCCTGCAGCAGCTATCTCTCTCGCCGGAC TCGAGATC 631 GATCCGCT 632 Male-sterile GAGAGATAGCTGCTGCAGGGGGCGGCCATGGGGAGGGGCAAGA 633 AP3 TCGAGATCAAGCGGATCT ACTCGAAGCGCCGCACGGGGATCATGAAGAAGG Glu12Term CCTTCTTCATGATCCCCGTGCGGCGCTTCGAGTAGGTCACCTGCC 634 GAG-TAG TGTTGGTCGCGTTCT CATGGCGGCCCCCTGCAGCAGCTATCTCTC AGCGGATC 635 CGCGTTCT 636
[0126]
TABLE 15 Oligonucleotides to produce male-sterile plants Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: Male-sterile TCTGTACTAATCAAATTTTGCCCTAAACGTTTTTGGCTTTGGAGCA 637 AG GCAATCACGGCGTA CTTGAGGAAATCTGGGAGAGGAAAGATCGAA Tyr35Term TTCGATCTTTCCTCTCCCAGATTTCCTCAAGGGAGAGGAATCTCCT 638 TAG-TAG CCTAGGTCCGATTG ACGTTTAGGGCAAAATTTGATTAGTACAGA ACGGCGTA 639 TCCGATTG 640 Male-sterile CTGTACTAATCAAATTTTGCCCTAAACGTTTTTGGCTTTGGAGCAG 641 AG CAATCACGGCGTAC TGAGGAAATCTGGGAGAGGAAAGATCGAAA Gln36Term TTTCGATCTTTCCTCTCCCAGATTTCCTCAAGGGAGAGGAATCTCC 642 CAA-TAA TCCTAGCTCCGATT AACGTTTAGGGCAAAATTTGATTAGTACAG CGGCGTAC 643 CTCCGATT 644 Male-sterile ACTAATCAAATTTTGCCCTAAACGTTTTTGGCTTTGGAGCAGCAAT 645 AG CACGGCGTACCAAT GGAAATCTGGGAGAGGAAAGATCGAAATCAA Ser37Term TTGATTTCGATCTTTCCTCTCCCAGATTTCCTCAAGGGAGAGGAAT 646 TCG-TAG CTCCTCCTAGCTCC CAAAAACGTTTAGGGCAAAATTTGATTAGT GTACCAAT 647 CTAGCTCC 648 Male-sterile TAATCAAATTTTGCCCTAAACGTTTTTGGCTTTGGAGCAGCAATCA 649 AG CGGCGTACCAATCG AATCTGGGAGAGGAAAGATCGAAATCAAAC Glu38Term GTTTGATTTCGATCTTTCCTCTCCCAGATTTCCTCAAGGGAGAGGA 650 GAG-TAG ATCTCCTCCTAGCT GCCAAAAACGTTTAGGGCAAAATTTGATTA ACCAATCG 651 TCCTAGCT 652 Male-sterile CTCTCCCACTTCTTTTCGGTGGTTTATTCATTTGGTGACGATATCA 653 AG CAGAAGCAATGGAT AGCAAGAAGATAGGTAGAGGGAAGATAGAGA Glu3Term TCTCTATCTTCCCTCTACCTATCTTCTTGCTACTCTCTGCATCGTGA 654 GAA-TAA CTACTCCCACCTT AATAAACCACCGAAAAGAAGTGGGAGAG CAATGGAT 655 CCCACCTT 656 Male-sterile TATTCATTTGGTGACGATATCACAGAAGCAATGGATGAAGGTGGG 657 AG AGTAGTCACGATGCA GATAGAGATAAAGAGGATAGAGAACACAACAA Glu11Term TTGTTGTGTTCTCTATCCTCTTTATCTCTATCTTCCCTCTACCTATC 658 GAG-TAG TTCTTGCTACTCT CTTCTGTGATATCGTCACCAAATGAATA ACGATGCA 659 GCTACTCT 660 Male-sterile GGTGACGATATCACAGAAGCAATGGATGAAGGTGGGAGTAGTCA 661 AG CGATGCAGAGAGTAGC TAAAGAGGATAGAGAACACAACAAATCGTCAAG Lys14Term CTTGACGATTTGTTGTGTTCTCTATCCTCTTTATCTCTATCTTCCCT 662 AAG-TAG GTACCTATCTTCT CATCCATTGCTTCTGTGATATCGTCACC AGAGTAGC 663 TATCTTCT 664 Male-sterile GACGATATCACAGAAGCAATGGATGAAGGTGGGAGTAGTCACGA 665 AG TGCAGAGAGTAGCAAG GAGGATAGAGAACACAACAAATCGTCAAGTAA Lys15Term TTACTTGACGATTTGTTGTGTTCTCTATCCTCTTTATCTCTATCTTC 666 AAG-TAG CCTCTACCTATCT CTTCATCCATTGCTTCTGTGATATCGTC GTAGCAAG 667 ACCTATCT 668 Male-sterile CAACCAAAAAACTTAAAAATCTTCTCTTTCCTTTCCTTACAAGGTGA 669 AG AGTAATGGACTTC AGGAAACTAGGAAGGGGGAAAATTGAGA TCTCAATTTTCCCCCTTCCTAGTTTCCTTTGTGGTGAGATCTCTCT 670 Glu4Term GGTTAGATCACTTT CAA-TAA AAAGAGAAGATTTTTAAGTTTTTTGGTTG TGGACTTC+E,unc 671 ATCACTTT 672 Male-sterile AAAATCTTCTCTTTCCTTTCCTTACAAGGTGAAGTAATGGACTTCC 673 AG AAAGTGATCTAACC GGGGGAAAATTGAGATCAAAAGGATCGAAA TTTCGATCCTTTTGATCTCAATTTTCCCCCTTCCTAGTTTCCTTTGT 674 Arg9Term GGTGAGATCTCTC AGA-TGA CTTGTAAGGAAAGGAAAGAGAAGATTTT ATCTAACC 675 GATCTCTC 676 Male-sterile ATCTTCTCTTTCCTTTCCTTACAAGGTGAAGTAATGGACTTCCAAA 677 AG GTGATCTAACCAGA GGAAAATTGAGATCAAAAGGATCGAAAACA TGTTTTCGATCCTTTTGATCTCAATTTTCCCCCTTCCTAGTTTCCTT 678 Glu10Term TGTGGTGAGATCT GAG-TAG CACCTTGTAAGGAAAGGAAAGAGAAGAT TAACCAGA 679 TGAGATCT 680 Male-sterile CTTTCCTTTCCTTACAAGGTGAAGTAATGGACTTCCAAAGTGATCT 681 AG AACCAGAGAGATCT TTGAGATCAAAAGGATCGAAAACACGACGAA TTCGTCGTGTTTTCGATCCTTTTGATCTCAATTTTCCCCCTTCCTAG 682 Ser12Term TTTCCTTTGTGGT TCA-TGA ATTACTTCACCTTGTAAGGAAAGGAAAG AGAGATCT 683 TTTGTGGT 684 Male-sterile GTACTCTCTATTTTCATCTTCCAACCCTTTCTTTCCTTACCAGGTGA 685 NAG1 AAGTATGGACTTC AGGAAACTGGGAAGAGGAAAGATTGAGA Gln4Term TCTCAATCTTTCCTCTTCCCAGTTTCCTTTGTGGAGAGATCTCTCTT 686 CAA-TAA GTTAGATCACTTT AGGGTTGGAAGATGAAAATAGAGAGTAC TGGACTTC 687 ATCACTTT 688 Male-sterile ATCTTCCAACCCTTTCTTTCCTTACCAGGTGAAAGTATGGACTTCC 689 NAG1 AAAGTGATCTAACA GAGGAAAGATTGAGATCAAACGGATCGAAA Arg9Term TTTCGATCCGTTTGATCTCAATCTTTCCTCTTCCCAGTTTCCTTTGT 690 AGA-TGA GGAGAGATCTCTC CTGGTAAGGAAAGAAAGGGTTGGAAGAT ATCTAACA 691 GATCTCTC 692 Male-sterile TTCCAACCCTTTCTTTCCTTAGCAGGTGAAAGTATGGACTTCCAAA 693 NAG1 GTGATCTAACAAGA GAAAGATTGAGATCAAACGGATCGAAAACA Glu10Term TGTTTTCGATCCGTTTGATCTCAATCTTTCCTCTTCCCAGTTTCCTT 694 GAG-TAG TGTGGAGAGATCT CACCTGGTAAGGAAAGAAAGGGTTGGAA TAACAAGA 695 AGAGATCT 696 Male-sterile CTTTCCTTACCAGGTGAAAGTATGGACTTCCAAAGTGATCTAACAA 697 NAG1 GAGAGATCTCTCCA TCAAACGGATCGAAAACACAACGAATCGTC Gln14Term GACGATTCGTTGTGTTTTCGATCCGTTTGATCTCAATCTTTCCTCTT 698 CAA-TAA CCCAGTTTCCTTT AGTCCATACTTTCACCTGGTAAGGAAAG TCTCTCCA 699 TTTCCTTT 700 Male-sterile GCCTATGAAAACAAACCCAACACGGTCCTGGACGCTGATGCCCAA 701 AG AGAAGATTGGGAAGG CACCACCAATCGTCAAGTCACCTTCTGCAAAA Gly22Term TTTTGCAGAAGGTGACTTGACGATTGGTGGTGTTTTCGATCCGCT 702 GGA-TGA TGATCTGGATCTTTC CAGGACCGTGTTGGGTTTGTTTTCATAGGC TGGGAAGG 703 GATCTTTC 704 Male-sterile TATGAAAACAAACCCAACACGGTCCTGGACGCTGATGCCCAAAGA 705 AG AGATTGGGAAGGGGA CACCAATCGTCAAGTCACCTTCTGCAAAAGGC Lys23Term GCCTTTTGCAGAAGGTGACTTGACGATTGGTGGTGTTTTCGATCC 706 AAG-TAG GCTTGATCTCGATCT GTCCAGGACCGTGTTGGGTTTGTTTTCATA GAAGGGGA 707 CTCGATCT 708 Male-sterile AACAAACCCAACACGGTCCTGGACGCTGATGCCCAAAGAAGATTG 709 AG GGAAGGGGAAAGATC TCGTCAAGTCACCTTCTGCAAAAGGCGCAATG Glu25Term CATTGCGCCTTTTGCAGAAGGTGACTTGACGATTGGTGGTGTTTT 710 GAG-TAG CGATCCGCTTGATCT ATCAGCGTCCAGGACCGTGTTGGGTTTGTT GAAAGATC 711 CTTGATCT 712 Male-sterile CCCAACACGGTCCTGGACGCTGATGCCCAAAGAAGATTGGGAAG 713 AG GGGAAAGATCGAGATC AGTCACCTTCTGCAAAAGGCGCAATGGTTTGC Lys27 GCAAACCATTGCGCCTTTTGCAGAAGGTGACTTGACGATTGGTGG 714 AAG-TAG TGTTTTCGATCCGCT TTGGGCATCAGCGTCCAGGACCGTGTTGGG TCGAGATC 715 GATCCGCT 716 Male-sterile CAATTGCGTGTTTTTATTTTTTTTGTTTTTGACTAAGTAGAAATGGC 717 far GTCTCTAAGCGAT CGGGAGAGGAAAGATCGAGATCAAACGGA Gln7Term TCCGTTTGATCTCGATCTTTCCTCTCCCGATTTTCCTCTCGGGCGA 718 CAA-TAA TACCTCGGTCGATT AAAAGAAAAAAAATAAAAACAGGCAATTG TAAGCGAT 719 GGTCGATT 720 Male-sterile GTTTTTATTTTTTTTCTTTTTGACTAAGTAGAAATGGCGTCTCTAAG 721 far CGATCAATCGACC GAAAGATCGAGATCAAACGGATCGAAAACA Glu10Term TGTTTTCGATCCGTTTGATCTCGATCTTTCCTCTCCCGATTTTCCTC 722 GAG-TAG TCGGGCGATACCT ACTTAGTCAAAAAGAAAAAAAATAAAAAC AATCGACC 723 CGATACCT 724 Male-sterile TTTCTTTTTGACTAAGTAGAAATGGCGTCTCTAAGCGATCAATCGA 725 far CCGAGGTATCGCCC ATCAAACGGATCGAAAACAAAACAAATCAAC Glu14Term GTTGATTTGTTTTGTTTTCGATCCGTTTGATCTCGATCTTTCCTCTC 726 GAG-TAG CCGATTTTCCTCT GACGCCATTTCTACTTAGTCAAAAAGAAA TATCGCCC 727 TTTCCTCT 728 Male-sterile TTTGACTAAGTAGAAATGGCGTCTCTAAGCGATCAATCGACCGAG 729 far GTATCGCCCGAGAGG ACGGATCGAAAACAAAACAAATCAACAGGTTA Lys16Term TAACCTGTTGATTTGTTTTGTTTTCGATCCGTTTGATCTCGATCTTT 730 AAA-TAA CCTCTCCCGATTT CTTAGAGACGCCATTTCTACTTAGTCAAA CCGAGAGG 731 CCCGATTT 732 Male-sterile TGTCCAAGCATTATCAGTCACCACTCACAAGAATGATTAAGGAAGA 733 AG AGGAAAGGGTAAGT AGAGAAGATGTCAGACTCGCCTCAGAGGAA Leu21Term TTCCTCTGAGGCGAGTCTGACATCTTCTCTTCTTGATTCTGGAACA 734 TTG-TAG TCCCCTTTATTTGC GTGAGTGGTGACTGATAATGCTTGGACA GGGTAAGT 735 TTATTTGC 736 Male-sterile TCCAAGCATTATCAGTCACCACTCACAAGAATGATTAAGGAAGAA 737 AG GGAAAGGGTAAGTTG GAGAAGATGTCAGACTCGCCTCAGAGGAAGA Gln22Term TCTTCCTCTGAGGCGAGTCTGACATCTTCTCTTCTTGATTCTGGAA 738 CAA-TAA CATCCCCTTTATTT TTGTGAGTGGTGACTGATAATGCTTGGA GTAAGTTG 739 CTTTATTT 740 Male-sterile CATTATCAGTCACCACTCACAAGAATGATTAAGGAAGAAGGAAAG 741 AG GGTAAGTTGCAAAT ATGTCAGACTCGCCTCAGAGGAAGATGGGAA Lys24Term TTCCCATCTTCCTCTGAGGCGAGTCTGACATCTTCTCTTCTTGATT 742 AAG-TAG CTGGAACATCCCCT TCATTCTTGTGAGTGGTGACTGATAATG TGCAAATA 743 CATCCCCT 744 Male-sterile CCACTCACAAGAATGATTAAGGAAGAAGGAAAGGGTAAGTTGCAA 745 AG ATAAAGGGGATGTTC CCTCAGAGGAAGATGGGAAGAGGAAAGATTG Gln28Term CAATCTTTCCTCTTCCCATCTTCCTCTGAGGCGAGTCTGACATCTT 746 CAG-TAG CTCTTCTTGATTCT CTTCTTCCTTAATCATTCTTGTGAGTGG GGATGTTC 747 TTGATTCT 748 Male-sterile CCACCACCACCACCACCACCACCACCACACCATGCTCAACATGAT 749 AG GACTGATCTGAGCTG TGGCGGCGGCGCCGACGGGCTCCGGCGACAGG Cys10Term CCTGTCGCCGGAGCCCGTCGGCGCCGCCGCCACCTGCTCCTTGA 750 TGC-TGA CCTTGGACGACGGCCC TGGTGTGGTGGTGGTGGTGGTGGTGGTGGTGG CTGAGCTG 751 GACGGCCC 752 Male-sterile ACCACCACCACCACCACCACACCATGCTCAACATGATGACTGATC 753 AG TGAGCTGCGGGCCGT GGCGCCGACGGGCTCCGGCGACAGGCAGGGGCA Ser13Term TGCCCCTGCCTGTCGCCGGAGCCCGTCGGCGCCGCCGCCACCT 754 TCG-TAG GCTCCTTGACCTTGGAC TGTTGAGCATGGTGTGGTGGTGGTGGTGGTGGT CGGGCCGT 755 CCTTGGAC 756 Male-sterile CACCACCACCACCACACCATGCTCAACATGATGACTGATCTGAGC 757 AG TGCGGGCCGTCGTCC CGACGGGCTCCGGCGACAGGCAGGGGCAGGGGA Lys15Term TCCCCTGCCCCTGCCTGTCGCCGGAGCCCGTCGGCGCCGCCGC 758 AAG-TAG CACCTGCTCCTTGACCT TCATCATGTTGAGCATGGTGTGGTGGTGGTGGTG CGTCGTCC 759 CTTGACCT 760 Male-sterile CACCACCACACCATGCTCAACATGATGACTGATCTGAGCTGCGGG 761 AG CCGTCGTCCAAGGTC GCTCCGGCGACAGGCAGGGGCAGGGGAGAGGCA Lys17Term TGCCTCTCCCCTGCCCCTGCCTGTCGCCGGAGCCCGTCGGCGCC 762 AAG-TAG GCCGCCACCTGCTCCT ATCAGTCATCATGTTGAGCATGGTGTGGTGGTG CCAAGGTC 763 CTGCTCCT 764 Male-sterile TCCTACCTTTTCTCCTTCAGACCTCAAAATCTGTGTGATAGGAACA 765 AG AGAGCATGCACATC CAGGCATCATGTCGACCCTGACTTCGGCGG Arg4Term CCGCCGAAGTCAGGGTCGACATGATGCCTGTTACTGTGGATGGT 766 CGA-TGA GTAGCCTCCTCTTCTC GATTTTGAGGTCTGAAGGAGAAAAGGTAGGA TGCACATC 767 CTCTTCTC 768 Male-sterile TACCTTTTCTCCTTCAGACCTCAAAATCTGTGTGATAGGAACAAGA 769 AG GCATGCACATCCGA GCATCATGTCGACCCTGACTTCGGCGGGGC Glu5Term GCCCCGCCGAAGTCAGGGTCGACATGATGCCTGTTACTGTGGAT 770 GAA-TAA GGTGTAGCCTCCTCTT ACAGATTTTGAGGTCTGAAGGAGAAAAGGTA ACATCCGA 771 CTCCTCTT 772 Male-sterile CTTTTCTCCTTCAGACCTCAAAATCTGTGTGATAGGAACAAGAGCA 773 AG TGCACATCCGAGAA TCATGTCGACCCTGACTTCGGCGGGGCAGC Glu6Term GCTGCCCCGCCGAAGTGAGGGTCGACATGATGCCTGTTACTGTG 774 GAG-TAG GATGGTGTAGCCTCCT CACACAGATTTTGAGGTCTGAAGGAGAAAAG TCCGAGAA 775 AGCCTCCT 776 Male-sterile TTCTCCTTCAGACCTCAAAATCTGTGTGATAGGAACAAGAGCATG 777 AG CACATCCGAGAAGAG ATGTCGACCCTGACTTCGGCGGGGCAGCAGA Glu7Term TCTGCTGCCCCGCCGAAGTCAGGGTCGACATGATGCCTGTTACT 778 GAG-TAG GTGGATGGTGTAGCCT CTATCACACAGATTTTGAGGTCTGAAGGAGAA GAGAAGAG 779 TGTAGCCT 780 Male-sterile GCTGGGTCAGGATCGTCGGCGGCGGTGGCGGCGGGGAGCAGC 781 AG GAGAAGATGGGGAGGGGG CACGACGAACCGGCAGGTGACCTTCTGCAAGCGCC Lys5Term GGCGCTTGCAGAAGGTCACCTGCCGGTTCGTCGTGTTCTCGATC 782 AAG-TAG CGCTTTATCTCGATCT GCCGCCACCGCCGCCGACGATCCTGACCCAGC GGAGGGGG 783 CTCGATCT 784 Male-sterile TCAGGATCGTCGGCGGGGGTGGCGGCGGGGAGCAGCGAGAAGA 785 AG TGGGGAGGGGGAAGATC AACCGGCAGGTGACCTTCTGCAAGCGCCGCAATG GTu7Term CATTGCGGCGCTTGCAGAAGGTCACCTGCCGGTTCGTCGTGTTCT 786 GAG-TAG CGATCCGCTTTATCT CCCCGCCGCCACCGCCGCCGACGATCCTGA GGAAGATC 787 CTTTATCT 788 Male-sterile TCGTCGGCGGCGGTGGCGGCGGGGAGCAGCGAGAAGATGGGG 789 AG AGGGGGAAGATCGAGATA GCAGGTGACCTTCTGCAAGCGCCGCAATGGCCTCC Lys9Term GGAGGCCATTGCGGCGCTTGCAGAAGGTCACCTGCCGGTTCGTC 790 AAG-TAG GTGTTCTCGATCCGCT CGCTGCTCCCCGCCGCCACCGCCGCCGACGA TCGAGATA 791 GATCCGCT 792 Male-sterile GCGGTGGCGGCGGGGAGCAGCGAGAAGATGGGGAGGGGGAAG 793 AG ATCGAGATAAAGCGGATC CTTCTGCAAGCGCCGCAATGGCCTCCTGAAGAAGG Glu12Term CCTTCTTCAGGAGGCCATTGCGGCGCTTGCAGAAGGTCACCTGC 794 GAG-TAG CGGTTCGTCGTGTTCT CCATCTTCTCGCTGCTCCCCGCCGCCACCGC AGCGGATC 795 CGTGTTCT 796
[0127]
TABLE 16 Oligonucleotides to produce male-sterile plants Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: Male-sterile GGGAAGAGGGAAAATAGAAATAAAAAGAATAGAGAACTCAAGCAA 797 P1 TAGACAAGTTACATA GCCAAAGAAATTACTGTTCTTTGCGATGCT Tyr21Term AGCATCGCAAAGAACAGTAATTTCTTTGGCTTTTTTGATGATACCAT 798 TAT-TAG TTCTTCTCTTTGA TTTTTATTTCTATTTTCCCTCTTCCC GTTACATA 799 CTCTTTGA 800 Male-sterile GAAGAGGGAAAATAGAAATAAAAAGAATAGAGAACTCAAGCAATA 801 P1 GACAAGTTACATATT CAAAGAAATTACTGTTCTTTGCGATGCTCA Ser22Term TGAGCATCGCAAAGAACAGTAATTTCTTTGGCTTTTTTGATGATAC 802 TCA-TGA CATTTCTTCTCTTT TTGTTTTTATTTCTATTTTCCCTCTTC TACATATT 803 TTCTCTTT+E,un 804 Male-sterile AGAGGGAAAATAGAAATAAAAAGAATAGAGAACTCAAGCAATAGAC 805 P1 AAGTTAGATATTCA AGAAATTACTGTTCTTTGCGATGCTCAAG Lys23Term CTTGAGCATCGCAAAGAACAGTAATTTCTTTGGCTTTTTTGATGATA 806 AAG-TAG CCATTTCTTCTCT TATTCTTTTTATTTCTATTTTCCCTCT CATATTCA 807 TCTTCTCT 808 Male-sterile GGGAAAATAGAAATAAAAAGAATAGAGAACTCAAGCAATAGACAAG 809 P1 TTACATATTCAAAG AATTACTGTTCTTTGCGATGCTCAAGTTT Arg24Term AAACTTGAGCATCGCAAAGAACAGTAATTTCTTTGGCTTTTTTGATG 810 AGA-TGA ATACCATTTCTTC CTCTATTCTTTTTATTTCTATTTTCCC ATTCAAAG 811 ATTTCTTC 812 Male-sterile GGGACGTGGGAAGGTTGAGATCAAGAGGATTGAGAACTGAAGTAA 813 P1 CAGGCAGGTGACCTA GGCAAAGGAGATCACTGTTCTATGTGATGCT Tyr21Term AGCATCACATAGAACAGTGATCTCCTTTGCCTTCTTGATAATCCCA 814 TAG-TAG TTCCTCCTCTTGGA TCCTCTTGATCTCAACCTTCCCACGTCGC GTGACCTA 815 CTCTTGGA 816 Male-sterile CGTGGGAAGGTTGAGATCAAGAGGATTGAGAACTCAAGTAACAGG 817 P1 CAGGTGACCTACTCC AAGGAGATCACTGTTCTATGTGATGCTAAAG Lys23Term CTTTAGCATCACATAGAACAGTGATCTCCTTTGCCTTCTTGATAATC 818 AAG-TAG CCATTCCTCCTCT CAATCCTCTTGATCTCAACCTTCCCACG CCTACTCC 819 CCTCCTCT 820 Male-sterile AGGATTGAGAAGTCAAGTAACAGGCAGGTGACCTACTCCAAGAGG 821 P1 AGGAATGGGATTATC GATGCTAAAGTATCTCTTATCATTTATTCTA Lys30Term TAGAATAAATGATAAGAGATACTTTAGCATCACATAGAACAGTGAT 822 AAG-TAG CTCCTTTGCCTTCT ACCTGCCTGTTACTTGAGTTCTCAATCCT GGATTATC 823 TGCCTTCT 824 Male-sterile ATTGAGAACTCAAGTAACAGGCAGGTGACCTACTCCAAGAGGAGG 825 P1 AATGGGATTATCAAG CTAAAGTATCTCTTATCATTTATTCTAGCT Lys31Term AGCTAGAATAAATGATAAGAGATACTTTAGCATCACATAGAACAGT 826 AAG-TAG GATCTCCTTTGCCT GTCACCTGCCTGTTACTTGAGTTCTCAAT TTATCAAG 827 CTTTGCCT 828 Male-sterile CATTTTTACAATAGTTATCTGCAAACAAAAACAAGAGAGAAAAACAA 829 globosa AAACAAAAAAATG AACTCAAGCAACAGGCAGGTTACTTACT Gly2Term AGTAAGTAACCTGCCTGTTGCTTGAGTTCTCAATTCTTTTGATCTCA 830 GGA-TGA ATTTTTCCTCTTC TTTGCAGATAACTATTGTAAAAATG AAAAAATG 831 TCCTCTTC 832 Male-sterile TTTTACAATAGTTATCTGCAAACAAAAACAAGAGAGAAAAACAAAAA 833 globosa CAAAAAAATGGGA TCAAGCAACAGGCAGGTTACTTACTCAA Arg3Term TTGAGTAAGTAACCTGCCTGTTGCTTGAGTTCTCAATTCTTTTGATC 834 AGA-TGA TCAATTTTTCCTC TTGTTTGCAGATAACTATTGTAAAA AAATGGGA 835 TTTTCCTC 836 Male-sterile TACAATAGTTATCTGCAAACAAAAACAAGAGAGAAAAACAAAAACA 837 globosa AAAAAATGGGAAGA AAGCAACAGGCAGGTTACTTACTCAAAGA Gly4Term TCTTTGAGTAAGTAACCTGCCTGTTGCTTGAGTTCTCAATTCTTTTG 838 GGA-TGA ATCTCAATTTTTC TTTTTGTTTGCAGATAACTATTGTA TGGGAAGA 839 AATTTTTC 840 Male-sterile AATAGTTATCTGCAAACAAAAACAAGAGAGAAAAACAAAAACAAAA 841 globosa AAATGGGAAGAGGA CAACAGGCAGGTTACTTACTCAAAGAGAA Lys5Term TTCTCTTTGAGTAAGTAACCTGCCTGTTGCTTGAGTTCTCAATTGTT 842 AAA-TAA TTGATCTCAATTT CTTGTTTTTGTTTGCAGATAACTATT GAAGAGGA 843 CTCAATTT 844 Male-sterile GCTGAGCTCTTGCTGCCCTTGGATCTGTTTGGGAGTGGAGAACGC 845 P1 AGTATGGGGCGCGGC ACCAACCGGCAGGTGACCTTCTCCAAGCGCC Lys5Term GGCGCTTGGAGAAGGTCACCTGCCGGTTGGTAGAGTTCTCGATCC 846 AAG-TAG TCTTGATCTTGATCT AAACAGATCCAAGGGCAGCAAGAGCTCAGC GGCGCGGC 847 CTTGATCT 848 Male-sterile CTCTTGCTGCCCTTGGATCTGTTTGGGAGTGGAGAACGCAGTATG 849 P1 GGGCGCGGCAAGATC CGGCAGGTGACCTTCTCCAAGCGCCGGGCCG Lys7Term CGGCCCGGCGCTTGGAGAAGGTCACCTGCCGGTTGGTAGAGTTC 850 AAG-TAG TCGATCCTCTTGATCT CACTCCCAAACAGATCCAAGGGCAGCAAGAG GCAAGATC 851 CTTGATCT 852 Male-sterile CTCTTGCTGCCCTTGGATCTGTTTGGGAGTGGAGAACGCAGTATG 853 P1 GGGCGCGGCAAGATC CGGCAGGTGACCTTCTCCAAGCGCCGGGCCG Lys9Term CGGCCCGGCGCTTGGAGAAGGTCACCTGCCGGTTGGTAGAGTTC 854 AAG-TAG TCGATCCTCTTGATCT CACTCCCAAACAGATCCAAGGGCAGCAAGAG GCAAGATC 855 GTTGATCT 856 Male-sterile GATCTGTTTGGGAGTGGAGAACGCAGTATGGGGCGCGGCAAGAT 857 P1 CAAGATCAAGAGGATC CTCCAAGCGCCGGGCCGGACTGGTCAAGAAGG Glu12Term CCTTCTTGACGAGTCCGGCCCGGCGCTTGGAGAAGGTCACCTGC 858 GAG-TAG CGGTTGGTAGAGTTCT CCATACTGCGTTCTCCACTCCCAAACAGATC AGAGGATC 859 AGAGTTCT 860 Male-sterile GCTGAGCTCTTGCTGCCCTTGAATCTGTTAGGGAGTGGAGAACGG 861 P1 AGTATGGGGCGCGGC ACCAACCGGCAGGTGACCTTCTCCAAGCGCC Lys5Term GGCGCTTGGAGAAGGTCACCTGCCGGTTGGTAGAGTTCTCGATCC 862 AAG-TAG TCTTGATCTCGATCT TAACAGATTCAAGGGCAGCAAGAGCTCAGC GGCGCGGC 863 CTCGATCT 864 Male-sterile CTCTTGCTGCCCTTGAATCTGTTAGGGAGTGGAGAACGGAGTATG 865 P1 GGGCGCGGCAAGATC CGGCAGGTGACCTTCTCCAAGCGCCGGGCCG Glu7Term CGGCCCGGCGCTTGGAGAAGGTCACCTGCCGGTTGGTAGAGTTC 866 GAG-TAG TCGATCCTCTTGATCT CACTCCCTAACAGATTCAAGGGCAGCAAGAG GCAAGATC 867 CTTGATCT 868 Male-sterile CTGCCCTTGAATCTGTTAGGGAGTGGAGAACGGAGTATGGGGCG 869 P1 CGGCAAGATCGAGATC GGTGACCTTCTCCAAGCGCCGGGCCGGACTGG Lys9Term CCAGTCCGGCCCGGCGCTTGGAGAAGGTCACCTGCCGGTTGGTA 870 AAG-TAG GAGTTCTCGATCCTCT CGTTCTCCACTCCCTAACAGATTCAAGGGCAG TCGAGATC 871 GATCCTCT 872 Male-sterile AATCTGTTAGGGAGTGGAGAACGGAGTATGGGGCGCGGCAAGAT 873 P1 GGAGATGAAGAGGATC CTCCAAGCGCCGGGCCGGACTGGTCAAGAAGG Glu12Term CCTTCTTGACCAGTCCGGCCCGGCGCTTGGAGAAGGTCACCTGC 874 GAG-TAG CGGTTGGTAGAGTTCT CCCATACTCCGTTCTCCACTCCCTAACAGATT AGAGGATC 875 AGAGTTCT 876 Male-sterile TTGCTGCTAAGCTAGCTGGAGGAAGGAGGAGGAGGAGGAGGAGG 877 P1 CGGGATGGGGCGCGGG+E,un CCACCAACCGCCAGGTGACCTTCTCCAAGCGCA Lys5Term TGCGCTTGGAGAAGGTCACCTGGCGGTTGGTGGAGTTCTCGATCC 878 AAG-TAG TCTTGATGTCGATGT CTCCTCCTTCCTCCAGCTAGCTTAGCAGCAA GGCGCGGG 879 CTCGATCT 880 Male-sterile CTAAGCTAGCTGGAGGAAGGAGGAGGAGGAGGAGGAGGCGGGA 881 P1 TGGGGCGCGGGAAGATC AACCGCCAGGTGACCTTCTCCAAGCGCAGGAGCG Glu7Term CGCTCCTGCGCTTGGAGAAGGTCACCTGGCGGTTGGTGGAGTTCT 882 GAG-TAG CGATCCTCTTGATCT CTCCTCCTCCTCCTTCCTCCAGCTAGCTTAG GGAAGATC 883 CTTGATCT 884 Male-sterile TAGCTGGAGGAAGGAGGAGGAGGAGGAGGAGGCGGGATGGGGC 885 P1 GCGGGAAGATCGAGATC CAGGTGACCTTCTCCAAGCGCAGGAGCGGGATCC Lys9Term GGATCCCGCTCCTGCGCTTGGAGAAGGTCACCTGGCGGTTGGTG 886 AAG-TAG GAGTTCTCGATCCTCT CCTCCTCCTCCTCCTCCTCCTTCCTCCAGCTA TCGAGATC 887 GATCCTCT 888 Male-sterile GAAGGAGGAGGAGGAGGAGGAGGCGGGATGGGGCGCGGGAAG 889 P1 ATCGAGATCAAGAGGATC TTCTCCAAGCGCAGGAGCGGGATCCTCAAGAAGG Glu12Term CCTTCTTGAGGATCCCGCTCCTGCGCTTGGAGAAGGTCACCTGGC 890 GAG-TAG GGTTGGTGGAGTTCT CCATCCCGCCTCCTCCTCCTCCTCCTCCTTC AGAGGATC 891 GGAGTTCT 892
[0128] Environmental stresses, such as drought, increased soil salinity, soil contamination with heavy meals, and extreme temperature, are major factors limiting plant growth and productivity. The worldwide loss in yield of three major cereal crops, rice, maize, and wheat due to water stress (drought) has been estimated to be over ten billion dollars annually and many currently marginal soils could be brought into cultivation if suitable plant varieties were available.
[0129] Physiological and biochemical responses to high levels of ionic or nonionic solutes and decreased water potential have been studied in a variety of plants. It is known, for example, that increasing levels of alcohol dehydrogenase can confer enhances flooding resistance in plants. There are also several possible mechanisms to enhance plant salt tolerance. For example, one mechanism underlying the adaptation or tolerance of plants to osmotic stresses is the accumulation of compatible, low molecular weight osmolytes such as sugar alcohols, special amino acids, and glycinebetaine. Such accumulation can be engineered, for example, by removing feedback inhibition on 1-pyrroline-t-carboxylate synthetase, which results in accumulation of proline. Additionally, recent experiments suggest that altering the expression or activity of specific sodium or potassium transporters can confer enhanced salt tolerance.
[0130] Plant tolerance of contamination by heavy metals such as lead and aluminum in soils has also been investigated and one mechanism underlying tolerance is the production of dicarboxylic acids such as oxalate and citrate. In addition, individual genes involved in heavy metal sensitivity have been identified.
[0131] The attached tables disclose exemplary oligonucleotide base sequences which can be used to generate site-specific mutations that confer stress tolerance in plants.
TABLE 17 Genome-Altering Oligos Conferring Stress Tolerance Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: Salt Tolerance CGTCTTTTTGTGTGGTAGTTGGATGTGACGGTTGCTCAAATGCTT 893 P5CS GTGACCGATAGCAGT AGTGAAACTGTCAAAGCGATGCTGAGGATGA Phe128Ala TCATCCTCAGCATCGCTTTGACAGTTTCACTAAGTTGCTTCCTGAA 894 TTT-GCT ATCCTTATGTCTA GTCACATCCAACTACCACACAAAAAGACG ATAGCAGT 895 ATCTCTA 896 Salt Tolerance GAGAGTATGTTTGACCAGCTGGATGTGACGGCTGCTCAGCTGCTG 897 P5CS 1 GTGAATGACAGTAGT AATGAGACAGTGAAGTCCATGCTTGATTTGA Phe128Ala TCAAATCAAGCATGGACTTCACTGTCTCATTAAGTTGCTTCCTGAA 898 TTC-GCC CTCCTTGTCTCTG CGTCACATCCAGCTGGTCAAACATAGTGTC ACAGTAGT 899 GTCTCTG 900 Salt Tolerance GAGACTATGTTTGACCAGATGGATGTGACGGTGGCTCAAATGCTG 901 P505 2 GTGACTGATAGCAGT AGTGAGACAGTCAAAGCTATGCTGAAAATGA Phe129Ala TCATTTTCAGCATAGCTTTGACTGTCTCACTAAGTTGCTTCCTGAA 902 TTC-GCC ATCCTTATCTCTGA GTCACATCCATCTGGTCAAACATAGTCTC ATAGCAGT 903 ATCTCTGA 904 Salt Tolerance GATATGTTGTTTAACCAACTGGATGTCTCGTCATCTCAACTTCTTG 905 P5GS TCACCGACAGTGAT CTGAAACTGTTGAGTCATTATTAGATCTTA Phe128Ala TAAGATCTAATAATGACTCAACAGTTTCAGTGAGTTGCTCCCGGAA 906 TTT-GCT CTTTGGGTTCTCA CGAGACATCCAGTTGGTTAAACAACATATC ACAGTGAT 907 GTTCTCA 908 Salt Tolerance GATATTTTGTTTAGTCAGCTGGATGTGACATCTGCTCAGCTTCTTG 909 P5CS TTACTGACAATGAT TGAAACTGTGAGATCACTTCTAGCACTAA Phe128Ala TTAGTGCTAGAAGTGATCTCACAGTTTCAGAAAGTTGCTTTCTAAA 910 TTT-GCT ATCTTGGTCTCTA GTCACATCCAGCTGACTAAACAAAATATC ACAATGAT 911 GTCTCTA 912 Salt Tolerance GATACATTGTTTAGTCAGCTGGATGTGACATCAGCTCAGCTACTC 913 P5CS GTTACTGATAATGAT ACTGAAACTGTAGAATCACTATTGAATTTGA Phe128Ala TCAAATTCAATAGTGATTCTACAGTTTCAGTAAGTTGCTTCCTGAAT 914 TTT-GCT TCTGGATCCCTA GTCACATCCAGCTGACTAAACAATGTATC ATAATGAT 915 ATCCCTA 916 Salt Tolerance GACACACTCTTCAGTCAACTGGATGTGACATCAGCACAGCTTCTT 917 P5CS GTAACAGATAATGAC CTGAAACAGTCGATTCTTTATTATCTTATA Phe122Ala TATAAGATAATAAAGAATCGACTGTTTCAGTAAGTTGTTTTCTAAAT 918 TTC-GCC TCTGGACTTCTG GTCACATCCAGTTGACTGAAGAGTGTGTC ATAATGAC 919 ACTTCTG 920 Salt Tolerance GATTCTTTGTTCAGTCAGTTGGATGTGACATCAGCTCAGCTTCTGG 921 P5CS TGACTGATAATGAC ATGACACAGTAAATTCGTTGCTTTCTCTAA TTAGAGAAAGCAACGAATTTACTGTGTCATTGAGTTGTCTCCTAAA 922 Phe12BAla ATCTGGATCTCTA TTT-GCT TGTCACATCCAACTGACTGAACAAAGAATC ATAATGAC 923 ATCTCTA 924 Salt Tolerance GATACCATGTTCAGCCAGCTTGATGTGACTTCTTCCCAACTTCTTG 925 P5CS TGAATGATGGATTT CGGACACAGTGAACGCGTTATTAGATTTAA Phe162Ala TTAAATCTAATAACGCGTTCACTGTGTCCGAAAGTTGTTTTCTGAA 926 TTT-GCT GCCAGCATCCCTA AGTCACATCAAGCTGGCTGAACATGGTATC ATGGATTT 927 ATCCCTA 928 Salt Tolerance GACACCTTGTTTAGTCAGTTGGATCTGACTGCTGCTCAGCTGCTT 929 P5CS GTGACGGACAACGAC ACTGAAACAGTGTATCAGTTGTTGGATCTAA TTAGATCCAACAACTGATACACTGTTTCAGTTAGTTGTGTTCTAAA 930 Phe125Ala ACTTGGATCTCTA TTT-GCT AGTCAGATCCAACTGACTAAACAAGGTGTC ACAACGAC 931 ATCTCTA 932 Salt Tolerance GACACATTATTTAGCCAGCTGGATGTGACATCAGCTCAGCTTCTT 933 P5CS GTGACTGATAATGAT CTCAAACAGTGGATTCATTGTTAGCTTTGA Phe130Ala TCAAAGCTAACAATGAATCCACTGTTTGAGTAAGTTGATTTCGGAA 934 TTT-GCT AGCTTCATCCCTA GTCACATCCAGCTGGCTAAATAATGTGTC ATAATGAT 935 ATCCCTA 936 Salt Tolerance GATACGCTGTTCACTCAGCTCGATGTGACATCGGCTCAGCTTCTT 937 P5CS GTGACGGATAACGAT ACTGAGACTGTGAAGTCGCTGTTGGGGCTGA Phe129Ala TCAGCGCCAACAGCGACTTCACAGTCTCAGTAAGCTGCTTCCTGA 938 TTT-GCT AATCCTTATCTCGA ATGTCACATCGAGCTGAGTGAACAGCGTATC ATAACGAT 939 ATCTCGA 940 Salt Tolerance AGAGATGTTCTTAGTTCCAAAGAAATCTCACCTCTCAGTTTCTCCG 941 HKT1 TCTTCACAACAGTT GAATGAGAACATGATCATCTTTCGCAAAA Ser207Val TTTTGCGAAAGATGATCATGTTCTCATTCGTGGGGACAAATCCGC 942 TCC-GTC AGTTTGCAAACGTG GTGAGATTTCTTTGGAACTAAGAACATCTCT CAACAGTT 943 AAACGTG 944 Salt Tolerance CGAATGAGAACATGATCATCTTTCGCAAAAACTCTGGTCTCATCTG 945 HKT1 GCTCCTAATCCCTC TTCTTGGTTTTGCTCATATGGGGACTTTA Gln237Leu TAAAGTCCCCATATGAGCAAAACCAAGAAGCAAGGGAACAAAGTG 946 CAA-CTA TTTCCCATCAGTACT TTTTTGCGAAAGATGATCATGTTCTCATTCG AATCCCTC 947 TCAGTACT 948 Salt Tolerance AGTCTCTAGAAGGAATGAGTTCGTACGAGAAGTTGGTTGGATCGT 949 HKT1 TGTTTCAAGTGGTGA ACCTCTCTACACTTTCCCCAGCTATCTTGGT Asn332Ser ACCAAGATAGCTGGGGAAAGTGTAGAGAGGTCTACTATAGTTTCT 950 AAT-AGT CCGGTGTGTCGCGAA TTCTCGTACGAACTCATTCCTTCTAGAGACT AGTGGTGA 951 GTCGCGAA 952 Salt Tolerance AGAGATGTGCTAAAGAAGAAAGGTCTCAAAATGGTGACCTTTTCC 953 HKT1 GTCTTCACCACCGTG ACCAATGAAAACATGATTATCTTCAGCAAAA TTTTGCTGAAGATAATCATGTTTTCATTGGTCGGGACAAACCCACA 954 Ser256Val ACTGGCAAAGGTC TCG-GTG TTTTGAGACCTTTCTTCTTTAGCACATCTCT CCACCGTG 955 AAAGGTC 956 Salt Tolerance CCAATGAAAACATGATTATCTTCAGCAAAAACTCTGGCCTCCTCCT 957 HKT1 GATTCTCATCCCTC GAGCCTACGTTTGACGCTTTGGCTCATCGG CCGATGAGCCAAAGCGTCAAACGTAGGCTCGATGGGAACAGCAT 958 Gln286Leu GTTCCCAAGAAGGGCCA CAG-CTG GAGTTTTTGCTGAAGATAATCATGTTTTCATTGG CATCCCTC 959 GAAGGGCC 960 Salt Tolerance AATCGTTGAATGGACTAAGCTCCTGTGAGAAAATCGTGGGCGCGC 961 HKT1 TGTTTCAGTGCGTGA GATCTGTCCACAGTTGCTCCCGCCATCTTGGT ACCAAGATGGCGGGAGCAACTGTGGACAGATCGACGACCGTCTC 962 Asn381Ser GCCGGTATGTCTGCTG AAC-AGC TTTTCTCACAGGAGCTTAGTCCATTCAACGATT GTGCGTGA 963 GTCTGCTG+E,un 964 Salt Tolerance AAAGCTCCACTGAAGAAGAAAGGGATCAACATTGCACTCTTCTCA 965 HKT1 TTCTCGGTCACGGTC GACAAATGAGAACATGGCAATCTTCTCCAAGA Ser238Val TCTTGGAGAAGATTGCCATGTTCTCATTTGTCGGCACGAGCCCCA 966 TCC-GTC CATTCGCAAACGAG ATGTTGATCCCTTTCTTCTTCAGTGGAGCTTT TCACGGTC 967 AAACGAG 968 Salt Tolerance CAAATGAGAACATGGCAATCTTCTCCAAGAACCCGGGCCTCCTCC 969 HKT1 TCCTGTTCATCGGCC CTTCCTAAGGCTATTGATATGGTTCCTGGG Gln268Leu CCCAGGAACCATATCAATAGCCTTAGGAAGAGAGGGTAAAGTGTA 970 CAG-CTG TTGCCTGCAAGAATC GTTCTTGGAGAAGATTGCCATGTTCTCATTTG CATCGGCC 971 CAAGAATC 972 Salt Tolerance CAGTCTTTGATGGACTCAGCTCTTACCAGAAGATTATCAATGCATT 973 HKT1 GTTCATGGCAGTGA ACTGCTCACTCATCGCCCCTGCTGTTCTAGT Asn363Ser ACTAGAACAGCAGGGGCGATGAGTGAGCAGTCGATGGAGTTCTC 974 AAC-AGC CCCCGAGTGCCTTGCG CTTCTGGTAAGAGCTGAGTCCATCAAAGACTG GGCAGTGA 975 GCCTTGCG 976 Salt Tolerance GTGCCCCACTGAACAAGAAAGGGATCAACATCGTGCTCTTCTCAC 977 HKT1 TATCAGTCACCGTTG CAAATGAGAACATGGTCATCTTCTCAAAGAA Ala240Val TTCTTTGAGAAGATGACCATGTTCTCATTTGTGGGCACGAGTCCT 978 GCC-GTC GCATTCGCACAGGAG GATGTTGATCCCTTTCTTGTTCAGTGGGGCAC CACCGTTG 979 CACAGGAG 980 Salt Tolerance CAAATGAGAACATGGTCATCTTCTCAAAGAATTCAGGCCTCTTGTT 981 HKT1 GCTGCTGAGTGGCC CTTCCTGAGGCTACTGGTGTGGTTCCTGGG Gln270Leu CCCAGGAACCACACCAGTAGCCTCAGGAAGAGAGGGAACAATGT 982 CAG-CTG ATTGCCTGCGAGCATC AATTCTTTGAGAAGATGACCATGTTCTCATTTG GAGTGGCC 983 CGAGCATC 984 Salt Tolerance CAGTCTTTGATGGGCTCAGCTCTTATCAGAAGACTGTCAATGCATT 985 HKT1 CTTCATGGTGGTGA ACTGCTCGCTCATGTCCCCTGCCATTATAGT Asn365Ser ACTATAATGGCAGGGGACATGAGCGAGCAGTCGATGGAATTCTCC 986 AAT-AGT CCTGAGTGCCTCGCA TTCTGATAAGAGCTGAGCCCATCAAAGACTG GGTGGTGA 987 GCCTCGCA 988 Freezing Tolerance TTTTTTTTGTTTTCGTTTTCAAAAAGAAAATCTTTGAATTTTATGGCA 989 praline oxidase ACCGGTCTTCTC precursor CCGCTTTTAGCCCGGTGGGTCCTCCCA TGGGAGGACCCACCGGGCTAAAAGCGGGTAAACGGTAAGATCGC 990 Arg7Term GGGATAAAGTTTGTTC CGA-TGA GATTTTGTTTTTGAAAACGAAAACAAAAAAAA GTCTTCTC 991 GTTTGTTC 992 Freezing Tolerance TCAAAAACAAAATCTTTGAATTTTATGGCAACCCGTCTTCTCAGAA 993 proline oxidase CAAACTTTATCCGG precursor GGGTCCTCCCACCGTGACTGCTTCCACCG CGGTGGAAGCAGTCACGGTGGGAGGACCCAGCGGGCTAAAAGC 994 Arg13Term GGGTAAACGGTAAGATC CGA-TGA GGTTGCCATAAAATTCAAAGATTTTGTTTTTGA TTATCCGG 995 GTAAGATC 996 Freezing Tolerance AAAATCTTTGAATTTTATGGCAACCCGTCTTCTCCGAACAAACTTT 997 praline oxidase ATCCGGCGATCTTA precursor CCCACCGTGACTGCTTCCACCGCCGTCGTC GACGACGGCGGTGGAAGCAGTCACGGTGGGAGGACCCACCGGG 998 Tyr15Term CTAAAAGCGGGTAAACG TAG-TAG AGAAGAGGGGTTGCCATAAAATTCAAAGATTTT CGATCTTA 999 GGTAAACG 1000 Freezing Tolerance CTTTGAATTTTATGGCAACCCGTCTTCTCCGAACAAACTTTATCCG 1001 praline oxidase GCGATCTTACCGTT precursor CGTGACTGCTTCCACCGCCGTCGTCCCGGA TCCGGGACGACGGCGGTGGAAGCAGTCACGGTGGGAGGACCCA 1002 Leu17Term CCGGGCTAAAAGCGGGT TTA-TAA GTTCGGAGAAGACGGGTTGCCATAAAATTCAAAG TTACCGTT 1003 AAGCGGGT 1004 Freezing Tolerance CCGGTGGGTCCTCCCACCGTGACTGCTTCCAGCGCCGTGGTCCC 1005 proline oxidase GGAGATTCTCTCCTTT precursor CCACCCAAAACCCACCGAGCAATCTCACGATG CATCGTGAGATTGCTCGGTGGGTTTTGGGTGGTGAAGAGGTGGT 1006 Gly42Term TCCGGTGCTTGTTGTC GGA-TGA GGTGGAAGCAGTCACGGTGGGAGGACCCACCGG TCTCCTTT 1007 TTGTTGTC 1008 Lead Tolerance ACATGAAGCAGTGAAATCTCTGTTTGTATTGAATCTTATTAGTCTCT 1009 cyclic nucleotide- AAACTATGAATTTC regulated ion channel GATTTGTCTCATTGAATTCTAAGTCGTGA TCACGACTTAGAATTCAATGAGACAAATCTGGAACACTGACCTTAC 1010 Arg4Term AAACTTCTCTTGTC CGA-TGA TACAAACAGAGATTTCACTGCTTCATGT TGAATTTC 1011 CTCTTGTC 1012 Lead Tolerance TGAAGCAGTGAAATCTCTGTTTGTATTGAATCTTATTAGTCTCAAA 1013 cyclic nucleotide- CTATGAATTTCCGA regulated ion channel TTGTCTCATTGAATTCTAAGTCGTGAAGC GCTTCACGACTTAGAATTCAATGAGACAAATCTGGAACACTGACCT 1014 Gln5Term TACAAACTTCTCTT CAA-TAA CAATACAAACAGAGATTTCACTGCTTCA ATTTCCGA 1015 CTTCTCTT 1016 Lead Tolerance AGCAGTGAAATCTCTGTTTGTATTGAATCTTATTAGTCTCAAACTAT 1017 cyclic nucleotide- GAATTTCCGACAA regulated ion channel CTCATTGAATTCTAAGTCGTGAAGCTTA TAAGCTTCACGACTTAGAATTCAATGAGACAAATCTGGAACACTGA 1018 Glu6Term CCTTACAAACTTCT GAG-TAG GATTCAATACAAACAGAGATTTCACTGCT TCCGACAA 1019 AAACTTCT 1020 Lead Tolerance AGTGAAATCTCTGTTTGTATTGAATCTTATTAGTCTCAAACTATGAA 1021 cyclic nucleotide- TTTCCGACAAGAG regulated ion channel ATTGAATTCTAAGTCGTGAAGCTTAATT AATTAAGCTTCACGACTTAGAATTCAATGAGACAAATCTGGAACAC 1022 Lys7Term TGACCTTACAAACT AAG-TAG TAAGATTCAATACAAACAGAGATTTCACT GACAAGAG 1023 TACAAACT 1024 Lead Tolerance CATTGAATTCTAAGTCGTGAAGCTTAATTCGATTCTTCTTCACTTTC 1025 cyclic nucleotide- TCGGATCAGGTTT regulated ion channel CGTGGAATATTCCGGTAAAAACGAGATTC GAATCTCGTTTTTACCGGAATATTCCACGTCGGAGGAAGTCTTATC 1026 Gln12Term CGACTTCCAATCTT CAA-TAA GAATTAAGCTTCACGACTTAGAATTCAATG TCAGGTTT 1027 CCAATCTT 1028 Lead Tolerance TGGAAGTCAATCCCCCACGTTGAGCAGGTTGATGCATTGGGTAAA 1029 cyclic nucleotide- GTTATGAATCACCGC gated calmodulin- AAATCAGAGAGAAGCTCTGAGGGAAATTTTC binding ion channel GAAAATTTCCCTCAGAGCTTCTCTCTGATTTCCAATCCTGAAACCT 1030 (CBP4) CACAAACTCGTCTT ACCTGCTCAACGTGGGGGATTGACTTCCA Gln5Term ATCACCGC 1031 CAA-TAA CTCGTCTT 1032 Lead Tolerance TCAATCCCCCACGTTGAGCAGGTTGATGCATTGGCTAAAGTTATG 1033 cyclic nucleotide- AATCACCGCCAAGAC gated calmodulin- GAGAGAAGCTCTGAGGGAAATTTTCATGCTA binding ion channel TAGCATGAAAATTTCCCTCAGAGCTTCTCTCTGATTTCCAATCCTG 1034 (CBP4) AAACCTCACAAACT GCATCAACCTGCTCAACGTGGGGGATTGA Gly7Term GCCAAGAC 1035 GAG-TAG CACAAACT 1036 Lead Tolerance GAGCAGGTTGATGCATTGGCTAAAGTTATGAATCACCGCCAAGAC 1037 cyclic nucleotide- GAGTTTGTGAGGTTT gated calmodulin- GGAAATTTTCATGCTAAAGGTGGAGTCCACC binding ion channel GGTGGACTCCACCTTTAGCATGAAAATTTCCCTCAGAGCTTCTCTC 1038 (CBP4) TGATTTCCAATCCT ATAACTTTAGCCAATGCATCAACCTGCTC Gln12Term TGAGGTTT 1039 CAG-TAG CCAATCCT 1040 Lead Tolerance TGATGCATTGGCTAAAGTTATGAATCACCGCCAAGACGAGTTTGT 1041 cyclic nucleotide- GAGGTTTCAGGATTG gated calmodulin- TCATGCTAAAGGTGGAGTCCACCGAAGTAAA binding ion channel TTTACTTCGGTGGACTCCACCTTTAGCATGAAAATTTCCCTCAGAG 1042 (CBP4) CTTCTCTCTGATTT GGTGATTCATAACTTTAGCCAATGCATCA Trp14Term CAGGATTG 1043 TGG-TGA TCTGATTT 1044 Lead Tolerance GATGCATTGGCTAAAGTTATGAATCACCGCCAAGACGAGTTTGTG 1045 cyclic nucleotide- AGGTTTCAGGATTGG gated calmoduin- CATGCTAAAGGTGGAGTCCACCGAAGTAAAG binding ion channel CTTTACTTCGGTGGACTCCACCTTTAGCATGAAAATTTCCCTCAGA 1046 (CBP4) GCTTCTCTCTGATT CGGTGATTCATAACTTTAGCCAATGCATC Lys15Term AGGATTGG 1047 AAA-TAA CTCTGATT 1048 Lead Tolerance CTTGAAGAATTGATCTACCACTCTTAGCTGCTAACTGTTCGCCTGG 1049 calmoduin binding TGGAGATAATGATG transport protein ACTGCAAATCAGAGCAATCTGTTATCTCAG CTGAGATAACAGATTGCTCTGATTTGCAGTCCTGAAATGTAACATA 1050 Glu2Term TCTGTCCTCTCTTT GAA-TAA AGCTAAGAGTGGTAGATCAATTCTTCAAG TAATGATG 1051 CTCTCTTT 1052 Lead Tolerance GAAGAATTGATCTACCACTCTTAGCTGCTAACTGTTCGCCTGGTG 1053 calmodulin binding GAGATAATGATGGAA transport protein TGCAAATCAGAGCAATCTGTTATCTCAGAGA TCTCTGAGATAACAGATTGCTCTGATTTGCAGTCCTGAAATCTAAC 1054 Arg3Term ATATCTGTCCTCTC AGA-TGA AGCAGCTAAGAGTGGTAGATCAATTCTTC TGATGGAA 1055 GTCCTCTC 1056 Lead Tolerance GAATTGATCTACCACTCTTAGCTGCTAACTGTTCGCCTGGTGGAG 1057 calmodulin binding ATAATGATGGAAAGA transport protein AAATCAGAGCAATCTGTTATCTCAGAGAACG CGTTCTCTGAGATAACAGATTGCTCTGATTTGCAGTCCTGAAATCT 1058 Glu4Term AACATATCTGTCCT GAG-TAG GTTAGCAGCTAAGAGTGGTAGATCAATTC TGGAAAGA 1059 TCTGTCCT 1060 Lead Tolerance ATCTACCACTCTTAGCTGCTAACTGTTCGCCTGGTGGAGATAATG 1061 calmodulin binding ATGGAAAGAGAGGAC transport protein GAGCAATCTGTTATCTCAGAGAACGCAGTTT AAACTGCGTTCTCTGAGATAACAGATTGCTCTGATTTGCAGTCCTG 1062 Arg6Term AAATCTAACATATC AGA-TGA CGAACAGTTAGCAGCTAAGAGTGGTAGAT GAGAGGAC 1063 AACATATC 1064 Lead Tolerance CCACTCTTAGCTGCTAACTGTTCGCCTGGTGGAGATAATGATGGA 1065 calmodulin binding AAGAGAGGACAGATA transport protein ATCTGTTATCTCAGAGAACGCAGTTTCACCA TGGTGAAACTGCGTTCTCTGAGATAACAGATTGCTCTGATTTGCA 1066 Tyr7Term GTCCTGAAATCTAAC TAT-TAG CCAGGCGAACAGTTAGCAGCTAAGAGTGG GACAGATA 1067 AATCTAAC 1068 2,4-DB resistance ATCCTTCTCTGAGAAAAAACAACAGATCCGAATTTTATCTTTAATCA 1069 3-ketoacyl-CoA GCCGGAAAAAATG thiolase TGAGCATCTCCGACCTTCTTCTTCTTCTT AAGAAGAAGAAGAAGGTCGGAGATGCTCAAGAAGAACGCGTTGT 1070 Glu2Term CTCTCGATCGCTTTCT GAG-TAG CGGATCTGTTGTTTTTTCTCAGAGAAGGAT AAAAAATG 1071 CGCTTTCT 1072 2,4-DB resistance CTTCTCTGAGAAAAAACAACAGATCCGAATTTTATCTTTAATCAGC 1073 3-ketoacyl-CoA CGGAAAAAATGGAG thiolase AGCATCTCCGACCTTCTTCTTCTTCTTCGC GCGAAGAAGAAGAAGAAGGTCGGAGATGCTCAAGAAGAACGCGT 1074 Lys3Term TGTCTCTCGATCGCTT AAA-TAA AATTCGGATCTGTTGTTTTTTCTCAGAGAAG AAATGGAG 1075 GATCGCTT 1076 2,4-DB resistance GAAAAAACAACAGATCCGAATTTTATCTTTAATCAGCCGGAAAAAA 1077 3-ketoacyl-CoA TGGAGAAAGCGATC thiolase GACCTTCTTCTTCTTCTTCGCACAATTACG CGTAATTGTGCGAAGAAGAAGAAGAAGGTCGGAGATGCTCAAGA 1078 Glu6Term AGAACGCGTTGTCTCT GAG-TAG TAAAGATAAAATTCGGATCTGTTGTTTTTTC AAGCGATC 1079 TTGTCTCT 1080 2,4-DB resistance AAAACAACAGATCCGAATTTTATCTTTAATCAGCCGGAAAAAATGG 1081 3-ketoacyl-CoA AGAAAGCGATCGAG thiolase CTTCTTCTTCTTCTTCGCACAATTACGAGG CCTCGTAATTGTGGGAAGAAGAAGAAGAAGGTCGGAGATGCTCAA 1082 Arg7Term GAAGAACGCGTTGTC AGA-TGA GATTAAAGATAAAATTCGGATCTGTTGTTTT CGATCGAG 1083 GCGTTGTC 1084 2,4-DB resistance ACAACAGATCCGAATTTTATCTTTAATCAGCCGGAAAAAATGGAGA 1085 3-ketoacyl-CoA AAGCGATCGAGAGA thiolase CTTCTTCTTCTTCGCACAATTACGAGGCTT AAGCCTCGTAATTGTGCGAAGAAGAAGAAGAAGGTCGGAGATGC 1086 Gln8Term TCAAGAAGAACGCGTT CAA-TAA GCTGATTAAAGATAAAATTCGGATCTGTTGT TCGAGAGA 1087 AACGCGTT 1088 2,4-DB resistance GAGAGACAAAGAGTTCTTCTTGAACATCTCCGTCCTTCTTCTTCTT 1089 glyoxysomal beta- CCTCTCACAGCTTT ketoacyol-thiolase TGGGGACAGTGCTGCGTATCAGAGGACCT precursor AGGTCGTCTGATACGCAGCACTGTCCCCAGCCAAGCAAGCTGAA 1090 GCAGAGAGAGAGCCTT Glu26Term ACGGAGATGTTCAAGAAGAACTCTTTGTCTCTC GAA-TAA ACAGCTTT 1091 AGAGCCTT 1092 2,4-DB resistance TTGAACATCTCCGTCCTTCTTCTTCTTCCTCTCACAGCTTTGAAGG 1093 glyoxysomal beta- CTCTCTCTCTGCTT ketoacyol-thiolase TCAGAGGACCTCTCTCTATGGAGATGATGT precursor ACATCATCTCCATAGAGAGAGGTCCTCTGATACGCAGCACTGTCC 1094 CCAGCCAAGCAAGCT Ser32Term AGAGGAAGAAGAAGAAGGACGGAGATGTTCAA TCA-TGA CTCTGCTT 1095 AGCAAGCT 1096 2,4-DB resistance TCTCCGTCCTTCTTCTTCTTCCTCTCACAGCTTTGAAGGCTCTCTC 1097 glyoxysomal beta- TCTGCTTCAGCTTG ketoacyol-thiolase GACCTCTCTCTATGGAGATGATGTAGTCATT precursor AATGACTACATCATCTCCATAGAGAGAGGTCCTCTGATACGCAGC 1098 ACTGTCCCCAGCCAA Cys34Term GCTGTGAGAGGAAGAAGAAGAAGGACGGAGA TGC-TGA TCAGCTTG 1099 CCAGCCAA 1100 2,4-DB resistance TCCGTCCTTCTTCTTGTTCCTCTCACAGCTTTGAAGGCTCTCTCTC 1101 glyoxysomal beta- TGCTTCAGCTTGCT ketoacyol-thiolase CCTCTCTCTATGGAGATGATGTAGTCATTGT precursor ACAATGACTACATCATCTCCATAGAGAGAGGTCGTCTGATACGCA 1102 GCACTGTCCCCAGCC Leu35Term AAAGCTGTGAGAGGAAGAAGAAGAAGGACGGA TTG-TAG AGCTTGCT 1103 CCCCAGCC 1104 2,4-DB resistance TCACAGCTTTGAAGGCTCTCTCTCTGCTTCAGCTTGCTTGGCTGG 1105 glyoxysomal beta- GGACAGTGCTGCGTA ketoacyol-thiolase AGTCATTGTTGCGGCACATAGGACTGCACTA precursor TAGTGCAGTCCTATGTGCCGCAACAATGACTACATCATCTCCATA 1106 GAGAGAGGTCGTCTG Tyr42Term CTGAAGCAGAGAGAGAGCCTTCAAAGCTGTGA TAT-TAG GCTGCGTA 1107 GTCCTCTG 1108 2,4-DB resistance CAACAGACAGGAAGTGTTGCTCCAGCATCTCCGCCCTTCTAATTC 1109 3-ketoacyl-CoA TTCTTCTCACAATTA thiolase B GCAGGGGATAGCGCCGCATATCATAGGGCT AGCCCTATGATATGCGGCGCTATCCCCTGCAGCACATACTGATGC 1110 Tyr25Term GGCAAGAGCGGACTC TAC-TAG GGAGATGCTGGAGCAACACTTGCTGTCTGTTG CACAATTA 1111 GCGGACTC 1112 2,4-DB resistance AACAGACAGCAAGTGTTGCTCCAGCATCTCCGCCCTTCTAATTCTT 1113 3-ketoacyol-CoA CTTCTCACAATTAC thiolase B AGGGGATAGCGCCGCATATCATAGGGCTT AAGCCCTATGATATGCGGCGCTATCCCCTGCAGCACATACTGATG 1114 Glu26Term CGGCAAGAGCGGACT GAG-TAG CGGAGATGCTGGAGCAACACTTGCTGTCTGTT ACAATTAC 1115 AGCGGACT 1116 2,4-DB resistance TCCAGCATCTCCGCCCTTCTAATTCTTCTTCTCACAATTACGAGTC 1117 3-ketoacy\to-CoA CGCTCTTGCCGCAT thioblase B ATCATAGGGCTTCTGTTTATGGAGACGATGT ACATCGTCTCCATAAACAGAAGCCCTATGATATGCGGCGCTATCC 1118 Ser32Term CCTGCAGCACATACT TCA-TGA GAAGAAGAATTAGAAGGGCGGAGATGCTGGA TGCCGCAT 1119 CACATACT 1120 2,4-DB resistance TCTCCGCCCTTCTAATTCTTCTTCTCACAATTACGAGTCCGCTCTT 1121 3-ketoacyl-CoA GCCGCATCAGTATG thiolase B GGCTTCTGTTTATGGAGACGATGTGGTGATT AATCACCACATCGTCTCCATAAACAGAAGCCCTATGATATGCGGC 1122 Cys34Term GCTATCCCCTGCAGC TGT-TGA AATTGTGAGAAGAAGAATTAGAAGGGCGGAGA TCAGTATG 1123 CCTGCAGC 1124 2,4-DB resistance TCACAATTACGAGTCCGCTCTTGCCGCATCAGTATGTGCTGCAGG 1125 3-ketoacyl-CoA GGATAGCGCCGCATA thiolase B GGTGATTGTGGCAGGTCATCGTACTGCACTT AAGTGCAGTAGGATGAGCTGCCACAATCACCACATCGTCTCCATA 1126 Tyr42Term AACAGAAGCCCTATG TAT-TAG TGATGCGGCAAGAGCGGACTCGTAATTGTGA GCCGCATA 1127 GCCCTATG 1128 2,4-DB resistance GAAGGCGATCAACAGGCAGAGCATTTTGCTACATCATCTCCGGCC 1129 3-ketoacyl-CoA TTCTTCTTCCGCTTA thiolase TGTGCAGCTGGGGATAGTGCTTCGTATCAA TTGATACGAAGCACTATCCCCAGCTGCACAAACCGATGCAGAGAG 1130 Tyr22Term CGAAGATTCATTTGT TAG-TAG TAGCAAAATGCTCTGGCTGTTGATCGCCTTC TCCGCTTA 1131 TCATTTGT 1132 2,4-DB resistance ATCAACAGGCAGAGCATTTTGCTACATCATCTCCGGCCTTCTTCTT 1133 3-ketoacyl-CoA CCGCTTACACAAAT thiolase TGGGGATAGTGCTTCGTATCAAAGGACAT ATGTCCTTTGATACGAAGCAGTATCCCCAGCTGCACAAACCGATG 1134 Glu25Term CAGAGAGCGAAGATT GAA-TAA AGATGATGTAGCAAAATGCTCTGCCTGTTGAT ACACAAAT 1135 CGAAGATT 1136 2,4-DB resistance GGCAGAGCATTTTGCTACATCATCTCCGGCCTTCTTCTTCCGCTTA 1137 3-ketoacyl-CoA CACAAATGAATCTT thiolase TAGTGCTTCGTATCAAAGGACATCGGTGTT AACACCGATGTCCTTTGATACGAAGCACTATCCCCAGCTGCACAA 1138 Ser27Term ACCGATGCAGAGAGC TCG-TAG GGCCGGAGATGATGTAGCAAAATGCTCTGCC TGAATCTT 1139 CAGAGAGC 1140 2,4-DB resistance TGCTACATCATCTCCGGCCTTCTTCTTCCGCTTACACAAATGAATC 1141 3-ketoacyl-CoA TTCGCTCTCTGCAT thiolase TCAAAGGACATCGGTGTTTGGAGATGATGT ACATCATCTCCAAACACCGATGTCCTTTGATACGAAGCACTATCCC 1142 Ser31Term CAGCTGCACAAACC TCG-TAG CGGAAGAAGAAGGCCGGAGATGATGTAGCA CTCTGCAT 1143 CACAAACC 1144 2,4-DB resistance TCATCTCCGGCCTTCTTCTTCCGCTTACACAAATGAATCTTCGCTC 1145 3-ketoacyl-CoA TCTGCATCGGTTTG thiolase ACATCGGTGTTTGGAGATGATGTCGTGATT AATCACGACATCATCTCCAAACACCGATGTCCTTTGATACGAAGCA 1146 Cys33Term CTATCCCCAGCTGC TGT-TGA GTGTAAGCGGAAGAAGAAGGCCGGAGATGA TCGGTTTG 1147 CCAGCTGC 1148 2A-DB resistance GAAGGCAATCAACAGGCAGAGCATTCTGCTACATCATCTCCGGCC 1149 3-ketoacyl-CoA TTCATCTTCGGCTTA thiolase TGTGCAGCTGGGGATAGTGCGTCGTATCAA Cucurbita sp. TTGATACGACGCACTATCCCCAGCTGCACAAACCGATGCAGAGAG 1150 Tyr22Term CGAAGATTCATGGCT TAT-TAG GTAGCAGAATGCTCTGCCTGTTGATTGCCTTC TCGGCTTA 1151 TCATGGCT 1152 2,4-DB resistance ATCAACAGGCAGAGCATTCTGCTACATCATCTCCGGCCTTCATCTT 1153 3-ketoacyl-CoA CGGCTTATAGCCAT thiolase TGGGGATAGTGCGTCGTATCAAAGAACGT Cucurbita sp. ACGTTCTTTGATACGACGCACTATCCCCAGCTGCACAAACCGATG 1154 Glu25Term CAGAGAGCGAAGATT GAA-TAA AGATGATGTAGCAGAATGCTCTGCCTGTTGAT ATAGCCAT 1155 CGAAGATT 1156 2,4-DB resistance GGCAGAGCATTCTGCTACATCATCTCCGGCCTTCATCTTCGGCTT 1157 3-ketoacyl-CoA ATAGCCATGAATCTT thiolase ATAGTGCGTCGTATCAAAGAACGTCGGTGTT Cucurbita sp. AACACCGACGTTCTTTGATACGACGCACTATCCCCAGCTGCACAA 1158 Ser27Term ACCGATGCAGAGAGCTAAGATTCATGGCTATAAGCCGAAGATGAA TCG-TAG GGCCGGAGATGATGTAGCAGAATGCTCTGCC TGAATCTT 1159 CAGAGAGC 1160 2,4-DB resistance TGCTACATCATCTCCGGCCTTCATCTTCGGCTTATAGCCATGAATC 1161 3-ketoacyl-CoA TTCGCTCTCTGCAT thiolase TCAAAGAACGTCGGTGTTTGGAGATGATGT Cucurbita sp. ACATCATCTCCAAACACCGACGTTCTTTGATACGACGCACTATCCC 1162 Ser31Term CAGCTGCACAAACC TCG-TAG CCGAAGATGAAGGCCGGAGATGATGTAGCA CTCTGCAT 1163 CACAAACC 1164 2,4-DB resistance TCATCTCCGGCCTTCATCTTCGGCTTATAGCCATGAATCTTCGCTC 1165 3-ketoacyl-CoA TCTGCATCGGTTTG thiolase ACGTCGGTGTTTGGAGATGATGTCGTGATA Cucurbita sp. TATCACGACATCATCTCCAAACACCGACGTTCTTTGATACGACGCA 1166 Cys33Term CTATCCCCAGCTGC TGT-TGA CTATAAGCCGAAGATGAAGGCCGGAGATGA TCGGTTTG 1167 CCAGCTGC 1168 2,4 DB resistance TCATAGTCTCTTTTGCCGCTTGGATTCTTCCAAGGTTAGTGAGCTG 1169 Pex14 CTATGGCAACTCAT TCTTGCCGATGAAAATTCCCAGATTCCAG Gln5Term CTGGAATCTGGGAATTTTCATCGGCAAGAGCGGGAAAATCGGAA 1170 CAG-TAG GGAGGTTGCGTTTGCT TGGAAGAATCCAAGCGGCAAAAGAGACTATGA CAACTCAT 1171 CGTTTGCT 1172 2,4 DB resistance TAGTCTCTTTTGCCGCTTGGATTCTTCCAAGGTTAGTGAGCTGCTA 1173 Pex14 TGGCAACTCATCAG TGCCGATGAAAATTCCCAGATTGCAGGTT Gln6Term AACCTGGAATCTGGGAATTTTCATCGGCAAGAGCGGGAAAATCGG 1174 CAA-TAA AAGGAGGTTGCGTTT CTTGGAAGAATCCAAGCGGCAAAAGAGACTA CTCATCAG 1175 TTGCGTTT 1176 2,4 DB resistance CTTTTGCCGCTTGGATTCTTCCAAGGTTAGTGAGCTGCTATGGCA 1177 Pex14 ACTCATCAGCAAACG ATGAAAATTCCGAGATTCCAGGTTCAATTT Gln8Term AAATTGAACCTGGAATCTGGGAATTTTCATCGGCAAGAGCGGGAA 1178 CAA-TAA AATCGGAAGGAGGTT ACTAACCTTGGAAGAATCCAAGCGGCAAAAG AGCAAACG 1179 AGGAGGTT 1180 2,4 DB resistance GCTGCTATGGCAACTGATGAGCAAACGCAACCTCCTTCCGATTTT 1181 Pex14 CCCGCTCTTGCCGAT CCTTCTAATCATTATTTCTTAATTTTTCTT Glu19Term AAGAAAAATTAAGAAATAATGATTAGAAGGTGTAAATTGAACCTGG 1182 GAA-TAA AATCTGGGAATTTT GTTGCGTTTGCTGATGAGTTGCCATAGCAGC TTGCCGAT 1183 GGAATTTT 1184 2,4 DB resistance GCAACTCATCAGCAAACGCAACCTCCTTCCGATTTTCCCGCTCTT 1185 Pex14 GCCGATGAAAATTCC CATTATTTCTTAATTTTTCTTTGGTGGATT Gln22Term AATCCACCAAAGAAAAATTAAGAAATAATGATTAGAAGGTGTAAAT 1186 CAG-TAG TGAACCTGGAATCT GGAAGGAGGTTGCGTTTGCTGATGAGTTGC AAAATTCC 1187 TGGAATCT 1188
[0132] Plant productivity is limited by resources available and the ability of plants to harness these resources. The conversion of light to chemical energy, which is then used to synthesize carbohydrates, fatty acids, sugars, amino acids and other compounds, requires a complex system which combines the light harvesting apparatus of pigments and proteins. The value of light energy to the plant can only be realized when it is efficiently converted into chemical energy by photosynthesis and fed into various biochemical processes. Significant effort has therefore been directed at studying photosynthetic processes in plants in order to improve productivity and/or the efficiency of photosynthesis. The analysis of the photosynthetic process is substantially aided by the ability to produce albino plants.
[0133] The attached table discloses exemplary oligonucleotide base sequences which can be used to generate site-specific mutations in genes involved in starch metabolism.
TABLE 18 Oligonucleotides to produce albino plants Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: White leaves TTCTTTCCTGTGAAATTATCTGCTCAAATCTTTGGTTCCTGACGGAG 1189 Immutans ATGGCGGCGATTT CGGCCTTTGGTTACTCTTCGACGCTCTAG Ser5Term CTAGAGCGTCGAAGAGTAACCAAAGGCCGTGAAATCGTCAACGTA 1190 TCA-TGA CCAGAGGAGATGCCT AGATTTGAGCAGATAATTTCACAGGAAAGAA GGCGATTT 1191 AGATGCCT 1192 White leaves GCTCAAATCTTTGGTTCCTGACGGAGATGGCGGCGATTTCAGGCA 1193 Immutans TCTCCTCTGGTACGT ACGCTCTAGAGCCGCCGTTTCGTACAGCTC Leu12Term GAGCTGTACGAAACGGCGGCTCTAGAGCGTCGAAGAGTAACCAAA 1194 TTG-TAG GGCCGTGAAATCGTC GCCATCTCCGTCAGGAACCAAAGATTTGAGC TGGTACGT 1195 AAATCGTC 1196 White leaves TTTGGTTCCTGACGGAGATGGCGGCGATTTCAGGCATCTCCTCTG 1197 Immutans GTACGTTGACGATTTGACGGCCTTTGGTTACTCTTCGACGCTCTAG AGCCGCCGTTTCGTACAGCTCCTCTCACCG Ser15Term CGGTGAGAGGAGCTGTACGAAACGGCGGCTCTAGAGCGTCGAAG 1198 TCA-TGA AGTAACCAAAGGCCGT TGAAATCGCCGCCATCTCCGTCAGGAACCAAA GACGATTT 1199 AAGGCCGT 1200 White leaves GCGGCGATTTCAGGCATCTCCTCTGGTACGTTGACGATTTCACGG 1201 Immutans CCTTTGGTTACTCTT CCTCTCACCGATTGCTTCATCATCTTCCTC Arg22Term GAGGAAGATGATGAAGCAATCGGTGAGAGGAGCTGTACGAAACG 1202 CGA-TGA GCGGCTCTAGAGCGTC AACGTACCAGAGGAGATGCCTGAAATCGCCGC TTACTCTT 1203 AGAGCGTC 1204 White leaves TCAGGCATCTCCTCTGGTACGTTGACGATTTCACGGCCTTTGGTTA 1205 Immutans CTCTTCGACGCTCT GATTGCTTCATCATCTTCCTCTCTCTTCTC Arg25Term GAGAAGAGAGAGGAAGATGATGAAGCAATCGGTGAGAGGAGCTG 1206 AGA-TGA TACGAAACGGCGGCTC TGAAATCGTCAACGTACCAGAGGAGATGCCTGA GACGCTCT 1207 GGCGGCTC 1208 White leaves GATTCTTGTGGGAAGGAAGAAGGATCAAGAATGGCGATTTCGATT 1209 Immutans TCTGCTATGAGTTTT AGCTAGGAGTTTTGAGAAGTCATCAGTTT AAACTGATGACTTCTCAAAACTCCTAGCTCTAAAACAAGAATATGA 1210 Gly11Term AGAAACTGAGGTTC GGA-TGA CTTGATCCTTCTTCCTTCCCACAAGAATC TGAGTTTT 1211 TGAGGTTC 1212 White leaves GTGGGAAGGAAGAAGGATCAAGAATGGCGATTTCGATTTCTGCTA 1213 Immutans TGAGTTTTGGAACCT AGTTTTGAGAAGTCATCAGTTTTATGCAA TTGCATAAAACTGATGACTTCTCAAAACTCCTAGCTCTAAAACAAG 1214 Ser13Term AATATGAAGAAACT TCA-TGA CGCCATTCTTGATCCTTCTTCCTTCCCAC TGGAACCT 1215 AAGAAACT 1216 White leaves AAGAAGGATCAAGAATGGCGATTTCGATTTCTGCTATGAGTTTTGG 1217 Immutans AACCTCAGTTTCTTGATATTCTTGTTTTAGAGCTAGGAGTTTTGAGA AGTCATCAGTTTTATGCAATTCCCAGAA TTCTGGGAATTGCATAAAACTGATGACTTCTCAAAACTCCTAGCTC 1218 Ser16Term TAAAACAAGAATAT TCA-TGA AATCGAAATCGCCATTCTTGATCCTTCTT AGTTTCTT 1219 AAGAATAT 1220 White leaves AGGATCAAGAATGGCGATTTCGATTTCTGCTATGAGTTTTGGAACC 1221 Immutans TCAGTTTCTTCATA ATCAGTTTTATGCAATTCCCAGAACCCA TGGGTTCTGGGAATTGCATAAAACTGATGACTTCTCAAAACTCCTA 1222 Tyr17Term GCTCTAAAACAAGA TAT-TAG CAGAAATCGAAATCGCCATTCTTGATCCT TCTTCATA 1223 AAACAAGA 1224 White leaves AAGAATGGCGATTTCGATTTCTGCTATGAGTTTTGGAACCTCAGTT 1225 Immutans TCTTCATATTCTTG TTTATGCAATTCCCAGAACCCATGTCGG CCGACATGGGTTCTGGGAATTGCATAAAACTGATGACTTCTCAAAA 1226 Cys19Term CTCCTAGCTCTAAA TGT-TGA TCATAGCAGAAATCGAAATCGCCATTCTT TATTCTTG 1227 GCTCTAAA 1228 White leaves CGCGTCCGATAAAAAAATCAAGAATGGCGATTTCCATATCTGCTAT 1229 Immutans GAGTTTTCGAACTT ATTCCAAGAACCCATTTTGTTTGAATTC Ser13Term GAATTCAAACAAAATGGGTTCTTGGAATTGCACAAAAATGCTGAAT 1230 TCA-TGA ATGAAGAAGAAACT CGCCATTCTTGATTTTTTTATCGGACGCG TCGAACTT 1231 AAGAAACT 1232 White leaves AAAAATCAAGAATGGCGATTTCCATATCTGCTATGAGTTTTCGAAC 1233 Immutans TTCAGTTTCTTCTT CATTTTGTTTGAATTCTCTATTTTCACT Ser17Term AGTGAAAATAGAGAATTCAAACAAAATGGGTTCTTGGAATTGCACA 1234 TCA-TGA AAAATGCTGAATAT AGATATGGAAATCGCCATTCTTGATTTTT TTCTTCTT 1235 CTGAATAT 1236 White leaves CAAGAATGGCGATTTCCATATCTGCTATGAGTTTTCGAACTTCAGT 1237 Immutans TTCTTCTTCATATT GTTTGAATTCTCTATTTTCACTTAGGAA Ser19Term TTCCTAAGTGAAAATAGAGAATTCAAACAAAATGGGTTCTTGGAAT 1238 TCA-TGA TGCACAAAAATGCT CATAGCAGATATGGAAATCGCCATTCTTG TTCATATT 1239 AAAATGCT 1240 White leaves CGATTTCCATATCTGCTATGAGTTTTCGAACTTCAGTTTCTTCTTCA 1241 Immutans TATTCAGCATTTT TCTATTTTCACTTAGGAATTCTCATAG Leu21Term CTATGAGAATTCCTAAGTGAAAATAGAGAATTCAAACAAAATGGGT 1242 TTG-TAG TCTTGGAATTGCAC TCGAAAACTCATAGCAGATATGGAAATCG AGCATTTT 1243 AATTGCAC 1244 White leaves TTCCATATCTGCTATGAGTTTTCGAACTTCAGTTTCTTCTTCATATT 1245 Immutans CAGCATTTTTGTG TTTTCACTTAGGAATTCTCATAGAACT Cys22Term AGTTCTATGAGAATTCCTAAGTGAAAATAGAGAATTCAAACAAAAT 1246 TGC-TGA GGGTTCTTGGAATT AAGTTCGAAAACTCATAGCAGATATGGAA TTTTTGTG 1247 TTGGAATT 1248 White leaves TTCGGCACGAGGGAGAAGGAGCAGACCGAGGTGGCCGTCGAGG 1249 Immutans AGTCCTTCCCCTTCAGG TCACCGCCGAGGAGAGCTGGGTGGTTAAGCTCG Glu22Term CGAGCTTAACCACCCAGCTCTCCTCGGCGGTGACCAGTGGCTCGT 1250 GAG-TAG CAGGAGGAGCCGTCT ACCTCGGTCTGCTCCTTCTCCCTCGTGCCGAA CCTTCAGG 1251 AGCCGTCT 1252 White leaves GAGCAGACCGAGGTGGCCGTCGAGGAGTCCTTCCCCTTCAGGGA 1253 Immutans GACGGCTCCTCCTGAC GGGTGGTTAAGCTCGAGCAGTCCGTGAACATTT Glu28Term AAATGTTCACGGACTGCTCGAGCTTAACCACCCAGCTCTCCTCGG 1254 CAG-TAG CGGTGACCAGTGGCT AAGGACTCCTCGACGGCCACCTCGGTCTGCTC CTCCTGAC 1255 CAGTGGCT 1256 White leaves GTCGAGGAGTCCTTCCCCTTCAGGGAGACGGCTCCTCCTGACGA 1257 Immutans GCCACTGGTCACCGCC AGTCCGTGAACATTTTCCTCACGGAGTCAGTCA Glu34Term TGACTGACTCCGTGAGGAAAATGTTCACGGACTGCTCGAGCTTAA 1258 GAG-TAG CCACCCAGCTCTCCTAGGCGGTGACCAGTGGCTCGTCAGGAGGA GCCGTCTCCCTGAAGGGGAAGGACTCCTCGAC TCACCGCC 1259 GCTCTCCT 1260 White leaves GAGGAGTCCTTCCCCTTCAGGGAGACGGCTCCTCCTGACGAGCC 1261 Immutans ACTGGTCACCGCCGAG CCGTGAACATTTTCCTCACGGAGTCAGTCATCA Glu35Term TGATGACTGACTCCGTGAGGAAAATGTTCACGGACTGCTCGAGCT 1262 GAG-TAG TAACCACCCAGCTCT GGAGCCGTCTCCCTGAAGGGGAAGGACTCCTC CCGCCGAG 1263 CCAGCTCT 1264 White leaves CTTCCCCTTCAGGGAGACGGCTCCTCCTGACGAGCCACTGGTCAC 1265 Immutans CGCCGAGGAGAGCTG TTTTCCTCACGGAGTCAGTCATCACGATACTT Trp37Term AAGTATCGTGATGACTGACTCCGTGAGGAAAATGTTCACGGACTG 1266 TGG-TGA CTCGAGCTTAACCAC GTCAGGAGGAGCCGTCTCCCTGAAGGGGAAG GAGAGCTG 1267 TTAACCAC 1268 White leaves TCCGGAGGAGGAAGGGGGATTCGACGAGGAGCTCACCCTCGCCG 1269 Immutans GCGAGGACGGCGACTGAGTCGTCAGATTCGAGCAGTCCTTCAAC GTATTCCTCACGGATACTGTCATCTTTATACTC Trp22Term GAGTATAAAGATGACAGTATCCGTGAGGAATACGTTGAAGGACTG 1270 TGG-TGA CTCGAATCTGACGAC GCTCCTCGTCGAATCCCCCTTCCTCCTCCGGA GGCGACTG 1271 CTGACGAC 1272 White leaves GAGGAAGGGGGATTCGACGAGGAGCTCACCCTCGCCGGCGAGG 1273 Immutans ACGGCGACTGGGTCGTC TCACGGATACTGTCATCTTTATACTCGATATTC Arg25Term GAATATCGAGTATAAAGATGACAGTATCCGTGAGGAATACGTTGAA 1274 AGA-TGA GGACTGCTCGAATC GGGTGAGCTCCTCGTCGAATCCCCCTTCCTC GGGTCGTC 1275 CTCGAATC 1276 White leaves GGGGGATTCGACGAGGAGCTCACCCTCGCCGGCGAGGACGGCG 1277 Immutans ACTGGGTCGTCAGATTCTAGCAGTCCTTCAACGTATTCCTCACGGA TACTGTCATCTTTATACTCGATATTCTGTATC Glu21Term GATACAGAATATCGAGTATAAAGATGACAGTATCCGTGAGGAATAC 1278 GAG-TAG GTTGAAGGACTGCT GGCGAGGGTGAGCTCCTCGTCGAATCCCCC TCAGATTC 1279 GGACTGCT 1280 White leaves GGATTCGACGAGGAGCTCACCCTCGCCGGCGAGGACGGCGACTG 1281 Immutans GGTCGTCAGATTCGAG GTCATCTTTATACTCGATATTCTGTATCGTG Gln28Term CACGATACAGAATATCGAGTATAAAGATGACAGTATCCGTGAGGAA 1282 CAG-TAG TACGTTGAAGGACTACTCGAATCTGACGACCCAGTCGCCGTCCTC GCCGGCGAGGGTGAGCTCCTCGTCGAATCC GATTCGAG 1283 GAAGGACT 1284 White leaves CGAGCAGTCCTTCAACGTATTCCTCACGGATACTGTCATCTTTATA 1285 Immutans CTCGATATTCTGTA CTCGAGACCATCGCCAGGGTGCCCTATTTC Tyr46Term GAAATAGGGCACCCTGGCGATGGTCTCGAGCACGAAGAACCTTG 1286 TAT-TAG CGTAGTCGCGGTCACGCTACAGAATATCGAGTATAAAGATGACAG TATCCGTGAGGAATACGTTGAAGGACTGCTCG ATTCTGTA 1287 CGGTCACG 1288
[0134] Another aim of biotechnology is to generate plants, especially crop plants, with added value traits. An example of such a trait is improved nutritional quality in food crops. For example, lysine, tryptophan and threonine, which are essential amino acids in the diet of humans and many animals, are limiting nutrients in most cereal crops. Consequently, grain-based diets, such as those based on corn, barley, wheat, rice, maize, millet, sorghum, and the like, must be supplemented with more expensive synthetic amino acids or amino-acid-containing oilseed protein meals. Increasing the lysine content of these grains or of any of the feed component crops would result in significant added value.
[0135] Naturally occurring mutants of plants that have different levels of particular essential amino acids have been identified. However, these mutants are generally not the result of increased free amino acid, but are instead the result of shifts in the overall protein profile of the grain. For example, in maize, reduced levels of lysine-deficient endosperm proteins (prolamines) are complemented by elevated levels of more lysine-rich proteins (albumins, globulins and glutelins). While nutritionally superior, these mutants are associated with reduced yields and poor grain quality, limiting their agronomic usefulness.
[0136] An alternative approach is to generate plants with mutations that render key amino acid biosynthetic enzymes insensitive to feedback inhibition. Many such mutations are known and mutation results in increased free amino acid. The increased production can optionally be coupled to increased expression of an abundant storage protein comprising the chosen amino acid. Alternatively, a normally abundant protein can be engineered to contain more of the target amino acid.
[0137] The attached table discloses exemplary oligonucleotide base sequences which can be used to generate site-specific mutations that remove feedback inhibition in plant amino acid biosynthetic enzymes.
TABLE 19 Genome-Altering Oligos Conferring Amino Acid Overproduction Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: Met Overproduction TATCCTCCAGGATCTTAAGATTTCCTCCTAATTTCGTCCGTCAGCT 1289 CGS GAGCATTAAAGCCC GATCGTGGCGGCTAAGTGGTCCAACAACCC Arg77His GGGTTGTTGGACCACTTAGCCGCCACGATCTGTGCAACACCGAT 1290 CGT-CAT GTTGCTACAGTTTCTA ATTAGGAGGAAATCTTAAGATCCTGGAGGATA TAAAGCCC 1291 AGTTTCTA 1292 Met Overproduction TCTTAAGATTTCCTCCTAATTTCGTCCGTCAGCTGAGCATTAAAGC 1293 CGS CCGTAGAAACTGTA CTAAGTGGTCCAACAACCCATCCTCCGCGTT Ser81Asn AACGCGGAGGATGGGTTGTTGGACCACTTAGCCGCCACGATCTG 1294 AGC-AAC TGCAACACCGATGTTG TGACGGACGAAATTAGGAGGAAATCTTAAGA AAACTGTA 1295 CGATGTTG 1296 Met Overproduction TTTCCTCCTAATTTCGTCCGTCAGCTGAGCATTAAAGCCCGTAGAA 1297 CGS ACTGTAGCAACATC CCAACAACCCATCCTCCGCGTTACCTTCGG Gly84Ser CCGAAGGTAACGCGGAGGATGGGTTGTTGGACCACTTAGCCGCC 1298 GGT-AGT ACGATCTGTGCAACAC TGCTCAGCTGACGGACGAAATTAGGAGGAAA GCAACATC 1299 TGCAACAC 1300 Met Overproduction TTCCTCCTAATTTCGTCCGTCAGCTGAGCATTAAAGCCCGTAGAAA 1301 CGS CTGTAGCAACATCG CAACAACCCATCCTCCGCGTTACCTTCGGC Gly84Asp GCCGAAGGTAACGCGGAGGATGGGTTGTTGGACCACTTAGCCGC 1302 GGT-GAT CACGATCTGTGCAACA ATGCTCAGCTGACGGACGAAATTAGGAGGAA CAACATCG 1303 GTGCAACA 1304 Met Overproduction TATCGTCACTCATCCTCCGCTTCCCTCCCAACTTCGTCCGCCAGC 1305 CGS TCAGCACCAAGGCCC CAGATCGTCGCGGCTTCGTGGTCCAACAAAGA Arg73His TCTTTGTTGGACCACGAAGCCGCGACGATCTGCGCGACGCCGAT 1306 CGC-CAC GTTGCTGCAGTTGCGG AGTTGGGAGGGAAGCGGAGGATGAGTGACGATA CAAGGCCC 1307 AGTTGCGG 1308 Met Overproduction TCCTCCGCTTCCCTCCCAACTTCGTCCGCCAGCTCAGCACCAAGG 1309 CGS CCCGCCGCAACTGCA GCTTCGTGGTCCAACAAAGACTCCGACCTTTC Ser77Asn GAAAGGTCGGAGTCTTTGTTGGACCACGAAGCCGCGACGATCTG 1310 AGC-AAC CGCGACGCCGATGTTG GCTGGCGGACGAAGTTGGGAGGGAAGCGGAGGA CAACTGCA 1311 CGATGTTG 1312 Met Overproduction TTCCCTCCCAACTTCGTCCGCCAGCTCAGCACCAAGGCCCGCCG 1313 CGS CAACTGCAGCAACATC GGTCCAACAAAGACTCCGACCTTTCGGCGGTGC Gly80Ser GCACCGCCGAAAGGTCGGAGTCTTTGTTGGACCACGAAGCCGCG 1314 GGC-AGC ACGATCTGCGCGACGC GGTGCTGAGCTGGCGGACGAAGTTGGGAGGGAA GCAACATC 1315 CGCGACGC 1316 Met Overproduction TCCCTCCCAACTTCGTCCGCCAGCTCAGCACCAAGGCCCGCCGC 1317 CGS AACTGCAGCAACATCG GTCCAACAAAGACTCCGACCTTTCGGCGGTGCC Gly80Asp GGCACCGCCGAAAGGTCGGAGTCTTTGTTGGACCACGAAGCCGC 1318 GGC-GAC GACGATCTGCGCGACG TGGTGCTGAGCTGGCGGACGAAGTTGGGAGGGA CAACATCG 1319 GCGCGACG 1320 Met Overproduction TCTCCTCCCTCATCCTCCGCTTCCCTCCCAACTTCCAGCGCCAGC 1321 CGS TAAGCACCAAGGCG CAAATCGTCGCCGCTTCGTGGTCGAACAACAG Arg68His CTGTTGTTCGACCACGAAGCGGCGACGATTTGCGCGACGCCGAT 1322 CGC-CAC GTTGCTGCAGTTGCGGC AGTTGGGAGGGAAGCGGAGGATGAGGGAGGAGA CCAAGGCG 1323 GTTGCGGC 1324 Met Overproduction TCCTCCGCTTCCCTCCCAACTTCCAGCGCCAGCTAAGCACCAAGG 1325 CGS CGCGCCGCAACTGCA GCTTCGTGGTCGAACAACAGCGACAACTCTCC Ser72Asn GGAGAGTTGTCGCTGTTGTTCGACCACGAAGCGGCGACGATTTG 1326 AGC-AAC CGCGACGCCGATGTTG GCTGGCGCTGGAAGTTGGGAGGGAAGCGGAGGA CAACTGCA 1327 CGATGTTG 1328 Met Overproduction TTCCCTCCCAACTTCCAGCGCCAGCTAAGCACCAAGGCGCGCCG 1329 CGS CAACTGCAGCAACATC GGTCGAACAACAGCGACAACTCTCCGGCCGCCG Gly75Ser CGGCGGCCGGAGAGTTGTCGCTGTTGTTCGACCACGAAGCGGCG 1330 GGC-AGC ACGATTTGCGCGACGC GGTGCTTAGCTGGCGCTGGAAGTTGGGAGGGAA GCAACATC 1331 CGCGACGC 1332 Met Overproduction TCCCTCCCAACTTCCAGCGCCAGCTAAGCACCAAGGCGCGCCGC 1333 CGS AACTGCAGCAACATCG GTCGAACAACAGCGACAACTCTCCGGCCGCCGG Gly75Asp CCGGCGGCGGGAGAGTTGTCGCTGTTGTTCGACCACGAAGCGGC 1334 GGC-GAC GACGATTTGCGCGACG TGGTGCTTAGCTGGCGCTGGAAGTTGGGAGGGA CAACATCG 1335 GCGCGACG 1336 Met Overproduction TGTCTTCTCTGATTTTCAGGTTTCCTCCTAATTTCGTGAGGCAGCT 1337 CGS AAGCATTAAGGCT AGTTGTGGCGGCTTCCTGGTCTAACAACCA Arg70His TGGTTGTTAGACCAGGAAGCCGCCACAACTTGAGCCACGCCAATA 1338 AGG-CAC TTGCTGCAATTCCT TAGGAGGAAACCTGAAAATCAGAGAAGACA TAAGGCT 1339 AATTCCT 1340 Met Overproduction TTTTCAGGTTTCCTCCTAATTTCGTGAGGCAGCTAAGCATTAAGGC 1341 CGS TAGGAGGAATTGCA CTTCCTGGTCTAACAACCAAGCCGGTCCTGA Ser74Asn TCAGGACCGGCTTGGTTGTTAGACCAGGAAGCCGCCACAACTTG 1342 AGC-AAC AGCCACGCCAATATTGTTGCAATTCCTCCTAGCCTTAATGCTTAGC TGCCTCACGAAATTAGGAGGAAACCTGAAAA GAATTGCA 1343 CAATATTG 1344 Met Overproduction TTTCCTCCTAATTTCGTGAGGCAGCTAAGCATTAAGGCTAGGAGG 1345 CGS AATTGCAGCAATATT TCTAACAACCAAGCCGGTCCTGAATTCACTC Gly77Ser GAGTGAATTCAGGACCGGCTTGGTTGTTAGACCAGGAAGCCGCC 1346 GGC-AGC ACAACTTGAGCCACGC TGCTTAGCTGCCTCACGAAATTAGGAGGAAA GCAATATT 1347 AGCCACGC 1348 Met Overproduction TTCCTCCTAATTTCGTGAGGCAGCTAAGCATTAAGGCTAGGAGGA 1349 CGS ATTGCAGCAATATTG CTAACAACCAAGCCGGTCCTGAATTCACTCC Gly77Asp GGAGTGAATTCAGGACCGGCTTGGTTGTTAGACCAGGAAGCCGC 1350 GGC-GAC CACAACTTGAGCCACG ATGCTTAGCTGCCTCACGAAATTAGGAGGAA CAATATTG 1351 GAGCCACG 1352 Met Overproduction CTTCCTCTCTTATCCTTCGCTTTCCTCCCAACTTTGTCCGTCAGCT 1353 CGS CAGCACCAAGGCTCGCC AGGTCGTCGCTGCCTCCTGGTCCAACAACTC GAGTTGTTGGACCAGGAGGCAGCGACGACCTGTGCGACACCAAT 1354 Arg73His GTTGCTGCAGTTG CGC-CAC AGTTGGGAGGAAAGCGAAGGATAAGAGAGGAAG GGCTCGCC 1355 TGCAGTTG 1356 Met Overproduction TCCTTCGCTTTCCTCCCAACTTTGTCCGTCAGCTCAGCACCAAGG 1357 CGS CTCGCCGCAACTGCAACAACATTGGTGTCGCACAGGTCGTCGCT GCCTCCTGGTCCAACAACTCCGATGCCGGCGC GCGCCGGCATCGGAGTTGTTGGACCAGGAGGCAGCGACGACCT 1358 Ser77Asn GTGCGACACCAATG AGC-AAC AGCTGACGGACAAAGTTGGGAGGAAAGCGAAGGA CAACTGCA 1359 CAATGTTG 1360 Met Overproduction TTTCCTCCCAACTTTGTCCGTCAGCTCAGCACCAAGGCTCGCCGC 1361 CGS AACTGCAGCAACATT GTCCAACAACTCCGATGCCGGCGCCACCTCTT AAGAGGTGGCGCCGGCATCGGAGTTGTTGGACCAGGAGGCAGC 1362 Gly80Ser GACGACCTGTGCGACAC GGT-AGT TGGTGCTGAGCTGACGGACAAAGTTGGGAGGAAA GCAACATT 1363 TGCGACAC 1364 Met Overproduction TTCCTCCCAACTTTGTCCGTCAGCTCAGCACCAAGGCTCGCCGCA 1365 CGS ACTGCAGCAACATTG CCAACAACTCCGATGCCGGCGCCACCTCTTG CAAGAGGTGGCGCCGGCATCGGAGTTGTTGGACCAGGAGGCAG 1366 Gly80Asp CGACGACCTGTGCGACA GGT-GAT TTGGTGCTGAGCTGACGGACAAAGTTGGGAGGAA CAACATTG 1367 GTGCGACA 1368 Met Overproduction CCTCTGCTACCATCCTCCGCTTTCCGCCAAACTTTGTCCGCCAGC 1369 CGS TTAGCACCAAGGCACACGGCAACTGCAGCAACATCGGCGTCGCG CAGATCGTCGCCGCCGCGTGGTCCGACTGCCC Arg41His GGGCAGTCGGACCACGCGGCGGCGACGATCTGCGCGACGCCGA 1370 CGC-CAC TGTTGCTGCAGTTGCGG AAGTTTGGCGGAAAGCGGAGGATGGTAGCAGAGG CAAGGCAC 1371 AGTTGCGG 1372 Met Overproduction TCCTCCGCTTTCCGCCAAACTTTGTCCGCCAGCTTAGCACCAAGG 1373 CGS CACGCCGCAACTGCA GCCGCGTGGTCCGACTGCCCCGCCGCTCGCCC Ser45Asn GGGCGAGCGGCGGGGCAGTCGGACCACGCGGCGGCGACGATCT 1374 AGC-AAC GCGCGACGCCGATGTTG AGCTGGCGGACAAAGTTTGGCGGAAAGCGGAGGA CAACTGCA 1375 CGATGTTG 1376 Met Overproduction TTTCCGCCAAACTTTGTCCGCCAGCTTAGCACCAAGGCACGCCGC 1377 CGS AACTGCAGCAACATC GTCCGACTGCCCCGCCGCTCGCCCCCACTTAG Gly48Ser CTAAGTGGGGGCGAGCGGCGGGGCAGTCGGACCACGCGGCGG 1378 GGC-AGC CGACGATCTGCGCGACGC TTGGTGCTAAGCTGGCGGACAAAGTTTGGCGGAAA GCAACATC 1379 CGCGACGC 1380 Met Overproduction TTCCGCCAAACTTTGTCCGCCAGCTTAGCACCAAGGCACGCCGCA 1381 CGS ACTGCAGCAACATCG TCCGACTGCCCCGCCGCTCGCCCCCACTTAGG Gly48Asp CCTAAGTGGGGGCGAGCGGCGGGGCAGTCGGACCACGCGGCG 1382 GGC-GAC GCGACGATCTGCGCGACG CTTGGTGCTAAGCTGGCGGACAAAGTTTGGCGGAA CAACATCG 1383 GCGCGACG 1384 Met Overproduction GTATGAATGATCTGTGGGTGAAACACTGTGGGATTAGTCATACAG 1385 TS GAAGTTTCAAGGATCGTGGAATGACTGTTTTGGTTAGTCAAGTTAA TCGTCTGAGAAAGATGAAACGACCTGTGGT Leu205Arg ACCACAGGTCGTTTCATCTTTCTCAGACGATTAACTTGACTAACCA 1386 CTT-CGT AAACAGTCATTCCA ACAGTGTTTCACCCACAGATCATTCATAC CAAGGATC 1387 TCATTCCA 1388 Met Overproduction GCATGACTGATTTGTGGGTCAAACACTGTGGGATTAGCCATACTG 1389 TS GTAGTTTTAAGGATCGTGGGATGACTGTTTTGGTGAGTCAAGTTAA TCGCTTGCGGAAAATGCATAAACCGGTTGT Leu198Arg ACAACCGGTTTATGCATTTTCCGCAAGCGATTAACTTGACTCACCA 1390 CTT-CGT AAACAGTCATCCCACGATCCTTAAAACTACCAGTATGGCTAATCCC ACAGTGTTTGACCCACAAATCAGTCATGC TAAGGATC 1391 TCATCCCA 1392 Lys Overproduction TCATTGGGCACACAGTGAACTGCTTTGGCTCTAGAATCAAAGTGA 1393 DHPS TAGGCAACACAGGAA ACAGAACAGGGATTTGCTGTTGGCATGCATGC Ser157Asn GCATGCATGCCAACAGCAAATCCCTGTTCTGTTGCGTGGACGGCT 1394 AGC-AAC TCTCTGGTTGAGTTG AGCCAAAGCAGTTCACTGTGTGCCCAATGA CACAGGAA 1395 TTGAGTTG 1396 Lys Overproduction GCTCTAGAATCAAAGTGATAGGCAACACAGGAAGCAACTCAACCA 1397 DHPS GAGAAGCCGTCCACG CATGCGGCTCTCCACATCAATCCTTACTACGG Ala166Val CCGTAGTAAGGATTGATGTGGAGAGCCGCATGCATGCCAACAGC 1398 GCA-GAA AAATCCCTGTTCTGTT CCTGTGTTGCCTATCACTTTGATTCTAGAGC CGTCCACG 1399 GTTCTGTT 1400 Lys Overproduction GGCTCTAGAATCAAAGTGATAGGCAACACAGGAAGCAACTCAACC 1401 DHPS AGAGAAGCCGTCCAC GCATGCGGCTCTCCACATCAATCCTTACTACG Ala166Thr CGTAGTAAGGATTGATGTGGAGAGCCGCATGCATGCCAACAGCA 1402 GCA-ACA AATCCCTGTTCTGTTG CTGTGTTGCCTATCACTTTGATTCTAGAGCC CCGTCCAC 1403 TTCTGTTG 1404 Lys Overproduction TTATTGGGCATACAGTTAACTGCTTTGGCACTAAAATTAAAGTGGT 1405 DHPS CGGCAACACAGGAA TGAGCAGGGATTCGCTGTAGGTATGCACGC Ser24Asn GCGTGCATACCTACAGCGAATCCCTGCTCAGTTGCGTGAATAGCC 1406 AGT-AAT TCCCTTGTTGAGTTA GCCAAAGCAGTTAACTGTATGCCCAATAA CACAGGAA 1407 TTGAGTTA 1408 Lys Overproduction GCACTAAAATTAAAGTGGTCGGCAACACAGGAAGTAACTCAACAA 1409 DHPS GGGAGGCTATTCACGTAACTGAGCAGGGATTCGCTGTAGGTATG CACGCGGCTCTCCACATCAATCCTTACTACGG Ala133Val CCGTAGTAAGGATTGATGTGGAGAGCCGCGTGCATACCTACAGC 1410 GCA-GTA GAATCCCTGCTCAGTT CCTGTGTTGCCGACCACTTTAATTTTAGTGC TATTCACG 1411 GCTCAGTT 1412 Lys Overproduction GGCACTAAAATTAAAGTGGTCGGCAACACAGGAAGTAACTCAACA 1413 DHPS AGGGAGGCTATTCACACAACTGAGCAGGGATTCGCTGTAGGTAT GCACGCGGCTCTCCACATCAATCCTTACTACG Ala133Thr CGTAGTAAGGATTGATGTGGAGAGCCGCGTGCATACCTACAGCG 1414 GCA-ACA AATCCCTGCTCAGTTG CTGTGTTGCCGACCACTTTAATTTTAGTGCC CTATTCAC 1415 CTCAGTTG 1416 Lys Overproduction TCATCGGGCATACTGTTAACTGCTTTGGAGCCAACATTAAAGTGAT 1417 DHPS 1 AGGCAACACGGGAA CAGAGCAGGGATTTGCTGTTGGCATGCATGC Ser65Asn GCATGCATGCCAACAGCAAATCCCTGCTCTGTCGCGTGAACAGCT 1418 AGT-AAT TCTCTGGTTGAGTTA CTCCAAAGCAGTTAACAGTATGCCCGATGA CACGGGAA 1419 TTGAGTTA 1420 Lys Overproduction GAGCCAACATTAAAGTGATAGGCAACACGGGAAGTAACTCAACCA 1421 DHPS 1 GAGAAGCTGTTCACGTGACAGAGCAGGGATTTGCTGTTGGCATG CATGCAGCTCTTCATGTCAATCCTTACTACGG Ala174Val CCGTAGTAAGGATTGACATGAAGAGCTGCATGCATGCCAACAGCA 1422 GCG-GTG AATCCCTGCTCTGTC CCGTGTTGCCTATCACTTTAATGTTGGCTC TGTTCACG 1423 GCTCTGTC 1424 Lys Overproduction GGAGCCAACATTAAAGTGATAGGCAACACGGGAAGTAACTCAACC 1425 DHPS 1 AGAGAAGCTGTTCAC GCATGCAGCTCTTCATGTCAATCCTTACTACG Ala174Thr CGTAGTAAGGATTGACATGAAGAGCTGCATGCATGCCAACAGCAA 1426 GCG-ACG ATCCCTGCTCTGTCG CGTGTTGCCTATCACTTTAATGTTGGCTCC CTGTTCAC 1427 CTCTGTCG 1428 Lys Overproduction TCATCGGGCACACTGTTAACTGCTTTGGAACTAACATTAAAGTGAT 1429 DHPS 2 AGGCAACACGGGAA AGAGCAGGGATTTGCTGTTGGCATGCATGC Ser154Asn GCATGCATGCCAACAGCAAATCCCTGCTCTGAAGCGTGAATCGCT 1430 AGT-AAT TCTCTAGTTGAGTTA TCCAAAGCAGTTAACAGTGTGCCCGATGA CACGGGAA 1431 TTGAGTTA 1432 Lys Overproduction GAACTAACATTAAAGTGATAGGCAACACGGGAAGTAACTCAACTA 1433 DHPS 2 GAGAAGCGATTCACGTTTCAGAGCAGGGATTTGCTGTTGGCATGC ATGCAGCTCTCCATGTCAATCCTTACTATGG Ala163Val CCATAGTAAGGATTGACATGGAGAGCTGCATGCATGCCAACAGCA 1434 GCT-GTT AATCCCTGCTCTGAA CCGTGTTGCCTATCACTTTAATGTTAGTTC GATTCACG 1435 GCTCTGAA 1436 Lys Overproduction GGAACTAACATTAAAGTGATAGGCAACACGGGAAGTAACTCAACT 1437 DHPS 2 AGAGAAGCGATTCACACTTCAGAGCAGGGATTTGCTGTTGGCATG CATGCAGCTCTCCATGTCAATCCTTACTATG Ala163Thr CATAGTAAGGATTGACATGGAGAGCTGCATGCATGCCAACAGCAA 1438 GCT-ACT ATCCCTGCTCTGAAG CGTGTTGCCTATCACTTTAATGTTAGTTCC CGATTCAC 1439 CTCTGAAG 1440 Lys Overproduction CTCATTGGGCATACTGTGAACTGCTTTGGCTCTAGAATTAAAGTGA 1441 DHPS TAGGCAACACAGGAA CAGAGCAGGGATTTGCTGTTGGCATGCATG Ser154Asn CATGCATGCCAACAGCAAATCCCTGCTCTGTTGCGTGAACAGCTT 1442 AGT-AAT CTCTGGTTGAGTTA GCCAAAGCAGTTCACAGTATGCCCAATGAG CACAGGAA 1443 TTGAGTTA 1444 Lys Overproduction GCTCTAGAATTAAAGTGATAGGCAACACAGGAAGTAACTCAACCA 1445 DHPS GAGAAGCTGTTCACG ATGCAGCTCTCCACATCAATCCTTACTATGG Ala163Val CCATAGTAAGGATTGATGTGGAGAGCTGCATGCATGCCAACAGCA 1446 GCA-GTA AATCCCTGCTCTGTT CTGTGTTGCCTATCACTTTAATTCTAGAGC TGTTCACG 1447 GCTCTGTT 1448 Lys Overproduction GGCTCTAGAATTAAAGTGATAGGCAACACAGGAAGTAACTCAACC 1449 DHPS AGAGAAGCTGTTCAC CATGCAGCTCTCCACATCAATCCTTACTATG Ala163Thr CATAGTAAGGATTGATGTGGAGAGCTGCATGCATGCCAACAGCAA 1450 GCA-ACA ATCCCTGCTCTGTTG TGTGTTGCCTATCACTTTAATTCTAGAGCC CTGTTCAC 1451 CTCTGTTG 1452 Lys Overproduction TCATTGGTCACACAGTCAATTGTTTTGGAGGGTCCATCAAAGTCAT 1453 DHPS CGGGAACACTGGAA CTGAACAGGGATTTGCTGTAGGTATGCATGC Ser136Asn GCATGCATACCTACAGCAAATCCCTGTTCAGTTGCATGGATTGCTT 1454 AGC-AAC CCCTTGTGGAGTTG CTCCAAAACAATTGACTGTGTGACCAATGA CACTGGAA 1455 TGGAGTTG 1456 Lys Overproduction GAGGGTCCATCAAAGTCATCGGGAACACTGGAAGCAACTCCACAA 1457 DHPS GGGAAGCAATCCATG ATGCAGCTCTTCACATTAATCCCTACTATGG Ala145Val CCATAGTAGGGATTAATGTGAAGAGCTGCATGCATACCTACAGCA 1458 GCA-GTA AATCCCTGTTCAGTT CAGTGTTCCCGATGACTTTGATGGACCCTC AATCCATG 1459 GTTCAGTT 1460 Lys Overproduction GGAGGGTCCATCAAAGTCATCGGGAACACTGGAAGCAACTCCAC 1461 DHPS AAGGGAAGCAATCCAT GCATGCAGCTCTTCACATTAATCCCTACTATG Ala145Thr CATAGTAGGGATTAATGTGAAGAGCTGCATGCATACCTACAGCAA 1462 GCA-ACA ATCCCTGTTCAGTTG AGTGTTCCCGATGACTTTGATGGACCCTCC CAATCCAT 1463 TTCAGTTG 1464 Lys Overproduction TTATAGGCCATACCGTTAACTGTTTTGGCGGAAGCATCAAAGTCAT 1465 DHPS TGGAAACACTGGAA TGAACAAGGATTCGCGGTTGGAATGCATGC Ser142Asn GCATGCATTCCAACCGCGAATCCTTGTTCAGTCGCGTGGATTGCT 1466 AGC-AAC TCTCTAGTCGAATTG CGCCAAAACAGTTAACGGTATGGCCTATAA CACTGGAA 1467 TCGAATTG 1468 Lys Overproduction GCGGAAGCATCAAAGTCATTGGAAACACTGGAAGCAATTCGACTA 1469 DHPS GAGAAGCAATCCACG CATGCTGCTCTTCATATAAACCCTTACTATGG Ala151Val CCATAGTAAGGGTTTATATGAAGAGCAGCATGCATTCCAACCGCG 1470 GCG-GTG AATCCTTGTTCAGTC CAGTGTTTCCAATGACTTTGATGCTTCCGC AATCCACG 1471 GTTCAGTC 1472 Lys Overproduction GGCGGAAGCATCAAAGTCATTGGAAACACTGGAAGCAATTCGACT 1473 DHPS AGAGAAGCAATCCAC GCATGCTGCTCTTCATATAAACCCTTACTATG Ala151Thr CATAGTAAGGGTTTATATGAAGAGCAGCATGCATTCCAACCGCGA 1474 GCG-ACG ATCCTTGTTCAGTCG AGTGTTTCCAATGACTTTGATGCTTCCGCC CAATCCAC 1475 TTCAGTCG 1476 Lys Overproduction TTATTGCTCATACAGTCAACTGTTTTGGTGGGAAAATTAAGGTTAT 1477 DHPS TGGAAATACTGGAA TGAGCAGGGTTTTGCTGTTGGAATGCATGC Ser103Asn GCATGCATTCCAACAGCAAAACCCTGCTCAGTGGCATGAATTGCT 1478 AGC-AAC TCCCTGGTGGAGTTGTTTCCAGTATTTCCAATAACCTTAATTTTCC CACCAAAACAGTTGACTGTATGAGCAATAA TACTGGAA 1479 TGGAGTTG 1480 Lys Overproduction GTGGGAAAATTAAGGTTATTGGAAATACTGGAAGCAACTCCACCA 1481 DHPS GGGAAGCAATTCATG ATGCTGCCCTTCACATAAACCCTTACTATGG Ala112Val CCATAGTAAGGGTTTATGTGAAGGGCAGCATGCATTCCAACAGCA 1482 GCC-GTC AAACCCTGCTCAGTG CCAGTATTTCCAATAACCTTAATTTTCCCAC AATTCATG 1483 GCTCAGTG 1484 Lys Overproduction GGTGGGAAAATTAAGGTTATTGGAAATACTGGAAGCAACTCCACC 1485 DHPS AGGGAAGCAATTCAT CATGCTGCCCTTCACATAAACCCTTACTATG Ala112Thr CATAGTAAGGGTTTATGTGAAGGGCAGCATGGATTCCAACAGCAA 1486 GCC-ACC AACCCTGCTCAGTGG CAGTATTTCCAATAACCTTAATTTTCCCACC CAATTCAT 1487 CTCAGTGG 1488 Trp Overproduction CTTGCAGGAGACATATTTCAGATCGTGCTGAGTCAACGTTTTGAG 1489 AS CGGCGAACATTTGCA GTTGTGAATCCAAGTCCGTATATGGGTTATT Asp341Asn AATAACCCATATACGGACTTGGATTCACAACTCTTAGTGCTCTATA 1490 GAG-AAC AACTTCAAAGGGGT CAGCACGATCTGAAATATGTCTCCTGCAAG CATTTGCA 1491 AAAGGGGT 1492 Trp Overproduction GCTGCAGGAGACATATTTCAAATCGTTTTAAGTCAACGCTTTGAGA 1493 AS GAAGAACATTTGCT TGTGAATCCAAGCCCATATATGACTTACA Asp326Asn TGTAAGTCATATATGGGCTTGGATTCACAATTCTTAATGCTCTGTA 1494 GAC-AAC CACTTCAAATGGGT AAAACGATTTGAAATATGTCTCCTGCAGC CATTTGCT 1495 AAATGGGT 1496 Trp Overproduction CTAGCTGGTGACATTTTTCAAGTAGTCTTAAGCCAGCGTTTTGAGA 1497 AS GGCGTACATTTGCT TTGTCAATCCTAGTCCTTATATGGCCTATC Asp323Asn GATAGGCCATATAAGGACTAGGATTGACAATACGCAATGCACGGT 1498 GAC-AAC ACACCTCAAAGGGGT TTAAGACTACTTGAAAAATGTCACCAGCTAG CATTTGCT 1499 AAAGGGGT 1500 Trp Overproduction CTTGCTGGTGACATATTCCAGATCGTACTAAGTCAGCGTTTTGAAA 1501 AS GGCGAACGTTCGCA TTGTTAATCCAAGCCCATATATGACTTATT Asp354Asn AATAAGTCATATATGGGCTTGGATTAACAATCCTCAGTGATCTATA 1502 GAC-AAC GATTTCAAATGGGT AGTACGATCTGGAATATGTCACCAGCAAG CGTTCGCA 1503 AAATGGGT 1504 Trp Overproduction CTGGCTGGGGACATATTCCAGCTTGTCCTAAGTCAGCGTTTTGAA 1505 AS CGGCGAACATTTGCA ATTGTCAACCCAAGTCCATATATGACTTATT Asp354Asn AATAAGTCATATATGGACTTGGGTTGACAATTCTCAATGCTCGGTA 1506 GAT-AAT GACTTCAAATGGAT AGGACAAGCTGGAATATGTCCCCAGCCAG CATTTGCA 1507 AAATGGAT 1508
[0138] A principal aim of biotechnology is the improvement of crop plants for food value, agriculture, and to produce a range of plant-derived raw materials. Along with oils, fats and proteins, polysaccharides constitute the main raw materials derived from plants, and apart from cellulose, the storage polymer starch is the most important polysaccharide raw material. Starch is derived from a range of plants, but maize is the most important cultivated plant for the production of starch.
[0139] The polysaccharide starch is a polymer made up of glucose molecules. However, starch is not a homogeneous raw material and is, in fact, a highly complex mixture of various types of molecules which differ from each other, for example, in their degree of polymerization and in the degree of branching of the glucose chains. For example, amylose-starch is a basically non-branched polymer made up of α-1,4-glycosidically branched glucose molecules, and amylopectin-starch is a complex mixture of variously branched glucose chains. The branching results from additional α-1,6-glycosidic linkages. In plants from which starch is typically isolated, for example maize or potato, the starch is approximately 25% amylose-starch and 75% amylopectin-starch.
[0140] In maize, various mutants in starch metabolism are known, for example waxy, sugary, shrunken and opaque-2. In addition to producing a modified starch, these mutations greatly improve grain quality in maize, and thus expand the use of maize not only as the food but also for the important industrial materials in food chemistry. It would therefore be advantageous to be able readily to obtain mutants in these genes in particular maize genotypes as well as other plants. Such plants can be obtained, for example, using traditional breeding methods and through specific genetic modification by means of recombinant DNA techniques.
[0141] The attached tables disclose exemplary oligonucleotide base sequences which can be used to generate site-specific mutations in genes involved in starch metabolism.
TABLE 20 Genome-Altering Oligos Conferring Increased Starch Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: Increased Starch GAACTTGAGACTGAGAAAAGGGATCCAAGGACAGTTGCTTCCATT 1509 ADPGPP ATTCTTGGAGGTGGA CGCCGCGCCAAGCCTGCCGTTCCTATCGGGG Ala99Lys CCCCGATAGGAACGGCAGGCTTGGCGCGGCGTTTTGTGAGAGGA 1510 GCA-AAA AAGAGTCGAGTTCCT GTCCTTGGATCCCTTTTCTCAGTCTCAAGTTC GAGGTGGA 1511 AGTTCCT 1512 Increased Starch CAAAACGCCGCGCCAAGCCTGCCGTTCCTATCGGGGGAGCCTAT 1513 ADPGPP AGGTTGATAGATGTAC ACAAAGTCTACATACTCACACAATATAACTC Pro127Leu GAGTTATATTGTGTGAGTATGTAGACTTTGTTGATTCCGCTGTTAA 1514 CCA-CTA TACAATTGCTCATT AGGAACGGCAGGCTTGGCGCGGCGTTTTG AGATGTAC 1515 TGCTCATT 1516 Increased Starch TCACACAATATAACTCAGCATCATTGAACAGGCATTTAGCCCGTGC 1517 ADPGPP TTACAACTCCAAT CTTGCGGCCACTCAAACGCCAGGAGAATC Gly162Asn GATTCTCCTGGCGTTTGAGTGGCCGCAAGAACCTCAACATAGCCA 1518 GGA-AAT TCTCCAAAGCCAAG CTGTTCAATGATGCTGAGTTATATTGTGTGA CTCCAAT 1519 AGCCAAG 1520 Increased Starch TCACACAATATAACTCAGCATCATTGAACAGGCATTTAGCCCGTGC 1521 ADPGPP TTACAACTCCAAT CTTGCGGCCACTCAAACGCCAGGAGAATC Gly162Asn GATTCTCCTGGCGTTTGAGTGGCCGCAAGAACCTCAACATAGCCA 1522 GGA-AAC TCTCCAAAGCCAAG CTGTTCAATGATGCTGAGTTATATTGTGTGA CTCCAAT 1523 AGCCAAG 1524 Increased Starch GTTTGAGAGAAGAAAGGTAGACCCGCAAAATGTGGCTGCAATCAT 1525 ADPGPP TCTAGGAGGAGGCAA AGCCGCAACACCAGCTGTAAATATTCATCTT Asn100Lys AAGATGAATATTTACAGCTGGTGTTGCGGCTCTCATTGTAAGAGG 1526 AAT-AAA GAAGAGTTTAGCTCC ATTTTGCGGGTCTACCTTTCTTCTCTCAAAC GGAGGCAA 1527 TTAGCTCC 1528 Increased Starch CTTGTGTCTTCAAATTATGTTAGGTTCCTGTTGGTGGATGCTACAG 1529 ADPGPP GCTGATCGATATCC AAGATATTTGTGCTGACACAGTTCAACTC Pro128Leu GAGTTGAACTGTGTCAGCACAAATATCTTGTTGATGCAGCTGTTAA 1530 CCG-CTG TACAGTTACTCATC CAGGAACCTAACATAATTTGAAGACACAAG CGATATCC 1531 TACTCATC 1532 Increased Starch TGACACAGTTCAACTCAGCTTCCCTTAATCGACATTTAGCACGAAC 1533 ADPGPP TTATTTTGGGAAT CAAACACTATGACAATAATAACTCTCAGC Gly163Asn GCTGAGAGTTATTATTGTCATAGTGTTTGTACCTCTACGAAACCAC 1534 GGC-AAT CTCCAAAGTTTAT ATTAAGGGAAGCTGAGTTGAACTGTGTCA TGGGAAT 1535 AGTTTAT 1536 Increased Starch TGACACAGTTCAACTCAGCTTCCCTTAATCGACATTTAGCACGAAC 1537 ADPGPP TTATTTTGGGAAT CAAACACTATGACAATAATAACTCTCAGC Gly163Asn GCTGAGAGTTATTATTGTCATAGTGTTTGTACCTCTACGAAACCAC 1538 GGC-AAC CTCCAAAGTTTAT ATTAAGGGAAGCTGAGTTGAACTGTGTCA TGGGAAT 1539 AGTTTAT 1540 Increased Starch TTGAGGAACAACCAACGGCAGATCCAAAAGCTGTTGCCTCTGTCA 1541 ADPGPP TTCTAGGTGGTGGT GAAGAGCTAAACCAGCTGTTCCTATTGGTGG CCACCAATAGGAACAGCTGGTTTAGCTCTTCTGCTTGTAAGAGGA 1542 Val94Lys AAAAGACGAGTTCC GTT-AAA GCTTTTGGATCTGCCGTTGGTTGTTCCTCAA TGGTGGT 1543 GAGTTCC 1544 Increased Starch CAAGCAGAAGAGCTAAACCAGCTGTTCCTATTGGTGGTTGTTACC 1545 ADPGPP GGCTAATTGATGTAC GGAAAATTTTCATCTTAACACAGTTCAATTC GAATTGAACTGTGTTAAGATGAAAATTTTCCGTATGCCACTGTTAA 1546 Pro122Leu TGCAGTTACTCATT CCA-CAA AGGAACAGCTGGTTTAGCTCTTCTGGTTG TGATGTAC 1547 TACTCATT 1548 Increased Starch CACAGTTCAATTCCTTTTCCCTCAATCGTCACCTTGCCCGCACGTA 1549 ADPGPP TAATTTTGGAAAT TTAGCTGCAACCCAGACTCCAGGGGATGC GCATCCCCTGGAGTCTGGGTTGCAGCTAAAACCTCCACAAATCCA 1550 Gly158Asn TCTCCAAAACCCAC GGA-AAT GACGATTGAGGGAAAAGGAATTGAACTGTG TGGAAAT 1551 AACCCAC 1552 Increased Starch CACAGTTCAATTCCTTTTCCCTCAATCGTCACCTTGCCCGCACGTA 1553 ADPGPP TAATTTTGGAAAT TTTAGCTGCAACCCAGACTCCAGGGGATGC GCATCCCCTGGAGTCTGGGTTGCAGCTAAAACCTCCACAAATCCA 1554 Gly158Asn TCTCCAAAACCCAC GGA-AAC GACGATTGAGGGAAAAGGAATTGAACTGTG TGGAAAT 1555 AACCCAC 1556 Increased Starch ACGTAGATTTGGAAAAAAGAGACCCAAGTACAGTTGTAGCAATTAT 1557 ADPGPP ACTAGGTGGAGGT ACGAGCCAAGCCTGCTGTTCCAATTGGAGG Ala101Lys CCTCCAATTGGAACAGCAGGCTTGGCTCGTCGCTTGGTGAGAGG 1558 GCT-AAA GAAGAGACGAGTTCC GTACTTGGGTCTCTTTTTTCCAAATCTACGT TGGAGGT 1559 GAGTTCC 1560 Increased Starch CCAAGCGACGAGCCAAGCCTGCTGTTCCAATTGGAGGTGCTTATA 1561 ADPGPP GGCTGATAGATGTAC ACAAAGTATACATTCTCACTCAATTTAATTC Pro129Leu GAATTAAATTGAGTGAGAATGTATACTTTGTTGATCCCACTATTGA 1562 CCA-CTA TGCAGTTACTCATT TGGAACAGCAGGCTTGGCTCGTCGCTTGG AGATGTAC 1563 TACTCATT 1564 Increased Starch CTCAATTTAATTCAGCCTCACTCAACAGGCATATTGCACGTGCTTA 1565 ADPGPP TAACTCTGGTACT CTTGCAGCAACTCAAACTCCAGGGGAGCA Gly165Asn TGCTCCCGTGGAGTTTGAGTTGCTGCAAGAACCTCAACATAGCCA 1566 GGA-AAT TCTCCAAAAGTGAC GCCTGTTGAGTGAGGCTGAATTAAATTGAG TGGTACT 1567 AAGTGAC 1568 Increased Starch CTCAATTTAATTCAGCCTCACTCAACAGGCATATTGCACGTGCTTA 1569 ADPGPP TAACTCTGGTACT CTTGCAGCAACTCAAACTCCAGGGGAGCA Gly165Asn TGCTCCCCTGGAGTTTGAGTTGCTGCAAGAACCTCAACATAGCCA 1570 GGA-AAC TCTCCAAAAGTGAC GCCTGTTGAGTGAGGCTGAATTAAATTGAG TGGTACT 1571 AAGTGAC 1572 Increased Starch ATATTGGAGAGGCGTCGGGCAAACCCTAAGAATGTGGCTGCAATC 1573 ADPGPP ATACTGCCAGGCGGT CGAGCTGCAACCCCTGCTGTTCCACTTGGAG Ala94Lys CTCCAAGTGGAACAGCAGGGGTTGCAGCTCGATTGGTGAGAGGG 1574 GCA-AAA AATAGGTGTGTCCCT TTCTTAGGGTTTGCCCGACGCCTCTCCAATAT CAGGCGGT 1575 TGTCCCT 1576 Increased Starch CCAATCGAGCTGCAACCCCTGCTGTTCCACTTGGAGGATGCTATA 1577 ADPGPP GGTTGATCGACATTC ACAAGATCTTTGTGCTGACCCAGTTCAATTC Pro122Leu GAATTGAACTGGGTCAGCACAAAGATCTTGTTAACCCCGCTGTTG 1578 CCA-CTA ATGCAGTTGCTCATT GTGGAACAGCAGGGGTTGCAGCTCGATTGG CGACATTC 1579 TGCTCATT 1580 Increased Starch TGACCCAGTTCAATTCAGCTTCTCTTAACCGTCACATTTCCCGTAC 1581 ADPGPP CGTCTTTGGCAAT GCTGGCTGCAACCCAAACACAAGGGGAAAC Gly157Asn GTTTCCCCTTGTGTTTGGGTTGCAGCCAGCACCTCAACAAATCCA 1582 GGT-AAT TCTCCGAAGCTCAC CGGTTAAGAGAAGCTGAATTGAACTGGGTCA TGGCAAT 1583 AGCTCAC 1584 Increased Starch TGACCCAGTTCAATTCAGCTTCTCTTAACCGTCACATTTCCCGTAC 1585 ADPGPP CGTCTTTGGCAAT GCTGGCTGCAACCCAAACACAAGGGGAAAC Gly157Asn GTTTCCCCTTGTGTTTGGGTTGCAGCCAGCACCTCAACAAATCCA 1586 GGT-AAC TCTCCGAAGCTCAC CGGTTAAGAGAAGCTGAATTGAACTGGGTCA TGGCAAT 1587 AGCTCAC 1588 Increased Starch CATTCCGGAGGAACTTTGCGGATCCAAATGAGGTTGCTGCTGTTA 1589 ADPGPP TATTGGGTGGTGGCA CAAGGGCCACGCCTGCTGTTCCTATTGGAGG Thr96Lys CCTCCAATAGGAACAGCAGGCGTGGCCCTTGTGCTTGTGAGAGG 1590 ACC-AAA AAAAAGTTGAGTCCC CTCATTTGGATCCGCAAAGTTCCTCCGGAATG TGGTGGCA 1591 GAGTCCC 1592 Increased Starch CAAGCACAAGGGCCACGCCTGCTGTTCCTATTGGAGGATGCTATA 1593 ADPGPP GGCTTATCGATATCC CAAGATATTCATAATGACTCAATTCAACTC Pro124Leu GAGTTGAATTGAGTCATTATGAATATCTTGTTTATGCCACTGTTGA 1594 CCC-CTC AACAGTTGCTCATG AGGAACAGCAGGCGTGGCCCTTGTGCTTG CGATATCC 1595 TGCTCATG 1596 Increased Starch TGACTCAATTCAACTCAGCATCTCTTAATCGTCACATTCATCGTAC 1597 ADPGPP GTACCTTGGTGGT TTAGCCGCTACACAAATGCCTGGGGAGGC Gly159Asn GCCTCCCCAGGCATTTGTGTAGCGGCTAATACCTCAACAGAACCA 1598 GGA-AAT TCAGTAAAGTTGAT CGATTAAGAGATGCTGAGTTGAATTGAGTCA TGGTGGT 1599 AGTTGAT 1600 Increased Starch TGACTCAATTCAACTCAGCATCTCTTAATCGTCACATTCATCGTAC 1601 ADPGPP GTACCTTGGTGGT TTAGCCGCTACACAAATGCCTGGGGAGGC Gly159Asn GCCTCCCCAGGCATTTGTGTAGCGGCTAATACCTCAACAGAACCA 1602 GGA-AAC TCAGTAAAGTTGAT CGATTAAGAGATGCTGAGTTGAATTGAGTCA TGGTGGT 1603 AGTTGAT 1604 Increased Starch GTCCTTCAGGAGGATTAAGCGATCCGAACGAGGTTGCGGCCGTC 1605 ADPGPP ATACTCGGCGGCGGCA CACAAGGGCCACACCTGCTGTTCCTATTGGAGG Thr80Lys CCTCCAATAGGAACAGCAGGTGTGGCCCTTGTGCTCGTGAGTGG 1606 ACC-AAA GAAGAGCTGAGTCCC CCTCGTTCGGATCGCTTAATCCTCCTGAAGGAC CGGCGGCA 1607 GAGTCCC 1608 Increased Starch CGAGCACAAGGGCCACACCTGCTGTTCCTATTGGAGGATGTTACA 1609 ADPGPP GGCTCATCGACATTC ACAAGATATTCGTCATGACCCAGTTCAACTC Pro108Leu GAGTTGAACTGGGTCATGACGAATATCTTGTTGATGCCACTGTTG 1610 CCC-CTC AAGCAGTTGCTCATG ATAGGAACAGCAGGTGTGGCCCTTGTGCTCG CGACATTC 1611 TGCTCATG 1612 Increased Starch TGACCCAGTTCAACTCGGCCTCCCTTAATCGTCACATTCACCGCA 1613 ADPGPP CCTACCTCGGCGGG TATTGGCCGCGACGCAAATGCCCGGGGAGGC Gly143Asn GCCTCCCCGGGCATTTGCGTCGCGGCCAATACCTCAACGGATCC 1614 GGA-AAT ATCAGTGAAATTGAT ACGATTAAGGGAGGCCGAGTTGAACTGGGTCA CGGCGGG 1615 AATTGAT 1616 Increased Starch TGACCCAGTTCAACTCGGCCTCCCTTAATCGTCACATTCACCGCA 1617 ADPGPP CCTACCTCGGCGGG TATTGGCCGCGACGCAAATGCCCGGGGAGGC Gly143Asn GCCTCCCCGGGCATTTGCGTCGCGGCCAATACCTCAACGGATCC 1618 GGA-AAC ATCAGTGAAATTGAT ACGATTAAGGGAGGCCGAGTTGAACTGGGTCA CGGCGGG 1619 AATTGAT 1620 Increased Starch CCTCCCGAAAGAATTATGCTGATGCAAGCCACGTTTCTGCTGTCA 1621 ADPGPP TTTTGGGTGGAGGCA CAAGGGCTACCCCCGCTGTTCCTGTTGGAGG Thr95Lys CCTCCAACAGGAACAGCGGGGGTAGCCCTTGTGCTTGTCAGAGG 1622 ACT-AAA AAAGAGTTGAACTCC GTGGCTTGCATCAGCATAATTCTTTCGGGAGG TGGAGGCA 1623 GAACTCC 1624 Increased Starch CAAGCACAAGGGCTACCCCCGCTGTTCCTGTTGGAGGATGTTACA 1625 ADPGPP GGCTTATTGACATCC TAAAATATTTGTGATGACTCAGTTCAATTC Pro123Leu GAATTGAACTGAGTCATCACAAATATTTTATTTATTCCGCTATTGAA 1626 CCT-CTT GCAATTGCTCATA GGAACAGCGGGGGTAGCCCTTGTGCTTG TGACATCC 1627 TGCTCATA 1628 Increased Starch TGACTCAGTTCAATTCTGCTTCTCTTAATCGCCATATCCATCATACA 1629 ADPGPP TACCTTGGTGGG TTGGCTGCTACACAAATGCCTGACGAACC Gly158Asn GGTTCGTCAGGCATTTGTGTAGCAGCCAATACCTGCACAGACCCA 1630 GGG-AAT TCAGTAAAGTTGAT GATTAAGAGAAGCAGAATTGAACTGAGTCA TGGTGGG 1631 AGTTGATATTCCCACCA 1632 Increased Starch TGACTCAGTTCAATTCTGCTTCTCTTAATCGCCATATCCATCATACA 1633 ADPGPP TACCTTGGTGGG TTGGCTGCTACACAAATGCCTGACGAACC Gly158Asn GGTTCGTCAGGCATTTGTGTAGCAGCCAATACCTGCACAGACCCA 1634 GGG-AAC TCAGTAAAGTTGAT CGATTAAGAGAAGCAGAATTGAACTGAGTCA TGGTGGG 1635 AGTTGAT 1636 Increased Starch CCTTCCGCAGGAATTACGCCGATCCGAACGAGGTCGCGGCCGTC 1637 ADPGPP ATACTCGGCGGTGGCAAAGGGACTCAGCTCTTCCCTCTCACAAG CACAAGGGCCACACCTGCTGTTCCTATTGGAGG Thr99Lys CCTCCAATAGGAACAGCAGGTGTGGCCCTTGTGCTTGTGAGAGG 1638 ACC-AAA GAAGAGCTGAGTCCC CCTCGTTCGGATCGGCGTAATTCCTGCGGAAGG CGGTGGCA 1639 GAGTCCC 1640 Increased Starch CAAGCACAAGGGCCACACCTGCTGTTCCTATTGGAGGATGTTACA 1641 ADPGPP GGCTCATCGATATTC CAAGATATTCGTCATGACGCAGTTCAACTC Pro127Leu GAGTTGAACTGCGTCATGACGAATATCTTGTTGATGCCACTATTGA 1642 CCC-CTC AGCAGTTGCTCATG TAGGAACAGCAGGTGTGGCCCTTGTGCTTG CGATATTC 1643 TGCTCATG 1644 Increased Starch TGACGCAGTTCAACTCGGCCTCTCTTAATCGTCACATTCACCGCA 1645 ADPGPP CCTACCTCGGCGGG TATTGGCCGCGACGCAAATGCCCGGGGAGGC Gly162Asn GCCTCCCCGGGCATTTGCGTCGCGGCCAATACCTCAACAGATCC 1646 GGA-AAT ATCAGTGAAATTGAT ACGATTAAGAGAGGCCGAGTTGAACTGCGTCA CGGCGGG 1647 AATTGAT 1648 Increased Starch TGACGCAGTTCAACTCGGCCTCTCTTAATCGTCACATTCACCGCA 1649 ADPGPP CCTACCTCGGCGGG TATTGGCCGCGACGCAAATGCCCGGGGAGGC Gly162Asn GCCTCCCCGGGCATTTGCGTCGCGGCCAATACCTCAACAGATCC 1650 GGA-AAC ATCAGTGAAATTGAT ACGATTAAGAGAGGCCGAGTTGAACTGCGTCA CGGCGGG 1651 AATTGAT 1652 Increased Starch CTTTTCGGAGGAATTATGCTGATCCTAATGAAGTCGCTGCCGTCA 1653 ADPGPP TTTTGGGTGGTGGTA CAAGGGCCACCCCTGCTGTTCCTATTGGAGG Thr96Lys CCTCCAATAGGAACAGCAGGGGTGGCCCTTGTGCTTGTGAGAGG 1654 ACC-AAA GAAAAGCTGAGTCCC TTCATTAGGATCAGCATAATTCCTCCGAAAAG TGGTGGTA 1655 GAGTCCC 1656 Increased Starch CAAGCACAAGGGCCACCCCTGCTGTTCCTATTGGAGGATGTTACA 1657 ADPGPP GGCTTATTGATATCC CAAGATATTTGTTATGACTCAGTTCAACTC Pro124Leu GAGTTGAACTGAGTCATAACAAATATCTTGTTTATGCCACTGTTGA 1658 CCC-CTC AACAGTTGCTCATG AGGAACAGCAGGGGTGGCCCTTGTGCTTG TGATATCC 1659 TGCTCATG 1660 Increased Starch TGACTCAGTTCAACTCAGCTTCTCTTAACCGTCACATTCATCGTAC 1661 ADPGPP CTATCTTGGTGGG GCTGGCTGCAACACAAATGCCTGGGGAGGC Gly159Asn GCCTCCCCAGGCATTTGTGTTGCAGCCAGCACCTCAACAGATCCA 1662 GGG-AAT TCAGTGAAGTTGAT CGGTTAAGAGAAGCTGAGTTGAACTGAGTCA TGGTGGG 1663 AGTTGAT 1664 Increased Starch TGACTCAGTTCAACTCAGCTTCTCTTAACCGTCACATTCATCGTAC 1665 ADPGPP CTATCTTGGTGGG GCTGGCTGCAACACAAATGCCTGGGGAGGC Gly159Asn GCCTCCCCAGGCATTTGTGTTGCAGCCAGCACCTCAACAGATCCA 1666 GGG-AAC TCAGTGAAGTTGAT CGGTTAAGAGAAGCTGAGTTGAACTGAGTCA TGGTGGG 1667 AGTTGAT 1668 Increased Starch CTTGAGAGGCAAAAGAAGGGCGATGCAAGGACAGTAGTAGCAAT 1669 ADPGPP CATTCTAGGAGGGGGA ACGTCGTGCTAAGCCTGCCGTTCCAATGGGAG Ala58Lys CTCCCATTGGAACGGCAGGCTTAGCACGACGTTTGGTGAGGGGG 1670 GCG-AAG AAAAGACGAGTTCCC TCCTTGCATCGCCCTTCTTTTGCCTCTCAAG GAGGGGGA 1671 AGTTCCC 1672 Increased Starch CCAAACGTCGTGCTAAGCCTGCCGTTCCAATGGGAGGAGCATATA 1673 ADPGPP GGCTAATTGATGTAC CAAAGTATACATTCTCACTCAATTCAACTC Pro86Leu GAGTTGAATTGAGTGAGAATGTATACTTTGTTGATGCCACTGTTAA 1674 CCA-CTA TACAGTTGCTCATT TGGAACGGCAGGCTTAGCACGACGTTTGG TGATGTAC 1675 TGCTCATT 1676 Increased Starch CTCAATTCAACTCAGCCTCACTTAACAGGCATATAGCTCGTGCTTA 1677 ADPGPP CAACTTTGGCAAT CTTAGCAGCAACTCAAACACCAGGTGAATT Gly122Asn AATTCACCTGGTGTTTGAGTTGCTGCTAAGACCTCGACATAGCCA 1678 GGG-AAT CTCTCGAATGTGAC GCCTGTTAAGTGAGGCTGAGTTGAATTGAG TGGCAAT 1679 ATGTGAC 1680 Increased Starch CTCAATTCAACTCAGCCTCACTTAACAGGCATATAGCTCGTGCTTA 1681 ADPGPP CAACTTTGGCAAT CTTAGCAGCAACTCAAACACCAGGTGAATT Gly122Asn AATTCACCTGGTGTTTGAGTTGCTGCTAAGACCTCGACATAGCCA 1682 GGG-AAC CTCTCGAATGTGAC GCCTGTTAAGTGAGGCTGAGTTGAATTGAG TGGCAAT 1683 ATGTGACGTTATTGCCA 1684 Increased Starch TATTTGAATCTCCAAAAGCTGACCCAAAAAATGTGGCTGCAATTGT 1685 ADPGPP GCTGGGTGGTGGT GAGAGCTAAGCCAGCAGTGCCAATTGGAGG Ala98Lys CCTCCAATTGGCACTGCTGGCTTAGCTCTCCTGCTAGTAAGAGGA 1686 GCT-AAA AAGAGGCGAGTCCC TTTTTTGGGTCAGCTTTTGGAGATTCAAATA TGGTGGT 1687 GAGTCCC 1688 Increased Starch TATTTGAATCTCCAAAAGCTGACCCAAAAAATGTGGCTGCAATTGT 1689 ADPGPP GCTGGGTGGTGGT GAGAGCTAAGCCAGCAGTGCCAATTGGAGG Ala98Lys CCTCCAATTGGCACTGCTGGCTTAGCTCTCCTGCTAGTAAGAGGA 1690 GCT-AAC AAGAGGCGAGTCCC ATTTTTTGGGTCAGCTTTTGGAGATTCAAATA TGGTGGT 1691 GAGTCCC 1692 Increased Starch CTAGCAGGAGAGCTAAGCCAGCAGTGCCAATTGGAGGGTGTTAC 1693 ADPGPP AGGCTGATTGATGTGC AGAAAGATTTTCATTCTTACCCAGTTCAATTC Pro126Leu GAATTGAACTGGGTAAGAATGAAAATCTTTCTAATGCCACTGTTGA 1694 CCT-CTT TGCAGTTGCTCATA TTGGCACTGCTGGCTTAGCTCTCCTGCTAG TGATGTGC 1695 TGCTCATA 1696 Increased Starch CCCAGTTCAATTCGTTTTCGCTTAATCGTCATCTTGCTCGAACCTA 1697 ADPGPP TAATTTTGGAGAT TTTGCTGCTACACAAACACCTGGAGAATC Gly162Asn GATTCTCCAGGTGTTTGTGTAGCAGCAAAAACCTCCACAAAGCCA 1698 GGT-AAT TCCCCAAAATTCAC GACGATTAAGCGAAAACGAATTGAACTGGG TGGAGAT 1699 AATTCAC 1700 Increased Starch CCCAGTTCAATTCGTTTTCGCTTAATCGTCATCTTGCTCGAACCTA 1701 ADPGPP TAATTTTGGAGAT TTTTGCTGCTACACAAACACCTGGAGAATC Gly162Asn GATTCTCCAGGTGTTTGTGTAGCAGCAAAAACCTCCACAAAGCCA 1702 GGT-AAC TCCCCAAAATTCAC GACGATTAAGCGAAAACGAATTGAACTGGG TGGAGAT 1703 AATTCAC 1704
[0142]
TABLE 21 Oligonucleotides to produce plants with waxy starch Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: Waxy starch GAATCCAGGTAAACGGGTAGTTCATAATGGCAACTGTGACTGCTT 1705 GBSS CTTCTAACTTTGTGT TCTTCATGCTCTGATGTCGCTCAGATTAC Ser12Term GTAATCTGAGCGACATCAGAGCATGAAGAAGCACCATGATTGTTG 1706 TCA-TGA AAAAGTGAAGTTCTT CCATTATGAACTACCCGTTTACCTGGATTC CTTTGTGT 1707 AAGTTCTT 1708 Waxy starch ATCCAGGTAAACGGGTAGTTCATAATGGCAACTGTGACTGCTTCTT 1709 GBSS CTAACTTTGTGTCA TCATGCTCTGATGTCGCTCAGATTACCT Arg13Term AGGTAATCTGAGCGACATCAGAGCATGAAGAAGCACCATGATTGT 1710 AGA-TGA TGAAAAGTGAAGTTC TGCCATTATGAACTACCCGTTTACCTGGAT TTGTGTCA 1711 TGAAGTTC 1712 Waxy starch TAAACGGGTAGTTCATAATGGCAACTGTGACTGCTTCTTCTAACTT 1713 GBSS TGTGTCAAGAACTTGACTTTTCAACAATCATGGTGCTTCTTCATGCT CTGATGTCGCTCAGATTACCTTAAAAGG Ser15Term CCTTTTAAGGTAATCTGAGCGACATCAGAGCATGAAGAAGCACCAT 1714 TCA-TGA GATTGTTGAAAAGT CACAGTTGCCATTATGAACTACCCGTTTA AAGAACTT 1715 TGAAAAGT 1716 Waxy starch TGACTGCTTCTTCTAACTTTGTGTCAAGAACTTGACTTTTCAACAAT 1717 GBSS CATGGTGCTTCTT GCCAATCCTTGACTCATTGTGGGTTAAG Ser24Term CTTAACCCACAATGAGTCAAGGATTGGCCTTTTAAGGTAATCTGAG 1718 TCA-TGA CGACATCAGAGCAT TTCTTGACACAAAGTTAGAAGAAGCAGTCA TGCTTCTT 1719 CAGAGCAT 1720 Waxy starch TGCTTCTTCTAACTTTGTGTCAAGAACTTCACTTTTCAACAATCATG 1721 GBSS GTGCTTCTTCATG ATCCTTGACTCATTGTGGGTTAAGGTCA Cys25Term TGACCTTAACCCACAATGAGTCAAGGATTGGCCTTTTAAGGTAATC 1722 TGC-TGA TGAGCGACATCAGATCATGAAGAAGCACCATGATTGTTGAAAAGT GAAGTTCTTGACACAAAGTTAGAAGAAGCA TCTTCATG 1723 ACATCAGA 1724 Waxy starch GTAACAGCTTCACAGTTGGTGTCACATGTCCATGGTGGAGCAACG 1725 GBSS TCTTCACCGGATACT AACCAGCAATTCACTCACAATGGGTTGAGAT Lys24Term ATCTCAAGCCATTGTGAGTGAATTGCTGGTTCGTGAGGCCAACCTG 1726 AAA-TAA GGCCAAGTTTGTTT GACATGTGACACCAACTGTGAAGGTGTTAC CGGATACT 1727 GTTTGTTT 1728 Waxy starch CACAGTTGGTGTCACATGTCCATGGTGGAGCAAGGTCTTCACCGG 1729 GBSS ATAGTAAAACAAACT TCACTCACAATGGGTTGAGATCAATAAACAT Leu27Term ATGTTTATTGATCTCAACCCATTGTGAGTGAATTGCTGGTTCCTGA 1730 TTG-TAG GGCCAACCTGGGCC CTCCACCATGGACATGTGACACCAACTGTG AACAAACT 1731 CCTGGGCC 1732 Waxy starch TTGGTGTCACATGTCCATGGTGGAGCAACGTCTTCACCGGATACT 1733 GBSS AAAACAAACTTGGCC CACAATGGGTTGAGATCAATAAACATGGTTG Gln29Term CAACCATGTTTATTGATCTCAACCCATTGTGAGTGAATTGCTGGTT 1734 GAG-TAG CCTGAGGCCAACCT CGTTGCTCCACCATGGACATGTGACACCAA ACTTGGCC 1735 GCCAACCT 1736 Waxy starch GGTGGAGCAACGTCTTCACCGGATACTAAAACAAACTTGGCCCAG 1737 GBSS GTTGGCCTCAGGAACTAGCAATTCACTCACAATGGGTTGAGATCA ATAAACATGGTTGATAAGCTTCAAATGAGGA Gln35Term TCCTCATTTGAAGCTTATCAACCATGTTTATTGATGTCAACCCATTG 1738 GAG-TAG TGAGTGAATTGCT TAGTATCCGGTGAAGACGTTGCTCCACC TCAGGAAC 1739 GAATTGCT 1740 Waxy starch GGAGCAACGTCTTCACCGGATACTAAAACAAACTTGGCCCAGGTT 1741 GBSS GGCCTCAGGAACCAG ACATGGTTGATAAGCTTCAAATGAGGAACA Gln36Term TGTTCCTCATTTGAAGCTTATCAACCATGTTTATTGATCTCAACCCA 1742 CAA-TAA TTGTGAGTGAATT GTTTTAGTATCCGGTGAAGACGTTGCTCC GGAACCAG 1743 AGTGAATT 1744 Waxy starch GTGATGGCGACTATAACTGCCTCACACTTTGTTTCTCATGTCTGTG 1745 GBSS GGGGTGCCACTTCT CCCTGAGGAGCCAAGCTGTGACTCACAATG Gly20Term CATTGTGAGTCACAGCTTGGCTCCTCAGGGCTAATTGACCCAACC 1746 GGA-TGA CCACTTTTGATTCTC CAAAGTGTGAGGCAGTTATAGTCGCCATCAC CCACTTCT 1747 TGATTCTC 1748 Waxy starch ATGGCGACTATAACTGCCTCACACTTTGTTTCTCATGTCTGTGGGG 1749 GBSS GTGCCACTTCTGGA TGAGGAGCCAAGCTGTGACTCACAATGGGT Glu21Term ACCCATTGTGAGTCACAGCTTGGCTCCTCAGGGCTAATTGACCCA 1750 GAA-TAA ACCCCACTTTTGATT AAACAAAGTGTGAGGCAGTTATAGTCGCCAT CTTCTGGA 1751 TTTTGATT 1752 Waxy starch CGACTATAACTGCCTCACACTTTGTTTCTCATGTCTGTGGGGGTGC 1753 GBSS CACTTCTGGAGAAT GAGCCAAGCTGTGACTCACAATGGGTTGAG Ser22Term CTCAACCCATTGTGAGTCACAGCTTGGCTCCTCAGGGCTAATTGA 1754 TCA-TGA CCCAACCCCACTTTT GAGAAACAAAGTGTGAGGCAGTTATAGTCG TGGAGAAT 1755 CCACTTTT 1756 Waxy starch ACTATAACTGCCTCACACTTTGTTTCTCATGTCTGTGGGGGTGCCA 1757 GBSS CTTCTGGAGAATCA GCCAAGCTGTGACTCACAATGGGTTGAGAC Lys23Term GTCTCAACCCATTGTGAGTCACAGCTTGGCTCCTCAGGGCTAATT 1758 AAA-TAA GACCCAACCCCACTT CATGAGAAACAAAGTGTGAGGCAGTTATAGT GAGAATCA 1759 CCCCACTT 1760 Waxy starch CCTCACACTTTGTTTCTCATGTCTGTGGGGGTGCCACTTCTGGAGA 1761 G BSS ATCAAAAGTGGGGT GACTCACAATGGGTTGAGACCTGTGAACAA Leu26Term TTGTTCACAGGTCTCAACCCATTGTGAGTCACAGCTTGGCTCCTCA 1762 TTG-TAG GGGCTAATTGACCC CCCACAGACATGAGAAACAAAGTGTGAGG AGTGGGGT 1763 ATTGACCC 1764 Waxy starch CATCGGCGATTGTTGCTCCTTACTGCTCTCTCACAGAATGGCAACG 1765 GBSS GTGACGGGGTCTTA CAGGGAAGAACAGAAGCCAAAGTGAATTCA TGAATTCACTTTGGCTTCTGTTCTTCCCTGGGAATTGAAGCACGCG 1766 Tyr8Term CTTCTCGACACCAC TAT-TAG GAGAGCAGTAAGGAGCAACAATCGCCGATG GGGTCTTA 1767 GACACCAC 1768 Waxy starch ATTGTTGCTCCTTACTGCTCTCTCACAGAATGGCAACGGTGACGG 1769 GBSS GGTCTTATGTGGTGT GAACAGAAGCCAAAGTGAATTCACCTCAGAA TTCTGAGGTGAATTCACTTTGGCTTCTGTTCTTCCCTGGGAATTGA 1770 Ser11Term AGCACGCGCTTCTCTACACCACATAAGACCCCGTCACCGTTGCCA TCG-TAG TTCTGTGAGAGAGCAGTAAGGAGCAACAAT TGTGGTGT 1771 CGCTTCTC 1772 Waxy starch TGTTGCTCCTTACTGCTCTCTCACAGAATGGCAACGGTGACGGGG 1773 GBSS TCTTATGTGGTGTCGTGAAGCGCGTGCTTCAATTCCCAGGGAAGA ACAGAAGCCAAAGTGAATTCACCTCAGAAGA TCTTCTGAGGTGAATTCACTTTGGCTTCTGTTCTTCCCTGGGAATT 1774 Arg12Term GAAGCACGCGCTTC AGA-TGA CATTCTGTGAGAGAGCAGTCAGGAGCAACA TGGTGTCG 1775 CGCGCTTC 1776 Waxy starch ACTGCTCTCTCACAGAATGGCAACGGTGACGGGGTCTTATGTGGT 1777 GBSS GTCGAGAAGCGCGTG AGTGAATTCACCTCAGAAGATAAATCTGAAT ATTGAGATTTATCTTCTGAGGTGAATTCACTTTGGCTTCTGTTCTTC 1778 Cys15Term CCTGGGAATTGAATCACGCGCTTCTCGACACCACATAAGACCCCG TGC-TGA TCACCGTTGCCATTCTGTGAGAGAGCAGT AGCGCGTG 1779 GAATTGAA 1780 Waxy starch CACAGAATGGCAACGGTGACGGGGTCTTATGTGGTGTCGAGAAG 1781 GBSS CGCGTGGTTCAATTCCTAGGGAAGAACAGAAGCCAAAGTGAATTC ACCTCAGAAGATAAATCTCAATAGCCAAGCAT ATGCTTGGCTATTGAGATTTATCTTCTGAGGTGAATTCACTTTGGCT 1782 Gln19Term TCTGTTCTTCCCTAGGAATTGAAGCACGCGCTTCTCGACACCACAT CAG-TAG AAGACCCCGTCACCGTTGCCATTCTGTG TCAATTCC 1783 TCTTCCCT 1784 Waxy starch TGTAGCTTGGTAGATTCCCCTTTTTGTCGACCACACATCACATGGC 1785 GBSS AAGCATCACAGCTT CTAGACACCAAATCAACCTTGTCACAGAT Ser7Term ATCTGTGACAAGGTTGATTTGGTGTCTAGTGAAGTTTGGCTTCTTG 1786 TCA-TGA ACACAAAGTGGTGT TCTACAAAAAGGGGAATCTACCAAGCTACA CACAGCTT 1787 AGTGGTGT 1788 Waxy starch TCCCCTTTTTGTAGACCACACATCACATGGCAAGCATCACAGCTTC 1789 GBSS ACACCACTTTGTGT ACCTTGTCACAGATAGGACTCAGGAACCA Ser12Term TGGTTCCTGAGTCCTATCTGTGACAAGGTTGATTTGGTGTCTAGTG 1790 TCA-TGA AAGTTTGGCTTCTT CATGTGATGTGTGGTCTACAAAAAGGGGA CTTTGTGT 1791 GGCTTCTT 1792 Waxy starch CCCTTTTTGTAGACCACACATCACATGGCAAGCATCACAGCTTCAC 1793 GBSS ACCACTTTGTGTCATGAAGCCAAACTTCACTAGACACCAAATCAAC CTTGTCACAGATAGGACTCAGGAACCATA Arg13Term TATGGTTCCTGAGTCCTATCTGTGACAAGGTTGATTTGGTGTCTAG 1794 AGA-TGA TGAAGTTTGGCTTC GCCATGTGATGTGTGGTCTACAAAAAGGG TTGTGTCA 1795 TTGGCTTC 1796 Waxy starch TTGTAGACCACACATCACATGGCAAGCATCACAGCTTCACACCACT 1797 GBSS TTGTGTCAAGAAGCTAAACTTCACTAGACACCAAATCAACCTTGTC ACAGATAGGACTCAGGAACCATACTCTGA Gln15Term TCAGAGTATGGTTCCTGAGTCCTATCTGTGACAAGGTTGATTTGGT 1798 CAA-TAA GTCTAGTGAAGTTT ATGCTTGCCATGTGATGTGTGGTCTACAA CAAGAAGC 1799 TGAAGTTT 1800 Waxy starch CCACACATCACATGGCAAGCATCACAGCTTCACACCACTTTGTGTC 1801 GBSS AAGAAGCCAAACTT GGACTCAGGAACCATACTCTGACTCACAA Sen17Term TTGTGAGTCAGAGTCTGGTTCCTGAGTCCTATCTGTGACAAGGTTG 1802 TCA-TGA ATTTGGTGTCTAGT AGCTGTGATGCTTGCCATGTGATGTGTGG CCAAACTT 1803 TGTCTAGT 1804 Waxy starch GTCGATCACTCTTCTCTCACCGCCGAAACAGATTTTGACACAAAAA 1805 GBSS TGGCAACAATAACG TCAATTACCAAGGAAGATCAGCAGAGTCTA Gly6Term TAGACTCTGCTGATCTTCCTTGGTCATTGAAGCACGCGGTTCTCGT 1806 GGA-TGA CGGCATTGAAGATC GTTTCGGCGGTGAGAGAAGAGTGATCGAC CAATAACG 1807 TGAAGATC 1808 Waxy starch ACTCTTCTCTCACCGCCGAAACAGATTTTGACACAAAAATGGCAAC 1809 GBSS AATAACGGGATCTT CCAAGGAAGATCAGCAGAGTCTAAACTGAA Ser8Term TTCAGTTTAGACTCTGCTGATCTTCCTTGGTCATTGAAGCACGCGG 1810 TCA-TGA TTCTCGTCGGCATT AAATCTGTTTCGGCGGTGAGAGAAGAGT GGGATCTT 1811 TCGGCATT 1812 Waxy starch ACCGCCGAAACAGATTTTGACACAAAAATGGCAACAATAACGGGA 1813 GBSS TCTTCAATGCCGACG TCAGCAGAGTCTAAACTGAATTTGCCTCAGA Arg12Term TCTGAGGCAAATTCAGTTTAGACTCTGCTGATCTTCCTTGGTCATT 1814 AGA-TGA GAAGCACGCGGTTC CATTTTTGTGTCAAAATCTGTTTCGGCGGT TGCCGACG 1815 CGCGGTTC 1816 Waxy starch AGATTTTGACACAAAAATGGCAACAATAACGGGATCTTCAATGCCG 1817 GBSS ACGAGAACCGCGTG AAACTGAATTTGCCTCAGATACACTTCAAT Cys15Term ATTGAAGTGTCTCTGAGGCAAATTCAGTTTAGACTCTGCTGATCTT 1818 TGC-TGA CCTTGGTCATTGAA GTTATTGTTGCCATTTTTGTGTCAAAATCT ACCGCGTG 1819 TAATTGAA 1820 Waxy starch CACAAAAATGGCAACAATAACGGGATCTTCAATGCCGACGAGAAC 1821 GBSS CGCGTGCTTCAATTA TTTGCCTCAGATACACTTCAATAACAACCAA Tyr18Term TTGGTTGTTATTGAAGTGTATCTGAGGCAAATTCAGTTTAGACTCT 1822 TAC-TAG GCTGATCTTCCTTG AAGATCCCGTTATTGTTGCCATTTTTGTG TTCAATTA 1823 CTTCCTTG 1824 Waxy starch TCTACACCGGAGAGAGCACCATGGCAACTGTAATAGCTGCACATT 1825 GBSS TCGTTTCCAGGAGCT GGCTAATAATTTGTCTCACACTGGACCCTG Ser14Term CAGGGTCCAGTGTGAGACAAATTATTAGCCTTAGTCTCTAATGCAT 1826 TCA-TGA GGATGCTCAAGTGT CAGTTGCCATGGTGCTCTCTCCGGTGTAGA CAGGAGCT 1827 TCAAGTGT 1828 Waxy starch CCGGAGAGAGCACCATGGCAACTGTAATAGCTGCACATTTCGTTT 1829 GBSS CCAGGAGCTCACACT ATAATTTGTCTCACACTGGACCCTGGACCCA Leu16Term TGGGTCCAGGGTCCAGTGTGAGACAAATTATTAGCCTTAGTCTCTA 1830 TTG-TAG ATGCATGGATGCTC CTATTACAGTTGCCATGGTGCTCTCTCCGG CTCACACT 1831 GGATGCTC 1832 Waxy starch TGGCAACTGTAATAGCTGCACATTTCGTTTCCAGGAGCTCACACTT 1833 GBSS GAGCATCCATGCAT GGACCCTGGACCCAAACTATCACTCCCAA Leu21Term TTGGGAGTGATAGTTTGGGTCCAGGGTCCAGTGTGAGACAAATTA 1834 TTA-TGA TTAGCCTTAGTCTCT AAACGAAATGTGCAGCTATTACAGTTGCCA CCATGCAT 1835 TAGTCTCT 1836 Waxy starch GCAACTGTAATAGCTGCACATTTCGTTTCCAGGAGCTCACACTTGA 1837 GBSS GCATCCATGCATTA ACCCTGGACCCAAACTATCACTCCCAATG Glu22Term CATTGGGAGTGATAGTTTGGGTCCAGGGTCCAGTGTGAGACAAAT 1838 GAG-TAG TATTAGCCTTAGTCT GGAAACGAAATGTGCAGCTATTACAGTTGC ATGCATTA 1839 CTTAGTCT 1840 Waxy starch GTCATAGCTGCACATTTCGTTTCCAGGAGCTCACACTTGAGCATCC 1841 GBSS ATGCATTAGAGACT GACCCAAACTATCACTCCCAATGGTTTAA Lys24Term TTAAACCATTGGGAGTGATAGTTTGGGTCCAGGGTCCAGTGTGAG 1842 AAG-TAG ACAAATTATTAGCCT GCTCCTGGAAACGAAATGTGCAGCTATTAC TAGAGACT 1843 ATTAGCCT 1844 Waxy starch ACAACTCCTCCGTCACCGGTATAAGCATGGCAACGGTATCGATGG 1845 GBSS CATCGTGCGTGGCGT GTGAAATCTTCGGGTCAGATGAGCCTGAACCG Ser12Term CGGTTCAGGCTCATCTGACCCGAAGATTTCACTTTTGTCTCTGTCC 1846 TCA-TGA TCCACGCGCCTTTT CCATGCTTATACCGGTGACGGAGGAGTTGT CGTGGCGT 1847 CGCCTTTT 1848 Waxy starch CACCGGTCTAAGCATGGCAACGGTATCGATGGCATCGTGCGTGGC 1849 GBSS GTCAAAAGGCGCGTG TCAGATGAGCCTGAACCGTCATGAATTGAAA Trp16Term TTTCAATTCATGACGGTTCAGGCTCATCTGACCCGAAGATTTCACT 1850 TGG-TGA TTTGTCTCTGTACT TCGATACCGTTGGCATGCTTATACCGGTG GGCGCGTG 1851 TCTGTACT 1852 Waxy starch ATAAGCATGGCAACGGTCTCGATGGCATCGTGCGTGGCGTCAAAA 1853 GBSS GGCGCGTGGAGTACA AGCCTGAACCGTCATGAATTGAAATACGATG Glu19Term CATCGTATTTCAATTCATGACGGTTCAGGCTCATCTGACCCGAAGA 1854 GAG-TAG TTTCACTTTTGTCT GATGCCATCGATACCGTTGCCATGCTTAT GGAGTACA 1855 TTTTGTCT 1856 Waxy starch ATGGCAACGGTATCGATGGCATCGTGCGTGGGGTCAAAAGGCGC 1857 GBSS GTGGAGTACAGAGACA GAACCGTCATGAATTGAAATACGATGGGTTGA Lys21Term TCAACCCATCGTATTTCAATTCATGACGGTTCAGGCTCATCTGACC 1858 AAA-TAA CGAAGATTTCACTT ACGCACGATGCCATCGATACCGTTGCCAT CAGAGACA 1859 TTTCACTT 1860 Waxy starch ACGGTATCGATGGCATCGTGCGTGGCGTCAAAAGGCGCGTGGAG 1861 GBSS TACAGAGACAAAAGTG TCATGAATTGAAATACGATGGGTTGAGATCTC Lys23Term GAGATCTCAACCCATCGTATTTCAATTCATGACGGTTCAGGCTCAT 1862 AAA-TAA CTGACCCGAAGATT GACGCCACGCACGATGCCATCGATACCGT CAAAAGTG 1863 CGAAGATT 1864 Waxy starch GCGCCTAGCTCGAAAAGGTCGTCATTGAGAGGCTGCACCAATGG 1865 GBSS GTTCCATTCCTAATTA CTGAAACTGTCGCCTCACATCCAATTCCAG Tyr7Term CTGGAATTGGATGTGAGGCGACAGTTTCAGTGAACCAACACTGTT 1866 TAT-TAG TGTTTGATAAGAACA TCTCAATGACGACCTTTTCGAGCTAGGCGC CCTAATTA 1867 TAAGAACA 1868 Waxy starch CCTAGCTCGAAAAGGTCGTCATTGAGAGGCTGCACCAATGGGTTC 1869 GBSS CATTCCTAATTATTG AACTGTCGCCTCACATCCAATTCCAGCAA Cys8Term TTGCTGGAATTGGATGTGAGGCGACAGTTTCAGTGAACCAACACT 1870 TGT-TGA GTTTGTTTGATAAGA GCCTCTCAATGACGACCTTTTCGAGCTAGG AATTATTG 1871 TGATAAGA 1872 Waxy starch TCGAAAAGGTCGTCATTGAGAGGCTGCACCAATGGGTTCCATTCC 1873 GBSS TAATTATTGTTCTTA CGCCTCACATCCAATTCCAGCAATCTTGT Tyr10Term ACAAGATTGCTGGAATTGGATGTGAGGCGACAGTTTCAGTGAACC 1874 TAT-TAG AACACTGTTTGTTTG GGTGCAGCCTCTCAATGACGACCTTTTCGA TGTTCTTA 1875 TTTGTTTG 1876 Waxy starch CGAAAAGGTCGTCATTGAGAGGCTGCACCAATGGGTTCCATTCCT 1877 GBSS AATTATTGTTCTTAT GCCTCACATCCAATTCCAGCAATCTTGTA Gln11Term TACAAGATTGCTGGAATTGGATGTGAGGCGACAGTTTCAGTGAAC 1878 CAA-TAA CAACACTGTTTGTTT GGTGCAGCCTCTCAATGACGACCTTTTCG GTTCTTAT 1879 GTTTGTTT 1880 Waxy starch AGGCTGCACCAATGGGTTCCATTCCTAATTATTGTTCTTATCAAACA 1881 GBSS AACAGTGTTGGTT AATCTTGTCACAATGAAGTTATGTTCCT Ser17Term AGGAACATAACTTCATTGTTACAAGATTGCTGGAATTGGATGTGAG 1882 TCA-TGA GCGACAGTTTCAGT ATTAGGAATGGAACCCATTGGTGCAGCCT TGTTGGTT 1883 GTTTCAGT 1884 Waxy starch CAGCTCGCCACCTCCGGCACCGTCCTCGGCATCACCGACAGGTT 1885 GBSS CCGGCGTGCAGGTTTC GATGCGGCTCTCGGCATGAGGACCGTCGGAGCTA Gln28Term TAGCTCCGACGGTCCTCATGCCGAGAGCCGCATCCGCCGGGCTC 1886 CAG-TAG CGGGGCCTCACGCCCT GATGCCGAGGACGGTGCCGGAGGTGGCGAGCTG CAGGTTTC 1887 CACGCCCT 1888 Waxy starch GGTTTCCAGGGCGTGAGGCCCCGGAGCCCGGCGGATGCGGCTCT 1889 GBSS CGGCATGAGGACCGTC GGAAAGCGCACCGCGGGACCCGGCGGTGCCTCT Gly46Term AGAGGCACCGCCGGGTCCCGCGGTGCGCTTTCCGGCTTTGCGTT 1890 GGA-TGA GGGGCGGCGCTAGCTC CGCCGGGCTCCGGGGCCTCACGCCCTGGAAACC GGACCGTC 1891 GCTAGCTC 1892 Waxy starch CGGAGCCCGGCGGATGCGGCTCTCGGCATGAGGACCGTCGGAG 1893 GBSS CTAGCGCCGCCCCAACG CGGCGGTGCCTCTCCATGGTGGTGCGCGCCACCG Gln53Term CGGTGGCGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCG 1894 CAA-TAA GTGCGCTTTCCGGCTTT TCCTCATGCCGAGAGCCGCATCCGCCGGGCTCCG CCCCAACG 1895 CCGGCTTT 1896 Waxy starch GCGGATGCGGCTCTCGGCATGAGGACCGTCGGAGCTAGCGCCGC 1897 GBSS CCCAACGCAAAGCCGG CTCTCCATGGTGGTGCGCGCCACCGGCAGCGGCG Lys56Term CGCCGCTGCCGGTGGCGCGCACCACCATGGAGAGGCACCGCCG 1898 AAA-TAA GGTCCCGCGGTGCGCTT CTCCGACGGTCCTCATGCCGAGAGCCGCATCCGC AAAGCCGG 1899 GTGCGCTT 1900 Waxy starch CTCTCCATGGTGGTGCGCGCCACCGGCAGCGGCGGCATGAACCT 1901 GBSS CGTGTTCGTCGGCGCC GCCTCGGCGACGTCCTCGGGGGCCTCCCCCCAG Glu85Term CTGGGGGGAGGCCCCCGAGGACGTCGCCGAGGCCGCCGGTCTT 1902 GAG-TAG GCTCCAGGGCGCCATCT CGCCGCTGCCGGTGGCGCGCACCACCATGGAGAG TCGGCGCC 1903 CGCCATCT 1904 Waxy starch GTGGTCTCTCGCTGCAGGTAGCCACACCCTGCGCGCGCGATGGC 1905 GBSS GGCTCTGGTCACGTCG GCATCACCGACAGGTTCCGGCGTGCAGGTTTTC Gln8Term GAAAACCTGCACGCCGGAACCTGTCGGTGATGCCGAGGACGGTG 1906 CAG-TAG CCGGAGGTGGCGAGCT GCGCAGGGTGTGGCTACCTGCAGCGAGAGACGAC TCACGTCG 1907 GGCGAGCT 1908 Waxy starch CAGCTCGCCACCTCCGGCACCGTCCTCGGCATCACCGACAGGTT 1909 GBSS CCGGCGTGCAGGTTTT ATGCGCCGCTCGGCATGAGGACTACCGGAGCGA Gln28Term TCGCTCCGGTCGTCCTCATGCCGAGCGGCGCATCTGCCGGGCTC 1910 GAG-TAG CGGGGCCTCACACCCT GATGCCGAGGACGGTGCCGGAGGTGGCGAGCTG CAGGTTTT 1911 CACACCCT 1912 Waxy starch CCCCGGAGCCCGGCAGATGCGCCGCTCGGCATGAGGACTACCGG 1913 GBSS AGCGAGCGCCGCCCCG GGACCCGGCGGTGCCTCTCCATGGTGGTGCGCG Lys52Term CGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCGGTGCGC 1914 AAG-TAG TTTCCGGCTTTGTTGCT CATGCCGAGCGGCGCATCTGCCGGGCTCCGGGG CCGCCCCG 1915 TTGTTGCT 1916 Waxy starch CGGAGCCCGGCAGATGCGCCGCTCGGCATGAGGACTACCGGAG 1917 GBSS CGAGCGCCGCCCCGAAG GACCCGGCGGTGCCTCTCCATGGTGGTGCGCGCCA Gln53Term TGGCGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCGGTG 1918 CAA-TAA CGCTTTCCGGCTTTGTT CCTCATGCCGAGCGGCGCATCTGCCGGGCTCCG CCCCGAAG 1919 GCTTTGTT 1920 Waxy starch AGCCCGGCAGATGCGCCGCTCGGCATGAGGACTACCGGAGCGAG 1921 GBSS CGCCGCCCCGAAGCAA GGCGGTGCCTCTCCATGGTGGTGCGCGCCACGG Gln54Term CCGTGGCGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCG 1922 CAA-TAA GTGCGCTTTCCGGCTTT AGTCCTCATGCCGAGCGGCGCATCTGCCGGGCT CGAAGCAA 1923 CCGGCTTT 1924 Waxy starch CAGCTCGCCACCTCCGGCACCGTCCTCGGCATCACCGACAGGTT 1925 GBSS CCGGCGTGCAGGTTTC GATGCGGCCCTCGTCATGAGGACTATCGGAGCGA Gln28Term TCGCTCCGATAGTCCTCATGACGAGGGCCGCATCCGCCGGGTTC 1926 CAG-TAG CGGGGCCTCACGCCCT GATGCCGAGGACGGTGCCGGAGGTGGCGAGCTG CAGGTTTC 1927 CACGCCCT 1928 Waxy starch CCCCGGAACCCGGCGGATGCGGCCCTCGTCATGAGGACTATCGG 1929 GBSS AGCGAGCGCCGCCCCG AGCCGGCGGTGCCTCTCCATGGTGGTGCGCGCCA Lys52Term TGGCGCGCACCACCATGGAGAGGCACCGCCGGCTCCCGCGGTG 1930 AAG-TAG CGCTTTCCGGCTTTGCT CATGACGAGGGCCGCATCCGCCGGGTTCCGGGG CCGCCCCG 1931 GCTTTGCT 1932 Waxy starch CGGAACCCGGCGGATGCGGCCCTCGTCATGAGGACTATCGGAGC 1933 GBSS GAGCGCCGCCCCGAAG Gln53Term CCGTGGCGCGCACCACCATGGAGAGGCACCGCCGGCTCCCGCG 1934 CAA-TAA GTGCGCTTTCCGGCTTT CCTCATGACGAGGGCCGCATCCGCCGGGTTCCG CCCCGAAG 1935 CCGGCTTT 1936 Waxy starch GCGGATGCGGCCCTCGTCATGAGGACTATCGGAGCGAGCGCCGC 1937 GBSS CCCGAAGCAAAGCCGG CTCTCCATGGTGGTGCGCGCCACGGGCAGCGGCG Lys56Term CGCCGCTGCCCGTGGCGCGCACCACCATGGAGAGGCACCGCCG 1938 AAA-TAA GCTCCCGCGGTGCGCTT CTCCGATAGTCCTCATGACGAGGGCCGCATCCGC AAAGCCGG 1939 GTGCGCTT 1940 Waxy starch TATCGGAGCGAGCGCCGCCCCGAAGCAAAGCCGGAAAGCGCACC 1941 GBSS GCGGGAGCCGGCGGTG CAGCGGCGGCATGAACCTCGTGTTCGTCGGCGCC Cys64Term GGCGCCGACGAACACGAGGTTCATGCCGCCGCTGCCCGTGGCGC 1942 TGC-TGA GCACCACCATGGAGAG CGGCTTTGCTTCGGGGCGGCGCTCGCTCCGATA CGGCGGTG 1943 ATGGAGAG 1944 Waxy starch CAGCTCGCCACCTCCGGCACCGTCCTCGGCATCACCGACAGGTT 1945 GBSS CCGGCGTGCAGGTTTT ATGCGCCGCTCGGCATGAGGACTACCGGAGCGA Gln28Term TCGCTCCGGTAGTCCTCATGCCGAGCGGCGCATCTGCGGGGCTC 1946 CAG-TAG CGGGGCCTCACACCCT GATGCCGAGGACGGTGCCGGAGGTGGCGAGCTG CAGGTTTT 1947 CACACCCT 1948 Waxy starch CCCCGGAGCCCGGCAGATGCGCCGCTCGGCATGAGGACTACCGG 1949 GBSS AGCGAGCGCCGCCCCG GGACCCGGCGGTGCCTCTCCATGGTGGTGCGCG Lys52Term CGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCGGTGCGC 1950 AAG-TAG TTTCCGGCTTTGTTGCT CATGCCGAGCGGCGCATCTGCCGGGCTCCGGGG CCGCCCCG 1951 TTGTTGCT 1952 Waxy starch CGGAGCCCGGCAGATGCGCCGCTCGGCATGAGGACTACCGGAG 1953 GBSS CGAGCGCCGCCCCGAAG GACCCGGCGGTGCCTCTCCATGGTGGTGCGCGCCA Gln53Term TGGCGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCGGTG 1954 CAA-TAA CGCTTTCCGGCTTTGTT CCTCATGCCGAGCGGCGCATCTGCCGGGCTCCG CCCCGAAG 1955 GCTTTGTT 1956 Waxy starch AGCCCGGCAGATGCGCCGCTCGGCATGAGGACTACCGGAGCGAG 1957 GBSS CGCCGCCCCGAAGCAA GGCGGTGCCTCTCCATGGTGGTGCGCGCCACGG Gln54Term CCGTGGCGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCG 1958 CAA-TAA GTGCGCTTTCCGGCTTT AGTCCTCATGCCGAGCGGCGCATCTGCCGGGCT CGAAGCAA 1959 CCGGCTTT 1960 Waxy starch GATGCGCCGCTCGGCATGAGGACTACCGGAGCGAGCGCCGCCCC 1961 GBSS GAAGCAACAAAGCCGG CTCTCCATGGTGGTGCGCGCCACGGGCAGCGCCG Lys57Term CGGCGCTGCCCGTGGCGCGCACCACCATGGAGAGGCACCGCCG 1962 AAA-TAA GGTCCCGCGGTGCGCTT TCGCTCCGGTAGTCCTCATGCCGAGCGGCGCATC AAAGCCGG 1963 GTGCGCTT 1964 Waxy starch CAGCTCGCCACCTCCGCCACCGTCCTCGGCATCACCGACAGGTTC 1965 GBSS CGCCATGCAGGTTTC TGCGCCGCTCGGCATGAGGACTGTCGGAGCGA Gln28Term TCGCTCCGACAGTCCTCATGCCGAGCGGCGCATCTGCCGGGCTC 1966 CAG-TAG CGGGGCCTCACGCCCT GATGCCGAGGACGGTGGCGGAGGTGGCGAGCTG CAGGTTTC 1967 CACGCCCT 1968 Waxy starch GGTTTCCAGGGCGTGAGGCCCCGGAGCCCGGCAGATGCGCCGCT 1969 GBSS CGGCATGAGGACTGTC GCCGGAAAGCGCACCGCGGGACCCGGCGGTGCC Gly46Term GGCACCGCCGGGTCCCGCGGTGCGCTTTCCGGCTTTGTTGCTTC 1970 GGA-TGA GGGGCGGCGCTCGCTC TGCCGGGCTCCGGGGCCTCACGCCCTGGAAACC GGACTGTC 1971 GCTCGCTC 1972 Waxy starch CCCCGGAGCCCGGCAGATGCGCCGCTCGGCATGAGGACTGTCGG 1973 GBSS AGCGAGCGCCGCCCCG GGACCCGGCGGTGCCTCTCGATGGTGGTGCGCG Lys52Term CGCGCACCACCATCGAGAGGCACCGCCGGGTCCCGCGGTGCGCT 1974 AAG-TAG TTCCGGCTTTGTTGCT ATGCCGAGCGGCGCATCTGCCGGGCTCCGGGG CCGCCCCG 1975 TTGTTGCT 1976 Waxy starch CGGAGCCCGGCAGATGCGCCGCTCGGCATGAGGACTGTCGGAG 1977 GBSS CGAGCGCCGCCCCGAAG GACCCGGCGGTGCCTCTCGATGGTGGTGCGCGCCA Gln53Term TGGCGCGCACCACCATCGAGAGGCACCGCCGGGTCCCGCGGTG 1978 CAA-TAA CGCTTTCCGGCTTTGTT CCTCATGCCGAGCGGCGCATCTGCCGGGCTCCG CCCCGAAG 1979 GCTTTGTT 1980 Waxy starch AGCCCGGCAGATGCGCCGCTCGGCATGAGGACTGTCGGAGCGAG 1981 GBSS CGCCGCCCCGAAGCAA GGCGGTGCCTCTCGATGGTGGTGCGCGCCACCG Gln54Term CGGTGGCGCGCACCACCATCGAGAGGCACCGCCGGGTCCCGCG 1982 CAA-TAA GTGCGCTTTCCGGCTTT AGTCCTCATGCCGAGCGGCGCATCTGCCGGGCT CGAAGCAA 1983 CCGGCTTT 1984 Waxy starch AGTGCAGAGATCTTCCACAGCAACAGCTAGACAACCACCATGTCG 1985 GBSS GCTCTCACCACGTCC CATCGCTGACAGGTCGGCGCCGTCGTCGCTGC Gln8Term GCAGCGACGACGGCGCCGACCTGTCAGCGATGCCGAAGCCGGT 1986 GAG-TAG GGCCGAGGTGGCGAGCT GTTGTCTAGCTGTTGCTGTGGAAGATCTCTGCACT CCACGTCC 1987 GGCGAGCT 1988 Waxy starch TCCACAGCAACAGCTAGACAACCACCATGTCGGCTCTCACCACGT 1989 GBSS CCCAGCTCGCCACCT TCGGCGCCGTCGTCGCTGCTCCGCCACGGGTT Ser12Term AACCCGTGGCGGAGCAGCGACGACGGCGCCGACCTGTCAGCGAT 1990 TCG-TAG GCCGAAGCCGGTGGCC GCCGACATGGTGGTTGTCTAGCTGTTGCTGTGGA CGCCACCT 1991 CGGTGGCC 1992 Waxy starch CGGCTCTCACCACGTCCCAGCTCGCCACCTCGGCCACCGGCTTC 1993 GBSS GGCATCGCTGACAGGT GTTCCAGGGCCTCAAGCCCCGCAGCCCCGCCGG Ser22Term CCGGCGGGGCTGCGGGGCTTGAGGCCCTGGAACCCGTGGCGGA 1994 TCG-TAG GCAGCGACGACGGCGCC GCCGAGGTGGCGAGCTGGGACGTGGTGAGAGCCG TGACAGGT 1995 ACGGCGCC 1996 Waxy starch CCACGTCCCAGCTCGCCACCTCGGCCACCGGCTTCGGCATCGCT 1997 GBSS GACAGGTCGGCGCCGT CCTCAAGCCCCGCAGCCCCGCCGGCGGCGACGC Ser25Term GCGTCGCCGCCGGCGGGGCTGCGGGGCTTGAGGCCCTGGAACC 1998 TCG-TAG CGTGGCGGAGCAGCGAC AAGCCGGTGGCCGAGGTGGCGAGCTGGGACGTGG GGCGCCGT 1999 GCAGCGAC 2000 Waxy starch CGTCCCAGCTCGCCACCTCGGCCACCGGCTTCGGCATCGCTGAC 2001 GBSS AGGTCGGCGCCGTCGT CAAGCCCCGCAGCCCCGCCGGCGGCGACGCGAC Ser26Term GTCGCGTCGCCGCCGGCGGGGCTGCGGGGCTTGAGGCCCTGGA 2002 TCG-TAG ACCCGTGGCGGAGCAGC CCGAAGCCGGTGGCCGAGGTGGCGAGCTGGGACG GCCGTCGT 2003 GGAGCAGC 2004 Waxy starch TCCACAGCAAGAGCTAAACAGCCGACCGTGTGCACCACCATGTCG 2005 GBSS GCTGTCACCACGTCC CATCGCCGACAGGTCGGCGCCGTCGTCGCTGG Gln8Term GCAGCGACGACGGCGCCGACCTGTCGGCGATGCCGAAGCCGGT 2006 CAG-TAG GGCCGAGGTGGCGAGCT GTGCACACGGTCGGCTGTTTAGCTCTTGCTGTGGA CCACGTCC 2007 GGCGAGCT 2008 Waxy starch CTAAACAGCCGACCGTGTGCACCACCATGTCGGCTCTCACCACGT 2009 GBSS CCCAGCTCGCCACCT TCGGCGCCGTCGTCGCTGCTTCGCCACGGGTT Ser12Term AACCCGTGGCGAAGCAGCGACGACGGCGCCGACCTGTCGGCGAT 2010 TCG-TAG GCCGAAGCCGGTGGCC GCCGACATGGTGGTGCACACGGTCGGCTGTTTAG CGCCACCT 2011 CGGTGGCC 2012 Waxy starch CGGCTCTCACCACGTCCCAGCTCGCCACCTCGGCCACCGGCTTC 2013 GBSS GGCATCGCCGACAGGT GTTCCAGGGCCTCAAGCCCCGTAGCCCAGCCGG Ser22Term CCGGCTGGGCTACGGGGCTTGAGGCCCTGGAACCCGTGGCGAA 2014 TCG-TAG GGAGCGACGACGGCGCC GCCGAGGTGGCGAGCTGGGACGTGGTGAGAGCCG CGACAGGT 2015 ACGGCGCC 2016 Waxy starch CCACGTCCCAGCTCGCCACCTCGGCCACCGGCTTCGGCATCGCC 2017 GBSS GACAGGTCGGCGCCGT CCTCAAGCCCCGTAGCCCAGCCGGCGGGGACGC Ser25Term GCGTCCCCGCCGGCTGGGCTACGGGGCTTGAGGCCCTGGAACCC 2018 TCG-TAG GTGGCGAAGCAGCGAC AGCCGGTGGCCGAGGTGGCGAGCTGGGACGTGG GGCGCCGT 2019 GCAGCGAC 2020 Waxy starch CGTCCCAGCTCGCCACCTCGGCCACCGGCTTCGGCATCGCCGAC 2021 GBSS AGGTCGGCGCCGTCGT CAAGCCCCGTAGCCCAGCCGGCGGGGACGCATC Ser26Term GATGCGTCCCCGCCGGCTGGGCTACGGGGCTTGAGGCCCTGGAA 2022 TCG-TAG CCCGTGGCGAAGCAGC CGAAGCCGGTGGCCGAGGTGGCGAGCTGGGACG GCCGTCGT 2023 GAAGCAGC 2024 Waxy starch GTCTCTCACTGCAGGTAGCCACACCCTGTGCGCGGCGCCATGGC 2025 GBSS GGCTCTGGCCACGTCC GCGTCACCGACAGATTCCGGCGTCCAGGTTTTC Gln8Term GAAAACCTGGACGCCGGAATCTGTCGGTGACGCCGAGGACGGTG 2026 GAG-TAG CCGGAGGTGGCGAGCT CGCGCACAGGGTGTGGCTACCTGCAGTGAGAGAC CCACGTCC 2027 GGCGAGCT 2028 Waxy starch ATGGCGGCTCTGGCCACGTCCCAGCTCGCCACGTCCGGCACCGT 2029 GBSS CCTCGGCGTCACCGAC CAGGCCCCGGAACCCGGCGGATGCGGCGCTTG Arg21Term CAAGCGCGGCATCCGCCGGGTTCCGGGGCCTGAGGCCGTGAAAA 2030 AGA-TGA CCTGGACGCCGGAATC AGGTGGCGAGCTGGGACGTGGCCAGAGCCGCCAT TCACCGAC 2031 CCGGAATC 2032 Waxy starch CAGCTCGCCACCTCCGGCACCGTCCTCGGCGTCACCGACAGATT 2033 GBSS CCGGCGTCCAGGTTTT ATGCGGCGCTTGGTCTGAGGACTATCGGAGCAA Gln28Term TTGCTCCGATAGTCCTCATACCAAGCGCCGCATCCGCCGGGTTCC 2034 CAG-TAG GGGGCCTGAGGCCCT ACGCCGAGGACGGTGCCGGAGGTGGCGAGCTG CAGGTTTT 2035 GAGGCCCT 2036 Waxy starch GGTTTTCAGGGCCTCAGGCCGCGGAACCCGGCGGATGCGGCGCT 2037 GBSS TGGTATGAGGACTATCTGAGCAAGCGCCGCCCCGAAGCAAAGGC GGAAAGCGGACCGCGGGAGCCGGCGGTGCCTCT Gly46Term AGAGGCACCGCCGGCTCCCGCGGTGCGCTTTCCGGCTTTGCTTC 2038 GGA-TGA GGGGCGGCGCTTGCTC CGCCGGGTTCCGGGGCCTGAGGCCCTGAAAACC GGACTATC 2039 GCTTGCTC 2040 Waxy starch CCCCGGAACCCGGCGGATGCGGCGCTTGGTATGAGGACTATCGG 2041 GBSS AGCAAGCGCCGCCCCG AGCCGGCGGTGCCTCTCCGTGGTGGTGAGCGCCA Lys52Term TGGCGCTCACCACCACGGAGAGGCACCGCCGGCTCCCGCGGTGC 2042 AAG-TAG GCTTTGCGGCTTTGCT ATACCAAGCGCCGCATCCGCCGGGTTCCGGGG CCGCCCCG 2043 GCTTTGCT 2044 Waxy starch ACGTCTTTTCTCTCTCTCCTACGCAGTGGATTAATCGGCATGGCGG 2045 GBSS CTCTGGCCACGTCG GTCCCGGACGCGTCCACGTTCCGCCGCGGCG Gln8Term CGCCGCGGCGGAACGTGGACGCGTCCGGGACGCCCAGGCCGGC 2046 GAG-TAG GCGCGTTGCGACGAGCT TTAATCCACTGCGTAGGAGAGAGAGAAAAGACGT CCACGTCG 2047 GACGAGCT 2048 Waxy starch GTCGCAACGCGCGCCGGCCTGGGCGTCCCGGACGCGTCCACGTT 2049 GBSS CCGCCGCGGCGCCGCG GCGGGGGCGGACACGCTCAGCATGCGGACCAGCG Gln30Term CGCTGGTCCGCATGCTGAGCGTGTCCGCCGCCGCCGACGCCCGG 2050 CAG-TAG GCCCCCCTCAGGCCCT CGTCCGGGACGCCCAGGCCGGCGCGCGTTGCGAC GCGCCGCG 2051 CAGGCCCT 2052 Waxy starch TCCCGGACGCGTCCACGTTCCGCCGCGGCGCCGCGCAGGGCCT 2053 GBSS GAGGGGGGCCCGGGCGT CGGACCAGCGCGCGCGCGGCGCCCAGGCACCAGCA Ser38Term TGCTGGTGCCTGGGCGCCGCGCGCGCGCTGGTCCGCATGCTGAG 2054 TCG-TAG CGTGTCCGCCGCCGCC CGGCGCCGCGGCGGAACGTGGACGCGTCCGGGA CCGGGCGT 2055 CCGCCGCC 2056 Waxy starch GCGTCGGCGGCGGCGGACACGCTCAGCATGCGGACCAGCGCGC 2057 GBSS GCGCGGCGCCCAGGCAC GTTCCCGTCGCTCGTCGTGTGCGCCAGCGCCGGCA Ser57Term TGCCGGCGCTGGCGCACACGACGAGCGACGGGAACCTGCCCCC 2058 GAG-TAG GCGGCGCGCCTGCTGCT GTCCGCATGCTGAGCGTGTCCGCCGCCGCCGACGC CCAGGCAC 2059 CTGCTGCT 2060 Waxy starch TCGGCGGCGGCGGACACGCTCAGCATGCGGACCAGCGCGCGCG 2061 GBSS CGGCGCCCAGGCACCAG CCCGTCGCTCGTCGTGTGCGCCAGCGCCGGCATGA Gln58Term TCATGCCGGGGCTGGCGCACACGACGAGCGACGGGAACCTGCCC 2062 CAG-TAG CCGCGGCGCGCCTGCT TGGTCCGCATGCTGAGCGTGTCCGCCGCCGCCGA GGCACCAG 2063 CGCCTGCT 2064
[0143] Improved means to manipulate fatty acid compositions, from biosynthetic or natural plant sources, are needed. For example, oils containing reduced saturated fatty acids are desired for dietary reasons and oils containing increased saturated fatty acids are also needed as alternatives to current sources of highly saturated oil products, such as tropical oils or chemically hydrogenated oils. It would therefore be advantageous to influence directly the production and composition of fatty acids in crop plants.
[0144] Higher plants synthesize fatty acids, primarily palmitic, stearic and oleic acids, in the plastids (i.e., chloroplasts, proplastids, or other related organelles) as part of the Fatty Acid Synthase (FAS) complex. Fatty acid synthesis is the result of the three enzymatic activities: acyl-ACP elongase, acyl-ACP desaturase and acyl-ACP thioesterases specific for each of palmitoyl-, stearoyl- and oleoyl-ACP.
[0145] A variety of enzymes have been identified that influence the relative levels of saturated vs. unsaturated fatty acids in plants. For example, the enzymes stearoyl-acyl carrier protein (stearoyl-ACP) desaturase, oleoyl desaturase and linoleate desaturase produce unsaturated fatty acids from saturated precursors. Similarly, relative enzymatic activities of the various acyl-ACP thioesterases influences the relative acyl-chain composition of the resultant fatty acids. Consequently a reduction or an increase of the activity of these enzymes can alter the properties of oils produced in a plant. In fact, specific targeting of particular enzymatic activities can results in altered levels of particular fatty acids.
[0146] The attached tables disclose exemplary oligonucleotides base sequences which can be used to generate site-specific mutations in plant genes encoding proteins involved in fatty acid biosynthesis.
TABLE 22 Oligonucleotides to produce plants with reduced palmitate Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: Reduced palmitate TTTGGTGGCAGTGTCTTTGAACGCTTCATCTCCTCGTCATGGTGGC 2065 Acyl-ACP-thioesterase CACCTCTGCTACGT ATCCTAATGGAAAAGGCAATAAGATTGG Ser8Term CCAATCTTATTGCCTTTTCCATTAGGATCAAGTGAAGAAGATGGTA 2066 TCG-TAG CAGGAAAGAATGAC AGATGAAGCGTTCAAAGACACTGCCACCAAA TGCTACGT 2067 AGAATGAC 2068 Reduced palmitate GGTGGCAGTGTCTTTGAACGCTTCATCTCCTCGTCATGGTGGCCA 2069 Acyl-ACP-thioesterase CCTCTGCTACGTCGT CCTAATGGAAAAGGCAATAAGATTGGGTC Ser9Term GACCCAATCTTATTGCCTTTTCCATTAGGATCAAGTGAAGAAGATG 2070 TCA-TGA GTACAGGAAAGAAT AGGAGATGAAGCGTTCAAAGACACTGCCACC TACGTCGT 2071 GAAAGAAT 2072 Reduced palmitate ATCTCCTCGTCATGGTGGCCACCTCTGCTACGTCGTCATTCTTTCC 2073 Acyl-ACP-thioesterase TGTACCATCTTCTT GGGTCTACGAATCTTGCTGGACTCAATTC Ser17Term GAATTGAGTCCAGCAAGATTCGTCGACCCAATCTTATTGCCTTTTC 2074 TCA-TGA CATTAGGATCAAGT TAGCAGAGGTGGCCACCATGACGAGGAGAT ATCTTCTT 2075 GATCAAGT 2076 Reduced palmitate GTGGCCACCTCTGCTACGTCGTCATTCTTTCCTGTACCATCTTCTT 2077 Acyl-AGP-thioesterase CACTTGATCCTAAT TGCTGGACTCAATTCTGCACCTAACTCTG Gly22Term CAGAGTTAGGTGCAGAATTGAGTCCAGCAAGATTCGTCGACCCAA 2078 GGA-TGA TCTTATTGCCTTTTC AAAGAATGACGACGTAGCAGAGGTGGCCAC ATCCTAAT 2079 GCCTTTTC 2080 Reduced palmitate GCTTGAATTTGTGATCTGATTGGTTAATTGTGGCCACAATGGTTGC 2081 Acyl-ACP-thioesterase TACTGCCGCCACGT GATGCCAAATCGGGCAATCCCGGAAAAGG Ser8Term CCTTTTCCGGGATTGCCCGATTTGGCATCCCCAGAAGGGGAAGTC 2082 TCA-TGA AACGGAAAGAATGAT ACAATTAACCAATCAGATCACAAATTCAAGC CGCCACGT 2083 AGAATGAT 2084 Reduced palmitate TGAATTTGTGATCTGATTGGTTAATTGTGGCCACAATGGTTGCTAC 2085 Acyl-ACP-thioesterase TGCCGCCACGTCAT GCCAAATCGGGCAATCCCGGAAAAGGGTC Ser9Term GACCCTTTTCCGGGATTGCCCGATTTGGCATCCCCAGAAGGGGAA 2086 TCA-TGA GTCAACGGAAAGAAT GCCACAATTAACCAATCAGATCACAAATTCA CACGTCAT 2087 GAAAGAAT 2088 Reduced palmitate CTGATTGGTTAATTGTGGCCACAATGGTTGCTACTGCCGCCACGT 2089 Acyl-ACP-thioesterase CATCATTCTTTCCGT CAATCCCGGAAAAGGGTCGGTGAGTTTTGG Leu13Term CCAAAACTCACCGACCCTTTTCCGGGATTGCCCGATTTGGCATCC 2090 TTG-TAG CCAGAAGGGGAAGTC AGCAACCATTGTGGCCACAATTAACCAATCAG CTTTCCGT 2091 GGGAAGTC 2092 Reduced palmitate ATGGTTGCTACTGCCGCCACGTCATCATTCTTTCCGTTGACTTCCC 2093 Acyl-ACP-thioesterase CTTCTGGGGATGCC AGTTTTGGGTCAATGAAGTCGAAATCCGCGG Lys21Term CCGCGGATTTCGACTTCATTGACCCAAAACTCACCGACCCTTTTCC 2094 AAA-TAA GGGATTGCCCGATT AGAATGATGACGTGGCGGCAGTCGCAACCAT GGGATGCC 2095 GCCCGATT 2096 Reduced palmitate GGGATTTCAGCACGAAATTGAAGTTGTTTTTAAAAACCATGGTTGC 2097 Acyl-ACP-thioesterase TACTGCTGTGACAT TCCTCTGACTCGAAAAACAAGAAGCTCGG Ser8Term CCGAGCTTCTTGTTTTTCGAGTCAGAGGAGTCAGGTGAAGAAGTG 2098 TCG-TAG ACTGGGAAAAACGCC AAAACAACTTCAATTTCGTGCTGAAATCCC TGTGACAT 2099 AAAACGCC 2100 Reduced palmitate TGTTTTTAAAAACCATGGTTGCTACTGCTGTGACATCGGCGTTTTT 2101 Acyl-ACP-thioesterase CCCAGTCACTTCTT CTCGGAAGCATCAAGTCGAAGCCATCGGT Ser16Term ACCGATGGCTTCGACTTGATGCTTCCGAGCTTCTTGTTTTTCGAGT 2102 TCA-TGA CAGAGGAGTCAGGT CAGCAGTAGCAACCATGGTTTTTAAAAACA CACTTCTT 2103 AGTCAGGT 2104 Reduced palmitate TTGCTACTGCTGTGACATCGGCGTTTTTCCCAGTCACTTCTTCACC 2105 Acyl-ACP-thioesterase TGACTCCTCTGACT GAAGCCATCGGTTTCTTCTGGAAGTTTGCA Ser22Term TGCAAACTTCCAGAAGAAACCGATGGCTTCGACTTGATGCTTCCG 2106 TCG-TAG AGCTTCTTGTTTTTC GGAAAAACGCCGATGTCACAGCAGTCGCAA CTCTGACT 2107 TGTTTTTC 2108 Reduced palmitate GCTACTGCTGTGACATCGGCGTTTTTCCCAGTCACTTCTTCACCTG 2109 Acyl-ACP-thioesterase ACTCCTCTGACTCG AGCCATCGGTTTGTTCTGGAAGTTTGCAAG Lys23Term CTTGCAAACTTCCAGAAGAAACCGATGGCTTCGACTTGATGCTTCC 2110 AAA-TAA GAGCTTCTTGTTTT TGGGAAAAACGCCGATGTCACAGCAGTAGC CTGACTCG 2111 CTTGTTTT 2112 Reduced palmitate CTCCCGCTCGTTGAAAGACAATGGTGGCTACCGCTGCAAGCTCTG 2113 Acyl-ACP-thioesterase CATTCTTCCCCGTGT AGCCCGGAAATGGGTCATCGAGCTTCAGCCC Ser14Term GGGCTGAAGCTCGATGACCCATTTCCGGGCTTTCCTGGTCTAGAG 2114 TCG-TAG GAGGTGACCGGGGAC GGTAGCCACCATTGTCTTTCAACGAGCGGGAG CCCCGTGT 2115 CCGGGGAC 2116 Reduced palmitate ATGGTGGCTACCGCTGCAAGCTCTGCATTCTTCCCCGTGTCGTCC 2117 Acyl-ACP-thioesterase CCGGTCACCTCCTCT AGCTTCAGCCCCATCAAGCCCAAATTTGTCG Arg21Term CGACAAATTTGGGCTTGATGGGGCTGAAGCTCGATGACCCATTTC 2118 AGA-TGA CGGGCTTTCCTGGTC GAAGAATGCAGAGCTTGCAGCGGTAGCCACCAT CCTCCTCT 2119 TCCTGGTC 2120 Reduced palmitate GCTACCGCTGCAAGCTCTGCATTCTTCCCCGTGTCGTCCCCGGTC 2121 Acyl-ACP-thioesterase ACCTCCTCTAGACCA AGCCCCATCAAGCCCAAATTTGTCGCCAATG Gly23Term CATTGGCGACAAATTTGGGCTTGATGGGGCTGAAGCTCGATGACC 2122 GGA-TGA CATTTCCGGGCTTTC ACGGGGAAGAATGCAGAGCTTGCAGCGGTAGC CTAGACCA 2123 GGGCTTTC 2124 Reduced palmitate ACCGCTGCAAGCTCTGCATTCTTCCCCGTGTCGTCCCCGGTCACC 2125 Acyl-ACP-thioesterase TCCTCTAGACCAGGA CCCATCAAGCCCAAATTTGTCGCCAATGGCG Lys24Term CGCCATTGGCGACAAATTTGGGCTTGATGGGGCTGAAGCTCGATG 2126 AAG-TAG ACCCATTTCCGGGCT GACACGGGGAAGAATGCAGAGCTTGCAGCGGT GACCAGGA 2127 TCCGGGCT 2128 Reduced palmitate GCCACCGCTGCAAGTTCTGCATTCTTCCCCCTGCCGTCCCCGGAC 2129 Acyl-ACP-thioesterase ACCTCCTCTAGGCCG AGCCCCCTCAAGCCCAAATTTGTCGCCAATG Gly23Term CATTGGCGACAAATTTGGGCTTGAGGGGGCTCAAGCTCGATGACC 2130 GGA-TGA CATTTCCGAGCTTTC AGGGGGAAGAATGCAGAACTTGCAGCGGTGGC CTAGGCCG 2131 GAGCTTTC 2132 Reduced palmitate ACCGCTGCAAGTTCTGCATTCTTCCCCCTGCCGTCCCCGGACACC 2133 Acyl-ACP-thioesterase TCCTCTAGGCCGGGA CCCCTCAAGCCCAAATTTGTCGCCAATGCCG Lys24Term CGGCATTGGCGACAAATTTGGGCTTGAGGGGGCTCAAGCTCGAT 2134 AAG-TAG GACCCATTTCCGAGCT CGGCAGGGGGAAGAATGCAGAACTTGCAGCGGT GGCCGGGA 2135 TCCGAGCT 2136 Reduced palmitate GCAAGTTCTGCATTCTTCCCCCTGCCGTCCCCGGACACCTCCTCT 2137 Acyl-ACP-thioesterase AGGCCGGGAAAGCTC CAAGCCCAAATTTGTCGCCAATGCCGGGTTGA Gly26Term TCAACCCGGCATTGGCGACAAATTTGGGGTTGAGGGGGCTCAAGC 2138 GGA-TGA TCGATGACCCATTTC GGGACGGCAGGGGGAAGAATGCAGAACTTGC GAAAGCTC 2139 CCCATTTC 2140 Reduced palmitate CATTCTTCCCCCTGCCGTCCCCGGACACCTCCTCTAGGCCGGGAA 2141 Acyl-ACP-thioesterase AGCTCGGAAATGGGT TTGTCGCCAATGCCGGGTTGAAGGTTAAGGC Ser29Term GCCTTAACCTTCAACCCGGCATTGGCGACAAATTTGGGCTTGAGG 2142 TCA-TGA GGGCTCAAGCTCGAT GAGGTGTCCGGGGACGGCAGGGGGAAGAATG AAATGGGT 2143 AGCTCGAT 2144 Reduced palmitate CGTTTAAGTGGATCGGACATTTAAGTGTTTTAATCATGGTAGCTAT 2145 Acyl-ACP-thioesterase GAGTGCTACTGCGT TCTGGAGCCAAGACATCTGATAAGCTTGG Ser9Term CCAAGCTTATCAGATGTCTTGGCTCCAGAGTGAGGTTTTGGGGAA 2146 TCG-TAG GAAACCGGAAACAGC AAAACACTTAAATGTCCGATCCACTTAAACG TACTGCGT 2147 GAAACAGC 2148 Reduced palmitate AGTGTTTTAATCATGGTCGCTATGAGTGCTACTGCGTCGCTGTTTC 2149 Acyl-ACP-thioesterase CGGTTTCTTCCCCA GCTTGGAGGTGAACCAGGTAGTGTTGCTG Lys17Term CAGCAACACTACCTGGTTCACCTCCAAGCTTATCAGATGTCTTGGC 2150 AAA-TAA TCCAGAGTGAGGTT TAGCACTCATAGCTACCATGATTAAAACACT CTTCCCCA 2151 GTGAGGTT 2152 Reduced palmitate ATGGTAGCTATGAGTGCTACTGCGTCGCTGTTTCCGGTTTCTTCCC 2153 Acyl-ACP-thioesterase CAAAACCTCACTCT AACCAGGTAGTGTTGCTGTGCGCGGAATCA Gly21Term TGATTCCGCGCACAGCAACACTACCTGGTTCACCTCCAAGCTTATC 2154 GGA-TGA AGATGTCTTGGCTC CAGCGACGCAGTAGCACTCATAGCTACCAT CTCACTCT 2155 CTTGGCTC 2156 Reduced palmitate GCTATGAGTGCTACTGCGTCGCTGTTTCCGGTTTCTTCCCCAAAAC 2157 Acyl-ACP-thioesterase CTCACTCTGGAGCCT GTAGTGTTGCTGTGCGCGGAATCAAGACAA Lys23Term TTGTCTTGATTCCGCGCACAGCAACACTACCTGGTTCACCTCCAAG 2158 AAG-TAG CTTATCAGATGTCT CGGAAACAGCGACGCAGTCGCACTCATAGC CTGGAGCC 2159 AGATGTCT 2160 Reduced palmitate ATGGTGGCTGCTGCAGCAAGTTCTGCATGCTTCCCTGTTCCATCC 2161 Acyl-ACP-thioesterase CCAGGAGCCTCCCCT AGTTTGAGCCCTTCCTTGAAGCCCAAGTCAA Lys21Term TTGACTTGGGCTTCAAGGAAGGGCTCAAACTCGATGACCAGTTGC 2162 AAA-TAA CTAACTTCCCAGGTT AAGCATGCAGAACTTGCTGCAGCAGCCACCAT CCTCCCCT 2163 CCCAGGTT 2164 Reduced palmitate GCTGCAGCAAGTTCTGCATGCTTCCCTGTTCCATCCCCAGGAGCC 2165 Acyl-ACP-thioesterase TCCCCTAAACCTGGG CCTTCCTTGAAGCCCAAGTCAATCCCCAATG Lys24Term CATTGGGGATTGACTTGGGCTTCAAGGAAGGGCTCAAACTCGATG 2166 AAG-TAG ACCAGTTGCCTAACT GAACAGGGAAGCATGCAGAACTTGCTGCAGC AACCTGGG 2167 GCCTAACT 2168 Reduced palmitate TGCATGCTTCCCTGTTCCATCCCCAGGAGCCTCCCCTAAACCTGG 2169 Acyl-ACP-thioesterase GAAGTTAGGCAACTG CAAGTCAATCCCCAATGGCGGATTTCAGGTT Trp28Term AACCTGAAATCCGCCATTGGGGATTGACTTGGGCTTCAAGGAAGG 2170 TGG-TGA GCTCAAACTCGATGA GGCTCCTGGGGATGGAACAGGGAAGCATGCA GGCAACTG 2171 CTCGATGA 2172 Reduced palmitate CATGCTTCCCTGTTCCATCCCCAGGAGCCTCCCCTAAACCTGGGA 2173 Acyl-ACP-thioesterase AGTTAGGCAACTGGT AGTCAATCCCCAATGGCGGATTTCAGGTTAA Ser29Term TTAACCTGAAATCCGCCATTGGGGATTGACTTGGGCTTCAAGGAA 2174 TCA-TGA GGGCTCAAACTCGAT GAGGCTCCTGGGGATGGAACAGGGAAGCATG CAACTGGT 2175 AACTCGAT 2176 Reduced paimitate ATGGTGGCTGCCGCAGCAAGTTCTGCATTCTTCTCCGTTCCAACC 2175 Acyl-ACP-thioesterase CCGGGAATCTCCCCT CAGGTTAAGGCAAACGCCAATGCCCATCCTA Lys21Term TAGGATGGGCATTGGCGTTTGCCTTAACCTGAAAGCCACCATTAC 2178 AAA-TAA CGAACTTCCCGGGTT AAGAATGCAGAACTTGCTGCGGCAGCCACCAT TCTCCCCT 2179 CCCGGGTT 2180 Reduced palmitate GCCGCAGCAAGTTCTGCATTCTTCTCCGTTCCAACCCCGGGAATC 2181 Acyl-ACP-thioesterase TCCCCTAAACCCGGG GCAAACGCCAATGCCCATCCTAGTCTAAAGT Lys24Term ACTTTAGACTAGGATGGGCATTGGCGTTTGCCTTAACCTGAAAGC 2182 AAG-TAG CACCATTACCGAACT GAACGGAGAAGAATGCAGAACTTGCTGCGGC AACCCGGG 2183 ACCGAACT 2184 Reduced palmitate TTCTCCGTTCCAACCCCGGGAATCTCCCCTAAACCCGGGAAGTTC 2185 Acyl-ACP-thioesterase GGTAATGGTGGCTTT AGTCTAAAGTCTGGCAGCCTCGAGACTGAAG Gln31Term CTTCAGTCTCGAGGCTGCCAGACTTTAGACTAGGATGGGCATTGG 2186 CAG-TAG CGTTTGCCTTAACCT AGGGGAGATTCCCGGGGTTGGAACGGAGAA GTGGCTTT 2187 CTTAACCT 2188 Reduced palmitate GTTCCAACCCCGGGAATCTCCCCTAAACCCGGGAAGTTCGGTAAT 2189 Acyl-ACP-thioesterase GGTGGCTTTCAGGTT AAGTCTGGCAGCCTCGAGACTGAAGATGACA Lys33Term TGTCATCTTCAGTCTCGAGGCTGCCAGACTTTAGACTAGGATGGG 2190 AAG-TAG CATTGGCGTTTGCCT GGGTTTAGGGGAGATTCCCGGGGTTGGAAC TTCAGGTT 2191 GTTTGCCT 2192 Reduced palmitate ATGTTGAAGCTCTCGTGTAATGCGACTGATAAGTTACAGACCCTCT 2193 Acyl-ACP-thioesterase TCTCGCATTCTCAT CCTCCGTGTCGTGCTCTCATCTGAGGAAAC Gln21Term GTTTCCTCAGATGAGAGCACGACACGGAGGAGACGGTTCTCCGGT 2194 CAA-TAA GTGCCGGATCCGGTT TATCAGTCGCATTACACGAGAGCTTCAACAT ATTCTCAT 2195 ATCCGGTT 2196 Reduced palmitate GCGACTGATAAGTTACAGACCCTCTTCTCGCATTCTCATCAACCGG 2197 Acyl-ACP-thioesterase ATCCGGCACACCGG TGAGGAAACCGGTTCTCGATCCTTTGCGAG Arg28Term CTCGCAAAGGATCGAGAACCGGTTTCCTCAGATGAGAGCACGACA 2198 AGA-TGA CGGAGGAGACGGTTC TGCGAGAAGAGGGTCTGTAACTTATCAGTCGC CACACCGG 2199 GACGGTTC 2200 Reduced palmitate CCCTCTTCTCGCATTCTCATCAACCGGATCCGGCACACCGGAGAA 2201 Acyl-ACP-thioesterase CCGTCTCCTCCGTGT ATCCTTTGCGAGCGATCGTATCTGCTGATCA Ser24Term TGATCAGCAGATACGATCGCTCGCAAAGGATCGAGAACCGGTTTC 2202 TCG-TAG CTCAGATGAGAGCAC CGGATCCGGTTGATGAGAATGCGAGAAGAGGG CTCCGTGT 2203 GAGAGCAC 2204 Reduced palmitate CTTCTCGCATTCTCATCAACCGGATCCGGCACACCGGAGAACCGT 2205 Acyl-ACP-thioesterase CTCCTCCGTGTCGTG TTTGCGAGCGATCGTATCTGCTGATCAAGGA Cys25Term TCCTTGATCAGCAGATACGATCGCTCGCAAAGGATCGAGAACCGG 2206 TGC-TGA TTTCCTCAGATGAGA TGCCGGATCCGGTTGATGAGAATGCGAGAAG GTGTCGTG 2207 AGATGAGA 2208 Reduced palmitate ATTCTTCTTCTATAAACCAAAACCTCAGGAACCATAAAAAAAAAAGG 2209 Acyl-ACP-thioesterase GCATCAAAAATGT ACACCTTCTCCTTCTTCTCCGATTCCTC Leu2Term GAGGAATCGGAGAAGAAGGAGAAGGTGTGTAAGTTGTTAGTCACA 2210 TTG-TAG TTACACGAAAGCTTC CTGAGGTTTTGGTTTATAGAAGAAGAAT AAAAATGT 2211 AAAGCTTC 2212 Reduced palmitate TCTTCTTCTATAAACCAAAACCTCAGGAACCATAAAAAAAAAAGGG 2213 Acyl-ACP-thioesterase CATCAAAAATGTTG ACCTTCTCCTTCTTCTCCGATTCCTCCC Lys3Term GGGAGGAATCGGAGAAGAAGGAGAAGGTGTGTAAGTTGTTAGTCA 2214 AAG-TAG CATTACACGAAAGCT TTCCTGAGGTTTTGGTTTATAGAAGAAGA AAATGTTG 2215 CGAAAGCT 2216 Reduced palmitate CTATAAACCAAAACCTCAGGAACCATAAAAAAAAAAGGGCATCAAA 2217 Acyl-ACP-thioesterase AATGTTGAAGCTTT CCTTCTTCTCCGATTCCTCCCTTTTCAT Ser5Term ATGAAAAGGGAGGAATCGGAGAAGAAGGAGAAGGTGTGTAAGTT 2218 TCG-TAG GTTAGTCACATTACAC TTTTATGGTTCCTGAGGTTTTGGTTTATAG GAAGCTTT 2219 CATTACAC 2220 Reduced palmitate AAACCAAAACCTCAGGAACCATAAAAAAAAAAGGGCATCAAAAATG 2221 Acyl-ACP-thioesterase TTGAAGCTTTCGTG CTTCTCCGATTCCTCCCTTTTCATCCCG Cys6Term CGGGATGAAAAGGGAGGAATCGGAGAAGAAGGAGAAGGTGTGTA 2222 TGT-TGA AGTTGTTAGTCACATT TTTTTTTTATGGTTCCTGAGGTTTTGGTTT CTTTCGTG 2223 GTCACATT 2224
[0147]
TABLE 23 Oligonucleotides to produce plants with increased stearate Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: Increased stearate GGGAGAGCTCTAGCTCTGTAGAAAAGAAGGATTCATTCATCATATC 2225 stearoyl-ACP CAGAAATGGCTCTA desaturase CAAATTCCCTTCCTCGACTCGTCCGCCAA TTGGCGGACGAGTCGAGGAAGGGAATTTGTAAGGCTGAGATGCC 2226 Lys4 Term ACCAAAGGGTTAAACT AAG-TAG TCCTTCTTTTCTACAGAGCTAGAGCTCTCCC TGGCTCTA 2227 GTTAAACT 2228 Increased stearate CTCTGTAGAAAAGAAGGATTCATTCATCATATCCAGAAATGGCTCT 2229 stearoyl-ACP AAAGTTTAACCCTT desaturase TCGACTCGTCCGCCAACTCCTCTTTCAG CTGAAAGAAGGAGTTGGCGGACGAGTCGAGGAAGGGAATTTGTA 2230 Leu8 Term AGGCTGAGATGCCACC TTG-TAG ATATGATGAATGAATCCTTCTTTTCTACAGAG TAACCCTT 2231 ATGCCACC 2232 Increased stearate AGAAGGATTCATTCATCATATCCAGAAATGGCTCTAAAGTTTAACC 2233 stearoyl-ACP CTTTGGTGGCATCT desaturase GCCAACTCCTTCTTTCAGATCTCCCAAGT ACTTGGGAGATCTGAAAGAAGGAGTTGGCGGACGAGTCGAGGAA 2234 Gln12 Term GGGAATTTGTAAGGCT CAG-TAG GCCATTTCTGGATATGATGAATGAATCCTTCT TGGCATCT 2235 GTAAGGCT 2236 Increased stearate TCATTCATCATATCCAGAAATGGCTCTAAAGTTTAACCCTTTGGTG 2237 stearoyl-ACP GCATCTCAGCCTTA desaturase CTTCTTTCAGATCTCCCAAGTTCCTCTGC GCAGAGGAACTTGGGAGATCTGAAAGAAGGAGTTGGCGGACGAG 2238 Phe14 Term TCGAGGAAGGGAATTT TAC-TAG ACTTTAGAGCCATTTCTGGATATGATGAATGA CAGCCTTA 2239 GGGAATTT 2240 Increased stearate GAGAGCTCGCTCGTGTCTGAAAGAACATCAAACCTCGTATCAAAAA 2241 stearoyl-ACP AAAGAAAATGGCAT desaturase AAACTCCCTTCCTCGGCTCGTCCGCCAAT ATTGGCGGACGAGCCGAGGAAGGGAGTTTGTAAGGCTGAGATGC 2242 Leu3 Term CAAAGGGTTAAGCTTC TTG-TAG TGATGTTCTTTCAGACACGAGCGAGCTCTC AATGGCAT 2243 TAAGCTTC 2244 Increased stearate GAGCTCGCTCGTGTCTGAAAGAACATCAAACCTCGTATCAAAAAAA 2245 stearoyl-ACP AGAAAATGGCATTG desaturase ACTCCCTTCCTCGGCTCGTCCGCCAATCT AGATTGGCGGACGAGCCGAGGAAGGGAGTTTGTAAGGCTGAGAT 2246 Lys4 Term GCCAAAGGGTTAAGCT AAG-TAG GTTTGATGTTCTTTCAGACACGAGCGAGCTC TGGCATTG 2247 GTTAAGCT 2248 Increased stearate TCTGAAAGAACATCAAACCTCGTATCAAAAAAAAGAAAATGGCATT 2249 stearoyl-ACP GAAGCTTAACCCTT desaturase GCTCGTCCGCCAATCTCTACTCTCAGATC GATCTGAGAGTAGAGATTGGCGGACGAGCCGAGGAAGGGAGTTT 2250 Leu8 Term GTAAGGCTGAGATGCC TTG-TAG TTTTTGATACGAGGTTTGATGTTCTTTCAGA TAACCCTT 2251 GAGATGCC 2252 Increased stearate AACATCAAACCTCGTATCAAAAAAAAGAAAATGGCATTGAAGCTTA 2253 stearoyl-ACP ACCCTTTGGCATCT desaturase GCCAATCTCTACTCTCAGATCTCCCAAGT ACTTGGGAGATCTGAGAGTAGAGATTGGCGGACGAGCCGAGGAA 2254 Gln11 Term GGGAGTTTGTAAGGCT CAG-TAG ATTTTCTTTTTTTTGATACGAGGTTTGATGTT TGGCATCT 2255 GTAAGGCT 2256 Increased stearate AACCAAAAGAAAAGGTAAGAAAAAAAACAATGGCTCTCAAGCTCA 2257 stearoyl-ACP ATCCTTTCCTTTCT desaturase CCAATGGCCAGTACCAGATCTCCTAAGT ACTTAGGAGATCTGGTACTGGCCATTGGTGGAAGAGCGAAAGAAG 2258 Gln27 Term GTAACTTTTGGGTTT CAA-TAA TGTTTTTTTTCTTACCTTTTTCTTTTGGTT TCCTTTCT 2259 TTGGGTTT 2260 Increased stearate AAGAAAAAGGTAAGAAAAAAAACAATGGCTCTCAAGCTCAATCCTT 2261 stearoyl-ACP TCCTTTCTCAAACC desaturase GCCAGTACCAGATCTCCTAAGTTCTACA TGTAGAACTTAGGAGATCTGGTACTGGCCATTGGTGGAAGAGCGA 2262 Gln29 Term AAGAAGGTAACTTTT CAA-TAA GAGCCATTGTTTTTTTTCTTACCTTTTTCTT CTCAAACC 2263 TAACTTTT 2264 Increased stearate AAAAAGGTAAGAAAAAAAACAATGGCTCTCAAGCTCAATCCTTTCC 2265 stearoyl-ACP TTTCTCAAACCCAA desaturase AGTACCAGATCTCCTAAGTTCTACATGG CCATGTAGAACTTAGGAGATCTGGTACTGGCCATTGGTGGAAGAG 2266 Lys30 TermCGAAAGAAGGTAACT AAG-TAG TGAGAGCCATTGTTTTTTTTCTTACCTTTTT AAACCCAA 2267 AGGTAACT 2268 Increased stearate TCTCAAACCCAAAAGTTACCTTCTTTCGCTCTTCCACCAATGGCCA 2269 stearoyl-ACP GTACCAGATCTCCT desaturase TTCTAAGGAAGTTGAGAATCTCAAGAAGC GCTTCTTGAGATTCTCAACTTCCTTAGAACCAGACTTGAGGGTAGA 2270 Lys46 Term GGCCATGTAGAACT AAG-TAG AGCGAAAGAAGGTAACTTTTGGGTTTGAGA GATCTCCT 2271 GTAGAACT 2272 Increased stearate TCTTCTGATTCATTTAATCTTTACTCATCAATGGCTCTGAGACTGAA 2273 stearoyl-ACP CCCTATCCCCACC desaturase AGATCTCCCAGGTTCCGCATGGCCTCTA TAGAGGCCATGCGGAACCTGGGAGATCTGAGACTGGCCATTTGG 2274 Gln11 Term GGGAGGGAGAAGGTTT CAA-TAA CATTGATGAGTAAAGATTAAATGAATCAGAAGA TCCCCACC 2275 GAAGGTTT 2276 Increased stearate CTTTACTCATCAATGGCTCTGAGACTGAACCCTATCCCCACCCAAA 2277 stearoyl-ACP CCTTCTCCCTCCCC desaturase GCATGGCCTCTACCCTCCGCTCCGGTTCCA TGGAACCGGAGCGGAGGGTAGAGGCCATGCGGAACCTGGGAGAT 2278 Gln17 Term CTGAGACTGGCCATTT CAA-TAA AGGGTTCAGTCTCAGAGCCATTGATGAGTAAAG CCCTCCCC 2279 GGCCATTT 2280 Increased stearate GCTCTGAGACTGAACCCTATCCCCACCCAAACCTTCTCCCTCCCC 2281 stearoyl-ACP CAAATGGCCAGTCTC desaturase CTCCGCTCCGGTTCCAAAGAGGTTGAAAATA TATTTTCAACCTCTTTGGAACCGGAGCGGAGGGTAGAGGCCATGC 2282 Arg22 Term GGAACCTGGGAGATC AGA-TGA GTTTGGGTGGGGATAGGGTTCAGTCTCAGAGC CCAGTCTC 2283 GGGAGATC 2284 Increased stearate CAAATGGCCAGTCTCAGATCTCCCAGGTTCCGCATGGCCTCTACC 2285 stearoyl-ACP CTCCGCTCCGGTTCC desaturase CTCCTCCCAGAGAAGTGCATGTTCAAGTAA TTACTTGAACATGCACTTCTCTGGGAGGAGTGAATGGCTTCTTAAT 2286 Lys37 Term ATTTTCAACCTCTT AAA-TAA GAACCTGGGAGATCTGAGACTGGCCATTTG CCGGTTCC 2287 AACCTCTT 2288 Increased stearate CAACAAGCACACACAAGAACAACATCAACAATGGCGATTCGCATC 2289 stearoyl-ACP AATACGGCGACGTTT desaturase CTCAACCGAAACCTCTCAGATCTCCCAAAT ATTTGGGAGATCTGAGAGGTTTCGGTTGAGGAAACGCGAATGAAC 2290 Gln11 Term GGTACAGGTCTGATT CAA-TAA TTGTTGATGTTGTTCTTGTGTGTGCTTGTTG CGACGTTT 2291 GTCTGATT 2292 Increased stearate AAGCACACACAAGAAGCAACATCAACAATGGCGATTCGCATCAATAC 2293 stearoyl-ACP GGCGACGTTTCAAT desaturase CCGAAACCTCTCAGATCTCCCAAATTCGC GCGAATTTGGGAGATCTGAGAGGTTTCGGTTGAGGAAACGCGAAT 2294 Ser12 Term GAACGGTACAGGTCT TCA-TGA GCCATTGTTGATGTTGTTCTTGTGTGTGCTT GTTTCAAT 2295 ACAGGTCT 2296 Increased stearate AAGAACAACATCAACAATGGCGATTCGCATCAATACGGCGACGTTT 2297 stearoyl-ACP CAATCAGACCTGTA desaturase TCAGATCTCCCAAATTCGCCATGGCTTCC GGAAGCCATGGCGAATTTGGGAGATCTGAGAGGTTTCGGTTGAGG 2298 Tyr15 Term AAACGCGAATGAACG TAC-TAG GATGCGAATCGCCATTGTTGATGTTGTTCTT GACCTGTA 2299 AATGAACG 2300 Increased stearate CAACATCAACAATGGCGATTCGCATCAATACGGCGACGTTTCAATC 2301 stearoyl-ACP AGACCTGTACCGTT desaturase TCTCCCAAATTCGCCATGGCTTCCACCAT ATGGTGGAAGCCATGGCGAATTTGGGAGATCTGAGAGGTTTCGGT 2302 Ser17 Term TGAGGAAACGCGAAT TCA-TGA GTATTGATGCGAATCGCCATTGTTGATGTTG GTACCGTT 2303 ACGCGAAT 2304 Increased stearate ACACACAACACACACTCAATCACACACACATCATCATCTTCTTCATC 2305 stearoyl-ACP AACGATGGCGCTT desaturase ATATCCTTCATACACTTTTCATCAATCGA TCGATTGATGAAAAGTGTATGAAGGATATATCTCCCGTTGAAGCGT 2306 Arg4 Term CACCGGACTCATTC CGA-TGA TGTGTGTGTGATTGAGTGTGTGTTGTGTGT TGGCGCTT 2307 ACTCATTC 2308 Increased stearate ACACACACATCATCATCTTCTTCATCAACGATGGCGCTTCGAATGA 2309 stearoyl-ACP GTCCGGTGACGCTT desaturase TCAATCGAAAAATCTCAGATCTCCTAAAT ATTTAGGAGATCTGAGATTTTTCGATTGATGAAAAGTGTATGAAGG 2310 Gln11 Term ATATATCTCCCGTT CAA-TAA GTTGATGAAGAAGATGATGATGTGTGTGT TGACGCTT 2311 CTCCCGTT 2312 Increased stearate ACATCATCATCTTCTTCATCAACGATGGCGCTTCGAATGAGTCCGG 2313 stearoyl-ACP TGACGCTTCAACGG desaturase AAAAATCTCAGATCTCCTAAATTCGCGA TCGCGAATTTAGGAGATCTGAGATTTTTCGATTGATGAAAAGTGTA 2314 Glu13 Term TGAAGGATATATCT GAG-TAG CGCCATCGTTGATGAAGAAGATGATGATGT TTCAACGG 2315 ATATATCT 2316 Increased stearate ATCTTCTTCATCAACGATGGCGCTTCGAATGAGTCCGGTGACGCTT 2317 stearoyl-ACP CAACGGGAGATATA desaturase TCAGATCTCCTAAATTCGCGATGGCTTCC GGAAGCCATCGCGAATTTAGGAGATCTGAGATTTTTCGATTGATGA 2318 Tyr15 Term AAAGTGTATGAAGG TAT-TAG ATTCGAAGCGCCATCGTTGATGAAGAAGAT GAGATATA 2319 TATGAAGG 2320 Increased stearate AACTCAGCCAGCTTGCCCCCAAACAACAGCGCAGAAAAACCTTCA 2321 stearoyl-ACP ACAACAATGGCTCTC desaturase CACGCTCCCTCAACAACTTCTCCTCCAGAT ATCTGGAGGAGAAGTTGTTGAGGGAGCGTGTTGAAGGGAAGGTG 2322 Lys4 Term GTGACTGGGTTGAGCT AAG-TAG GCGCTGTTGTTTGGGGGCAAGCTGGCTGAGTT TGGCTCTC 2323 GTTGAGCT 2324 Increased stearate GCGCAGAAAAACCTTCAACAACAATGGCTCTCAAGCTCAACCCAG 2325 stearoyl-ACP TCACCACCTTCCCTT desaturase ATCTCCTCGCACCTTTCTCATGGCTGCTTC GAAGCAGCCATGAGAAAGGTGCGAGGAGATCTGGAGGAGAAGTT 2326 Ser13 Term GTTGAGGGAGCGTGTT TCA-TGA TGAGAGCCATTGTTGTTGAAGGTTTTTCTGCGC CTTCCCTT 2327 AGCGTGTT 2328 Increased stearate CTCAAGCTCAACCCAGTCACCACCTTCCCTTCAACACGCTCCCTCA 2329 stearoyl-ACP ACAACTTCTCCTCC desaturase CACTTTCAATTCCACCTCCACCAAGTAAG CTTACTTGGTGGAGGTGGAATTGAAAGTGGAAGCAGCCATGAGAA 2330 Arg23 Term AGGTGCGAGGAGATC AGA-TGA GAAGGGAAGGTGGTGACTGGGTTGAGCTTGAG TCTCCTCC 2331 AGGAGATC 2332 Increased stearate TCCTCCAGATCTCCTCGCACCTTTCTCATGGCTGCTTCCACTTTCA 2333 stearoyl-ACP ATTCCACCTCCACC desaturase CCGATTTCTTTTAAGCGATTGATCGTAGA TCTACGATCAATCGCTTAAAAGAAATCGGCGGAGATTCCGAGGAG 2334 Lys411 Term GAGGAGATGCTTACT AAG-TAG GCCATGAGAAAGGTGCGAGGAGATCTGGAGGA CCTCCACC 2335 TGCTTACT 2336 Increased stearate ATGGCACTGAAACTTTGCTTTCCACCCCACAAGATGCCTTCCTTCC 2337 stearoyl-ACP CCGATGCTCGTATC desaturase TCATTCTCCTTCTATGGAGGTCGGAAAAG CTTTCCGACCTCCATAGAAGGAGAATGAATAGTTGAAGCCATGAA 2338 Arg21 Term AACCCTGTGAGATC AGA-TGA GTGGGGTGGAAAGCAAAGTTTCAGTGCCAT CTCGTATC 2339 GTGAGATC 2340 Increased stearate CCCACAAGATGCCTTCCTTCCCCGATGCTCGTATCAGATCTCACAG 2341 stearoyl-ACP GGTTTTCATGGCTT desaturase AAAGTTAAAAAGCCTTTCACGCCTCCACG CGTGGAGGCGTGAAAGGCTTTTTAACTTTTCCGACCTCCATAGAA 2342 Ser29 Term GGAGAATGAATAGTT TCA-TGA GAGCATCGGGGAAGGAAGGCATCTTGTGGG CATGGCTT 2343 GAATAGTT 2344 Increased stearate GATGCTCGTATCAGATCTCACAGGGTTTTCATGGCTTCAACTATTC 2345 stearoyl-ACP ATTCTCCTTCTATG desaturase TCCACGAGAGGTACATGTTCAAGTAACCC GGGTTACTTGAACATGTACCTCTCGTGGAGGCGTGAAAGGCTTTT 2346 Glu37 Term TAACTTTTCCGACCT GAG-TAG GAAAACCCTGTGAGATCTGATACGAGCATC CTTCTATG 2347 TCCGACCT 2348 Increased stearate CGTATCAGATCTCACAGGGTTTTCATGGCTTCAACTATTCATTCTC 2349 stearoyl-ACP CTTCTATGGAGGTC desaturase AGAGGTACATGTTCAAGTAACCCATTCCT AGGAATGGGTTACTTGAACATGTACCTCTCGTGGAGGCGTGAAAG 2350 Gly39 Term GCTTTTTAACTTTTC GGA-TGA AGCCATGAAAACCCTGTGAGATCTGATACG TGGAGGTC 2351 AACTTTTC 2352 Increased stearate TTCTCGTTTTTGTCGTCCCCTCTGCTCTCTCTCTCTATCAGGCACG 2353 stearoyl-ACP GAGAAATGGCACTG desaturase GCTTCCATTTCTTGCCTCCTATCCGCCTT AAGGCGGATAGGAGGCAAGAAATGGAAGCTTCTGAGATTGAAACA 2354 Lys4 Term TGACTGGACTGAGTT AAA-TAA GAGAGAGCAGAGGGGACGACAAAAACGAGAA TGGCACTG 2355 ACTGAGTT 2356 Increased stearate CTGCTCTCTCTCTCTATCAGGCACGGAGAAATGGCACTGAAACTCA 2357 stearoyl-ACP GTCCAGTCATGTTT desaturase CCGCCTTCCAATCTCAGATCTCCGAGGG CCCTCGGAGATCTGAGATTGGAAGGCGGATAGGAGGCAAGAAAT 2358 Gln11 Term GGAAGCTTCTGAGATT CAA-TAA ATTTCTCCGTGCCTGATAGAGAGAGAGAGCAG TCATGTTT 2359 CTGAGATT 2360 Increased stearate TCTCTCTCTATCAGGCACGGAGAAATGGCACTGAAACTCAGTCCA 2361 stearoyl-ACP GTCATGTTTCAATCT desaturase TTCCAATCTCAGATCTCCGAGGGTTTTCA TGAAAACCCTCGGAGATCTGAGATTGGAAGGCGGATAGGAGGCAA 2362 Gln13 Term GAAATGGAAGCTTCT CAG-TAG TGCCATTTCTCCGTGCCTGATAGAGAGAGA TTCAATCT 2363 AAGCTTCT 2364 Increased stearate CTCTCTATCAGGCACGGAGAAATGGCACTGAAACTCAGTCCAGTC 2365 stearoyl-ACP ATGTTTCAATCTCAG desaturase CAATCTCAGATCTCCGAGGGTTTTCATGG CCATGAAAACCCTCGGAGATCTGAGATTGGAAGGCGGATAGGAG 2366 Lys14 Term GCAAGAAATGGAAGCT AAG-TAG TTCAGTGCCATTTCTCCGTGCCTGATAGAGAG AATCTCAG 2367 TGGAAGCT 2368 Increased stearate CCCCGAGATCTCGCTGCCGCTGCTCATGGCGTTCGCGGCGTCCC 2369 stearoyl-ACP ACACCGCATCGCCGTA desaturase GAGCAATGGGATGTCGAAGATGGTGGCCATGGCC GGCCATGGCCACCATCTTCGACATCCCATTGCTCCTCCTCTGCGC 2370 Tyr12 Term CACGCCGCCGCAGGA TAC-TAG AACGCCATGAGCAGCGGCAGCGAGATCTCGGGG TCGCCGTA 2371 CCGCAGGA 2372 Increased stearate CTGCTCATGGCGTTCGCGGCGTCCCACACCGCATCGCCGTACTCC 2373 stearoyl-ACP TGCGGCGGCGTGGCG desaturase GGTGGCCATGGCCTCCACCATCAACAGGGTCA TGACCCTGTTGATGGTGGAGGCCATGGCCACCATCTTCGACATCC 2374 Gln19 Term CATTGCTCCTCCTCT CAG-TAG GCGGTGTGGGACGCCGCGAACGCCATGAGCAG GCGTGGCG 2375 CCTCCTCT 2376 Increased stearate CCCACACCGCATCGCCGTACTCCTGCGGCGGCGTGGCGCAGAGG 2377 stearoyl-ACP AGGAGCAATGGGATGT desaturase CAACAGGGTCAAGACTGCTAAGAAGCCCTACAC GTGTAGGGCTTCTTAGCAGTCTTGACCCTGTTGATGGTGGAGGCC 2378 Ser26 Term ATGGCCACCATCTTC TCG-TAG CGCCGCAGGAGTACGGCGATGCGGTGTGGG TGGGATGT 2379 CCATCTTC 2380 Increased stearate CACACCGCATCGCCGTACTCCTGCGGCGGCGTGGCGCAGAGGAG 2381 stearoyl-ACP GAGCAATGGGATGTCG desaturase CAGGGTCAAGACTGCTAAGAAGCCCTACACTC GAGTGTAGGGCTTCTTAGCAGTCTTGACCCTGTTGATGGTGGAGG 2382 Lys27 Term CCATGGCCACCATCT AAG-TAG CGCCGCCGCAGGAGTACGGCGATGCGGTGTG GGATGTCG 2383 CACCATCT 2384 Increased stearate TTCTCTCTCTAGGTTGAGCGGTTACCAACAGAAGCACTTAGGAGA 2385 stearoyl-ACP GAGAAGCAATGGCGT desaturase CCATGGCGGTTACCTCTTCGGGACTTCCTCG CGAGGAAGTCCCGAAGAGGTAACCGCCATGGAAGGATTGAAGGC 2386 Leu3 Term CGTGTGGTGAAGCTTC TTG-TAG CTGTTGGTAACCGCTCAACCTAGAGAGAGAA AATGGCGT 2387 GAAGCTTC 2388 Increased stearate CTCTCTCTAGGTTGAGCGGTTACCAACAGAAGCACTTAGGAGAGA 2389 stearoyl-ACP GAGCAATGGCGTTG desaturase ATGGCGGTTACCTCTTCGGGACTTCCTCGAT ATCGAGGAAGTCCCGAAGAGGTAACCGCCATGGAAGGATTGAAG 2390 Lys4 Term GCCGTGTGGTGAAGCT AAG-TAG CTTCTGTTGGTAACCGCTCAACCTAGAGAGAG TGGCGTTG 2391 GTGAAGCT 2392 Increased stearate AAGCAATGGCGTTGAAGCTTCACCACACGGCCTTCAATCCTTCCAT 2393 stearoyl-ACP GGCGGTTACCTCTT desaturase CACCGCGTTTTCATGGCTTCTTCTACAAT ATTGTAGAAGAAGCCATGAAAACGCGGTGAGATCTGAGGTGATAC 2394 Ser19 Term GATCGAGGAAGTCCC TCG-TAG GCCGTGTGGTGAAGCTTCAACGCCATTGCTT TACCTCTT 2395 GAAGTCCC 2396 Increased stearate GCAATGGCGTTGAAGCTTCACCACACGGCCTTCAATCCTTCCATG 2397 stearoyl-ACP GCGGTTACCTCTTCG desaturase ACCGCGTTTTCATGGCTTCTTCTACAATTG CAATTGTAGAAGAAGCCATGAAAACGCGGTGAGATCTGAGGTGAT 2398 Gly20 Term ACGATCGAGGAAGTC GGA-TGA AAGGCCGTGTGGTGAAGCTTCAACGCCATTGC CCTCTTCG 2399 AGGAAGTC 2400 Increased stearate TGGCTCTGAATCTCAACCCCGTTTCCACACCATTTCAGTGTCGTCG 2401 stearoyl-ACP ATTGCCGTCTTTCT desaturase AAATTCTTCATGGCTTCCACTCTCAGCAG CTGCTGAGAGTGGAAGCCATGAAGAATTTGGGAGATCTGCGAGAA 2402 Ser21 Term GGCGTTTGACGAGGT TCA-TGA GGTGTGGAAACGGGGTTGAGATTCAGAGCCA GTCTTTCT 2403 GACGAGGT 2404 Increased stearate AATCTCAACCCCGTTTCCACACCATTTCAGTGTCGTCGATTGCCGT 2405 stearoyl-ACP CTTTCTCACCTCGT desaturase CATGGCTTCCACTCTCAGCAGCTCTTCTC GAGAAGAGCTGCTGAGAGTGGAAGCCATGAAGAATTTGGGAGATC 2406 Gln24 Term TGCGAGAAGGCGTTT CAA-TAA CACTGAAATGGTGTGGAAACGGGGTTGAGATT CACCTCGT 2407 AGGCGTTT 2408 Increased stearate TCCACACCATTTCAGTGTCGTCGATTGCCGTCTTTCTCACCTCGTC 2409 stearoyl-ACP AAACGCCTTCTCGC desaturase CAGCAGCTCTTCTCCTAAGGAAGCGGAAA TTTCCGCTTCCTTAGGAGAAGAGCTGCTGAGAGTGGAAGCCATGA 2410 Arg29 Term AGAATTTGGGAGATC AGA-TGA GACGGCAATCGACGACACTGAAATGGTGTGGA CTTCTCGC 2411 GGGAGATC 2412 Increased stearate TTTCAGTGTCGTCGATTGCCGTCTTTCTCACCTCGTCAAACGCCTT 2413 stearoyl-ACP CTCGCAGATCTCCC desaturase TTCTCCTAAGGAAGCGGAAAGCCTGAAGA TCTTCAGGCTTTCCGCTTCCTTAGGAGAAGAGCTGCTGAGAGTGG 2414 Lys32 Term AAGCCATGAAGAATT AAA-TAA GTGAGAAAGACGGCAATCGACGACACTGAAA GATCTCCC 2415 GAAGAATT 2416 Increased stearate AAATAGTCGAGGTGAAAAACAGAGCATCAACAATGGCACTGAATAT 2417 stearoyl-ACP CAATGGGGTGTCGT desaturase TCTTCAGCCAGATCTGAGCGAGTTTTCAT ATGAAAACTCGCTCAGATCTGGCTGAAGAACAAGGAAATGGTAAC 2418 Leu10 Term ATTTTGTGAGATTTT TTA-TGA TGATGCTCTGTTTTTCACCTCGACTATTT GGTGTCGT 2419 GAGATTTT 2420 Increased stearate ATAGTCGAGGTGAAAACAGAGCATCAACAATGGCACTGAATATCA 2421 stearoyl-ACP ATGGGGTGTCGTTA desaturase TCAGCCAGATCTGAGCGAGTTTTCATGG CCATGAAAACTCGCTCAGATCTGGCTGAAGAACAAGGAAATGGTA 2422 Lys11 Term ACATTTTGTGAGATT AAA-TAA GTTGATGCTCTGTTTTTCACCTCGACTAT TGTCGTTA 2423 GTGAGATT 2424 Increased stearate GTGAAAAACAGAGCATCAACAATGGCACTGAATATCAATGGGGTG 2425 stearoyl-ACP TCGTTAAAATCTCAC desaturase ATCTGAGCGAGTTTTCATGGCTTCAACCA TGGTTGAAGCCATGAAAACTCGCTCAGATCTGGCTGAAGAACAAG 2426 Lys14 Term GAAATGGTAACATTT AAA-TAA CAGTGCCATTGTTGATGCTCTGTTTTTCAC AATCTCAC 2427 TAACATTT 2428 Increased stearate ACAGAGCATCAACAATGGCACTGAATATCAATGGGGTGTCGTTAAA 2429 stearoyl-ACP ATCTCACAAAATGT desaturase CGAGTTTTCATGGCTTCAACCATTCATCG CGATGAATGGTTGAAGCCATGAAAACTCGCTCAGATCTGGCTGAA 2430 Leu16 Term GAACAAGGAAATGGT TTA-TGA TGATATTCAGTGCCATTGTTGATGCTCTGT CAAAATGT 2431 GAAATGGT 2432 Increased stearate TGGCTCTGAGGCTGAACCCTAACCCTTCACAGAAGCTCTTTCTCTC 2433 stearoyl-ACP TCCTTCTTCATCAT desaturase AAATGGCTAGCCTCAGATCTCCAAGGTT AACCTTGGAGATCTGAGGCTAGCCATTTGAGGAAGCGAGAACGAT 2434 Ser21 Term GAAGAAGAAGAAGAT TCA-TGA TGTGAAGGGTTAGGGTTCAGCCTCAGAGCCA TTCATCAT 2435 AAGAAGAT 2436 Increased stearate ACCCTAACCCTTCACAGAAGCTCTTTCTCTCTCCTTCTTCATCATCA 2437 stearoyl-ACP TCTTCTTCTTCTT desaturase GTCTCCAAGGTTCCGCATGGCCTCCAC GTGGAGGCCATGCGGAACCTTGGAGATCTGAGGCTAGCCATTTGA 2438 Ser26 Term GGAAGCGAGAACGAT TCA-TGA GAGAGAAAGAGCTTCTGTGAAGGGTTAGGGT TTCTTCTT 2439 AGAACGAT 2440 Increased stearate CTAACCCTTCACAGAAGCTCTTTCTCTCTCCTTCTTCATCATCATCT 2441 stearoyl-ACP TCTTCTTCTTCAT desaturase CTCCAAGGTTCCGCATGGCCTCCACCCT AGGGTGGAGGCCATGCGGAACCTTGGAGATCTGAGGCTAGCCAT 2442 Ser27 Term TTGAGGAAGCGAGAAC TCG-TAG AGGAGAGAGAAAGAGCTTCTGTGAAGGGTTAG TTCTTCAT 2443 GCGAGAAC 2444 Increased stearate CTTCACAGAAGCTCTTTCTCTCTCCTTCTTCATCATCATCTTCTTCT 2445 stearoyl-ACP TCTTCATCGTTCT desaturase GGTTCCGCATGGCCTCCACCCTCCGCAC GTGCGGAGGGTGGAGGCCATGCGGAACCTTGGAGATCTGAGGCT 2446 Ser29 Term AGCCATTTGAGGAAGC TCG-TAG TGAAGAAGGAGAGAGAAAGAGCTTCTGTGAAG ATCGTTCT 2447 GAGGAAGC 2448 Increased stearate AAAGTTAAAAGCCGTCCAAAACCCAAACCAGGAAAGGCAAACGAA 2449 stearoyl-ACP AAGAAAAAATGGCTT desaturase GAAGCTCCCTTGCTTTGCTCTTCCACCAAA TTTGGTGGAAGAGCAAAGCAAGGGAGCTTCTGAGATTTCGAGGCG 2450 Leu3 Term ATGGCATTAAAATTC TTG-TAG GGTTTGGGTTTTGGACGGCTTTTAACTTT AATGGCTT 2451 TAAAATTC 2452 Increased stearate CCCAAACCAGGAAAGGCAAACGAAAAGAAAAAATGGCTTTGAATTT 2453 stearoyl-ACP TAATGCCATCGCCT desaturase CCACCAAAGGCCACCCTTAGATCTCCCAA TTGGGAGATCTAAGGGTGGCCTTTGGTGGAAGAGCAAAGCAAGG 2454 Ser1-Term GAGCTTCTGAGATTTC TCG-TAG TTTTCTTTTCGTTTGCCTTTCCTGGTTTGGG CATCGCCT 2455 GAGATTTC 2456 Increased stearate CAAACCAGGAAAGGCAAACGAAAAGAAAAAATGGCTTTGAATTTTA 2457 stearoyl-ACP ATGCCATCGCCTCG desaturase ACCAAAGGCCACCCTTAGATCTCCCAAGT ACTTGGGAGATCTAAGGGTGGCCTTTGGTGGAAGAGCAAAGCAAG 2458 Lys11 Term GGAGCTTCTGAGATT AAA-TAA TTTTTTCTTTTCGTTTGCCTTTCCTGGTTTG TCGCCTCG 2459 CTGAGATT 2460 Increased stearate AGGAAAGGCAAACGAAAAGAAAAAATGGCTTTGAATTTTAATGCCA 2461 stearoyl-ACP TCGCCTCGAAATCT desaturase GGCCACCCTTAGATCTCCCAAGTTTTCCA TGGAAAACTTGGGAGATCTAAGGGTGGCCTTTGGTGGAAGAGCAA 2462 Gln13 Term AGCAAGGGAGCTTCT CAG-TAG AAGCCATTTTTTCTTTTCGTTTGCCTTTCCT CGAAATCT 2463 GAGCTTCT 2464
[0148]
TABLE 24 Oligonucleotides to produce plants with reduced linolenic acid Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: Reducing linolenic acid AATAGAACGACAGAGACTTTTTCCTCTTTTCTTCTTGGGAAGAGGC 2465 omega-3 fatty acid TCCAATGGCGAGCT desaturase CCCAGATTCTACCCTAAACACACAACCTC GAGGTTGTGTGTTTAGGGTAGAATCTGGGGAGAGGTCTAAAACCA 2466 Ser4 Term CATTCTGATAAAACC TCG-TAG AAAAGAGGAAAAAGTCTCTGTCGTTCTATT GGCGAGCT 2467 ATAAAACC 2468 Reducing linolenic acid ACGACAGAGACTTTTTCCTCTTTTCTTCTTGGGAAGAGGCTCCAAT 2469 omega-3 fatty acid GGCGAGCTCGGTTT desaturase ATTCTACCCTAAACACACAACCTCTTTTGC GCAAAAGAGGTTGTGTGTTTAGGGTAGAATCTGGGGAGAGGTCTA 2470 Leu6 Term AAACCACATTCTGAT TTA-TGA AAGAAGAAAAGAGGAAAAAGTCTCTGTCGT CTCGGTTT 2471 ATTCTGAT 2472 Reducing linolenic acid ACAGAGACTTTTTCCTCTTTTCTTCTTGGGAAGAGGCTCCAATGGC 2473 omega-3 fatty acid GAGCTCGGTTTTAT desaturase TACCCTAAACACACAACCTCTTTTGCCTC GAGGCAAAAGAGGTTGTGTGTTTAGGGTAGAATCTGGGGAGAGGT 2474 Ser7 Term CTAAAACCACATTCT TCA-TGA CCAAGAAGAAAAGAGGAAAAAGTCTCTGT GGTTTTAT 2475 CACATTCT 2476 Reducing linolenic acid AGAGACTTTTTCCTCTTTTCTTCTTGGGAAGAGGCTCCAATGGCGA 2477 omega-3 fatty acid GCTCGGTTTTATCA desaturase CCCTAAACACACAACCTCTTTTGCCTCTA TAGAGGCAAAAGAGGTTGTGTGTTTAGGGTAGAATCTGGGGAGAG 2478 Glu8 Term GTCTAAAACCACATT GAA-TAA TTCCCAAGAAGAAAAGAGGAAAAAGTCTCT TTTTATCA 2479 ACCACATT 2480 Reducing linolenic acid TCATCATCTTCTTCTTCTGGGGAGAGAGAGAGAGCAAAAGAGCTC 2481 omega-3 fatty acid TAGCAATGGCGAACT desaturase TCCCCAGAATCTACACCACACCCAGATCCAC GTGGATCTGGGTGTGGTGTAGATTCTGGGGAGAGGTCTTATGCCA 2482 Leu4 Term CATTCGGATAAGACC TTG-TAG CTCTCTCTCCCCAGAAGAAGAAGATGATGA GGCGAACT 2483 ATAAGACC 2484 Reducing linolenic acid TCTTCTTCTTCTGGGGAGAGAGAGAGAGCAAAAGAGCTCTAGCAA 2485 omega-3 fatty acid TGGCGAACTTGGTCT desaturase GAATCTACACCACACCCAGATCCACTTTCCT AGGAAAGTGGATCTGGGTGTGGTGTAGATTCTGGGGAGAGGTCTT 2486 Leu6 Term ATGCCACATTCGGAT TTA-TGA TGCTCTCTCTCTCTCCCCAGAAGAAGAAGA CTTGGTCT 2487 ATTCGGAT 2488 Reducing linolenic acid TTCTTCTGGGGAGAGAGAGAGAGCAAAAGAGCTCTAGCAATGGCG 2489 omega-3 fatty acid AACTTGGTCTTATCC desaturase ACACCACACCCAGATCCACTTTCCTCTCCA TGGAGAGGAAAGTGGATCTGGGTGTGGTGTAGATTCTGGGGAGA 2490 Glu8 Term GGTCTTATGCCACATT GAA-TAA GCTCTTTTGCTCTCTCTCTCTCCCCAGAAGAA TCTTATCC 2491 GCCACATT 2492 Reducing linolenic acid CTGGGGAGAGAGAGAGAGCAAAAGAGCTCTAGCAATGGCGAACT 2493 omega-3 fatty acid TGGTCTTATCCGAATG desaturase CACACCCAGATCCACTTTCCTCTCCAACACC GGTGTTGGAGAGGAAAGTGGATCTGGGTGTGGTGTAGATTCTGG 2494 Cys9 Term GGAGAGGTCTTATGCC TGT-TGA CTAGAGCTCTTTTGCTCTCTCTCTCTCCCCAG TCCGAATG 2495 CTTATGCC 2496 Reducing linolenic acid ATAACAGAATTGCTGAATTCTTGCATTTTTAGCTTCTGGGTTTTCAA 2497 omega-3 fatty acid TGGCTGCTGGTTG desaturase AAGAATCTACTCACGACCCAGAATTGGT ACCAATTCTGGGTCGTGAGTAGATTCTTGGGAGAGGCCTTAAACC 2498 Trp5 Term ACATTCTGATAATAC TGG-TGA AAAAATGCAAGAATTCAGCAATTCTGTTAT GCTGGTTG 2499 GATAATAC 2500 Reducing linolenic acid AGAATTGCTGAATTCTTGCATTTTTAGCTTCTGGGTTTTCAATGGCT 2501 omega-3 fatty acid GCTGGTTGGGTAT desaturase ATCTACTCACGACCCAGAATTGGTTTTAC GTAAAACCAATTCTGGGTCGTGAGTAGATTCTTGGGAGAGGCCTT 2502 Leu7 Term AAACCACATTCTGAT TTA-TGA AAGCTAAAAATGCAAGAATTCAGCAATTCT TTGGGTAT 2503 ATTCTGAT 2504 Reducing linolenic acid ATTGCTGAATTCTTGCATTTTTAGCTTCTGGGTTTTCAATGGCTGCT 2505 omega-3 fatty acid GGTTGGGTATTAT desaturase ACTCACGACCCAGAATTGGTTTTACATC GATGTAAAACCAATTCTGGGTCGTGAGTAGATTCTTGGGAGAGGC 2506 Ser8 Term CTTAAACCACATTCT TCA-TGA CAGAAGCTAAAAATGCAAGAATTCAGCAAT GGTATTAT 2507 CACATTCT 2508 Reducing linolenic acid TGCTGAATTCTTGCATTTTTAGCTTCTGGGTTTTCAATGGCTGCTG 2509 omega-3 fatty acid GTTGGGTATTATCA desaturase CTCACGACCCAGAATTGGTTTTACATCGA TCGATGTAAAACCAATTCTGGGTCGTGAGTAGATTCTTGFGGAGAG 2510 Glu9 Term CGCCTTAAACCACATT GAA-TAA CCCAGAAGCTAAAAATGCAAGAATTCAGCA TATTATCA 2511 ACCACATT 2512 Reducing linolenic acid GCAAGTTGGTTTTATCAGAATGTGGTCTTAGACCACTCCCAAGAA 2513 omega-3 fatty acid TCTACCCTAAGCCC desaturase ACATTAAGTTGAGAATTTCACGTACAGATC GATCTGTACGTGAAATTCTCAACTTAATGTGAGAGGAGGCAGAAGT 2514 Arg22 Term GGCTGCCCCAGTTC AGA-TGA AAGACCACATTCTGATAAAACCCAACTTGC CTAAGCCC 2515 CCCAGTTC 2516 Reducing linolenic acid CTCCCAAGAATCTACCCTAAGCCCAGAACTGGGGCAGCCACTTCT 2517 omega-3 fatty acid GCCTCCTCTCACATT desaturase GTTCTGCAATTTCTTTGTCTAATACTAAT TATTAGTATTAGACAAAGAAATTGCAGAACCACTCAGATCTGTACG 2518 Lys34 Term TGAAATTCTCAACT AAG-TAG AGTTCTGGGCTTAGGGTAGATTCTTGGGAG CTCACATT 2519 TCTCAACT 2520 Reducing linolenic acid CAAGAATCTACCCTAAGCCCAGAACTGGGGCAGCCACTTCTGCCT 2521 omega-3 fatty acid CCTCTCACATTAAGT desaturase TGCAATTTCTTTGTCTAATACTAATAAAGA TCTTTATTAGTATTAGACAAAGAAATTGCAGAACCACTCAGATCTGT 2522 Leu35 Term ACGTGAAATTCTC TTG-TAG CCCAGTTCTGGGCTTAGGGTAGATTCTTG CATTAAGT 2523 AAATTCTC 2524 Reducing linolenic acid AGAATCTACCCTAAGCCCAGAACTGGGGCAGCCACTTCTGCCTCC 2525 omega-3 fatty acid TCTCACATTAAGTTG desaturase CAATTTCTTTGTCTAATACTAATAAAGAGA TCTCTTTATTAGTATTAGACAAAGAAATTGCAGAACCACTCAGATCT 2526 Arg36 Term GTACGTGAAATTC AGA-TGA GCCCCAGTTCTGGGCTTAGGGTAGATTCT TTAAGTTG 2527 TGAAATTC 2528 Reducing linolenic acid GCGAGTTGGGTTTTATCAGAATGTGGTCTGAGGCCACTCCCGAGG 2529 omega-3 fatty acid GTCTATCCTAAGCCA desaturase CCACAAAGCTGAGATTTTCAAGAACAGATC GATCTGTTCTTGAAAATCTCAGCTTTGTGGGATTGGAATTCAACAA 2530 Arg22 Term AGGGTGGCCAGTTC AGA-TGA TCAGACCACATTCTGATAAAACCCAACTCGC CTAAGCCA 2531 GCCAGTTC 2532 Reducing linolenic acid CAGAATGTGGTCTGAGGCCACTCCCGAGGGTCTATCCTAAGCCAA 2533 omega-3 fatty acid GAACTGGCCACCCTT desaturase TTCAAGAACAGATCTTGGAAATGGTTCTTC GAAGAACCATTTCCAAGATCTGTTCTTGAAAATCTCAGCTTTGTGG 2534 Leu27 Term GATTGGAATTCAAC TTG-TAG CCCTCGGGAGTGGCCTCAGACCACATTCTG CCACCCTT 2535 AATTCAAC 2536 Reducing linolenic acid AATGTGGTCTGAGGCCACTCCCGAGGGTCTATCCTAAGCCAAGAA 2537 omega-3 fatty acid CTGGCCACCCTTTGT desaturase AAGAACAGATCTTGGAAATGGTTCTTCATT AATGAAGAACCATTTCCAAGATCTGTTCTTGAAAATCTCAGCTTTGT 2538 Leu28 Term GGGATTGGAATTC TTG-TAG GACCCTCGGGAGTGGCCTCAGACCACATT CCCTTTGT 2539 TGGAATTC 2540 Reducing linolenic acid CTCCCGAGGGTCTATCCTAAGCCAAGAACTGGCCACCCTTTGTTG 2541 omega-3 fatty acid AATTCCAATCCCACA desaturase ATGGTTCTTCATTCTGTTTGTCGAGTGGGA TCCCACTCGACAAACAGAATGAAGAACCATTTCCAAGATCTGTTCT 2542 Lys34 Term TGAAAATCTCAGCT AAG-TAG AGTTCTTGGCTTAGGATAGACCCTCGGGAG ATCCCACA 2543 TCTCAGCT 2544 Reducing linolenic acid CATCAGAGCGGCGATACCTAAGCATTGCTGGGTTAAGAATCCATG 2545 omega-3 fatty acid GAAGTCTATGAGTTA desaturase ACTAGCTGCTGGAGCTGCTTACCTCAACAAT ATTGTTGAGGTAAGCAGCTCCAGCAGCTAGTGCGAACACGATGGC 2546 Tyr3 Term TAGCTCTCTGACGAC TAC-TAG CAGCAATGCTTAGGTATCGCCGCTCTGATG ATGAGTTA 2547 CTGACGAC 2548 Reducing linolenic acid GCGGCGATACCTAAGCATTGCTGGGTTAAGAATCCATGGAAGTCT 2549 omega-3 fatty acid ATGAGTTACGTCGTC desaturase GCTGGAGCTGCTTACCTCAACAATTGGCTTG CAAGCCAATTGTTGAGGTAAGCAGCTCCAGCAGCTAGTGCGAACA 2550 Arg6 Term CGATGGCTAGCTCTC AGA-TGA CTTAACCCAGCAATGCTTAGGTATCGCCGC ACGTCGTC 2551 TAGCTCTC 2552 Reducing linolenic acid GCGATACCTAAGCATTGCTGGGTTAAGAATCCATGGAAGTCTATGA 2553 omega-3 fatty acid GTTACGTCGTCAGA desaturase GAGCTGCTTACCTCAACAATTGGCTTGTTT AAACAAGCCAATTGTTGAGGTAAGCAGCTCCAGCAGCTAGTGCGA 2554 Glu7 Term ACACGATGGCTAGCT GAG-TAG GATTCTTAACCCAGCAATGCTTAGGTATCGC TCGTCAGA 2555 GGCTAGCT 2556 Reducing linolenic acid CCATGGAAGTCTATGAGTTACGTCGTCAGAGAGCTAGCCATCGTG 2557 omega-3 fatty acid TTCGCACTAGCTGCT desaturase GGCCTCTCTATTGGATTGCTCAAGGAACCA TGGTTCCTTGAGCAATCCAATAGAGAGGCCAAACAAGCCAATTGTT 2558 Gly17 Term GAGGTAAGCAGCTC GGA-TGA CTCTGACGACGTAACTCATAGACTTCCATGG TAGCTGCT 2559 AGCAGCTC 2560 Reducing linolenic acid GCAAGTTGGGTTCTATCAGAATGTGGTCTTAGACCACTACCAAGAA 2561 omega-3 fatty acid TATACCCAAAGCCC desaturase TTTAAATCTGAGAAGAATTTCACCTTCAC GTGAAGGTGAAATTCTTCTCAGATTTAAATTGGTGGCGCAAACGGA 2562 Arg22 Term AGAAGACCCTATTC AGA-TGA AGACCACATTCTGATAGAACCCAACTTGC CAAAGCCC 2563 CCCTATTC 2564 Reducing linolenic acid TGGTCTTAGACCACTACCAAGAATATACCCAAAGCCCAGAATAGG 2565 omega-3 fatty acid GTCTTCTTCCGTTTG desaturase CCTTCACCTATACGAACAGATCGGAATTGT ACAATTCCGATCTGTTCGTATAGGTGAAGGTGAAATTCTTCTCAGA 2566 Cys29 Term TTTAAATTGGTGGC TGC-TGA GGTATATTCTTGGTAGTGGTCTAAGACCA TCCGTTTG 2567 TTGGTGGC 2568 Reducing linolenic acid CACTACCAAGAATATACCCAAAGCCCAGAATAGGGTCTTCTTCCGT 2569 omega-3 fatty acid TTGCGCCACCAATT desaturase CGAACAGATCGGAATTGTTGGGCATTGAG CTCAATGCCCAACAATTCCGATCTGTTCGTATAGGTGAAGGTGAAA 2570 Leu33 Term TTCTTCTCAGATTT TTA-TGA TCTGGGTTTGGGTATATTCTTGGTAGTG CACCAATT 2571 TCAGATTT 2572 Reducing linolenic acid AGAATATACCCAAAGCCCAGAATAGGGTCTTCTTCCGTTTGCGCCA 2573 omega-3 fatty acid CCAATTTAAATCTG desaturase CGGAATTGTTGGGCATTGAGGGTAAGTG CACTTACCCTCAATGCCCAACAATTCCGATCTGTTCGTATAGGTGA 2574 Arg36 Term AGGTGAAATTCTTC AGA-TGA GACCCTATTCTGGGCTTTGGGTATATTCT TAAATCTG 2575 AATTCTTC 2576 Reducing linolenic acid CTCTTTATTATCCTCCTCTTCTTTGTTTTTTTTGAGTTCTGAGTCACC 2577 omega-3 fatty acid TATGGCAAGTTG desaturase AAGAATCTATGCCAGGCCCAGAAGTGGA TCCACTTCTGGGCCTGGCATAGATTCTTGGAAGTGGCCTTAGCCC 2578 Trp4 Term ACATTCTGAAATCAC TGG-TGA AAAAACAAAGAAGAGGAGGATAATAAAGAG GCAAGTTG 2579 GAAATCAC 2580 Reducing linolenic acid TATCCTCCTCTTCTTTGTTTTTTTTGAGTTCTGAGTCACCTATGGCA 2581 omega-3 fatty acid AGTTGGGTGATTT desaturase TATGCCAGGCCCAGAAGTGGAGCTTCATG CATGAAGCTCCACTTCTGGGCCTGGCATAGATTCTTGGAAGTGGC 2582 Ser7 Term CTTAGCCCACATTCT TCA-TGA AACTCAAAAAAAACAAAGAAGAGGAGGATA GGTGATTT 2583 CACATTCT 2584 Reducing linolenic acid TCCTCCTCTTCTTTGTTTTTTTTGAGTTCTGAGTCACCTATGGCAAG 2585 omega-3 fatty acid TTGGGTGATTTCA desaturase GCCAGGCCCAGAAGTGGAGCTTCATGTT AACATGAAGCTCCACTTCTGGGCCTGGCATAGATTCTTGGAAGTG 2586 Glu8 Term GCCTTAGCCCACATT GAA-TAA AGAACTCAAAAAAAACAAAGAAGAGGAGGA TGATTTCA 2587 CCCACATT 2588 Reducing linolenic acid CTCTTCTTTGTTTTTTTTGAGTTCTGAGTCACCTATGGCAAGTTGGG 2589 omega-3 fatty acid TGATTTCAGAAT desaturase GGCCCAGAAGTGGAGCTTCATGTTTCAAC GTTGAAACATGAAGCTCCACTTCTGGGCCTGGCATAGATTCTTGG 2590 Cys9 Term AAGTGGCCTTAGCCC TGT-TGA GACTCAGAACTCAAAAAAAACAAAGAAGAG TCAGAATG 2591 CTTAGCCC 2592 Reducing linolenic acid ATGAAGCAGCAACAGTACAAAGACACCCCAATTCTAAATGGCGTTA 2593 omega-3 fatty acid ATGGTTTTCATGCT desaturase AAGCAATCCTCCTCCATTCAATATTGGTC GACCAATATTGAATGGAGGAGGATTGCTTAAGTCGAAATCCTCTTC 2594 Lys21 Term TTCTTCTTCTTCTT AAA-TAA GGGTGTCTTTGTACTGTTGCTGCTTCAT TTCATGCT 2595 TTCTTCTT 2596 Reducing linolenic acid AAGCAGCAACAGTACAAAGACACCCCAATTCTAAATGGCGTTAATG 2597 omega-3 fatty acid GTTTTCATGCTAAA desaturase CAATCCTCCTCCATTCAATATTGGTCAGA TCTGACCAATATTGAATGGAGGAGGATTGCTTAAGTCGAAATCCTC 2598 Glu22 Term TTCTTCTTCTTCTT GAA-TAA TTGGGGTGTCTTTGTACTGTTGCTGCTT ATGCTAAA 2599 TTCTTCTT 2600 Reducing linolenic acid CAGCAACAGTACAAAGACACCCCAATTCTAAATGGCGTTAATGGTT 2601 omega-3 fatty acid TTCATGCTAAAGAA desaturase TCCTCCTCCATTCAATATTGGTCAGATCC GGATCTGACCAATATTGAATGGAGGAGGATTGCTTAAGTCGAAATC 2602 Glu23 Term CTCTTCTTCTTCTT GAA-TAA GAATTGGGGTGTCTTTGTACTGTTGCTG CTAAAGAA 2603 TTCTTCTT 2604 Reducing linolenic acid CAGCAACAGTACAAAGACACCCCAATTCTAAATGGCGTTAATGGTT 2605 omega-3 fatty acid TTCATGCTAAAGAA desaturase TCCTCCTCCATTCAATATTGGTCAGATCC GGATCTGACCAATATTGAATGGAGGAGGATTGCTTAAGTCGAAATC 2606 Glu24 Term CTCTTCTTCTTCTT GAA-TAA GAATTGGGGTGTCTTTGTACTGTTGCTG CTAAAGAA 2607 TTCTTCTT 2608 Reducing linolenic acid GGTCCAAGCACAGCCTCTACAACATGTTGGTAATGGTGCAGGGAA 2609 omega-3 fatty acid AGAAGATCAAGCTTA desaturase ATTGCAAATATCAGAGCAGCAATTCCAAAA TTTTGGAATTGCTGCTCTGATATTTGCAATCTTGAAGGGTGGTGGA 2610 Tyr21 Term GCACTTGGATCAAA TAT-TAG CAACATGTTGTAGAGGCTGTGCTTGGACC CAAGCTTA 2611 GGATCAAA 2612 Reducing linolenic acid GGTAATGGTGCAGGGAAAGAAGATCAAGCTTATTTTGATCCAAGT 2613 omega-3 fatty acid GCTCCACCACCCTTC desaturase AACATTGCTGGGAGAAGAACACATTGAGAT ATCTCAATGTGTTCTTCTCCCAGCAATGTTTTGGAATTGCTGCTCT 2614 Lys31 Term GATATTTGCAATCT AAG-TAG GCTTGATCTTCTTTCCCTGCACCATTACC CACCCTTC 2615 TGCAATCT 2616 Reducing linolenic acid AAAGAAGATCAAGCTTATTTTGATCCAAGTGCTCCACCACCCTTCA 2617 omega-3 fatty acid AGATTGCAAATATC desaturase GAACACATTGAGATCTCTGAGTTATGTTC GAACATAACTCAGAGATCTCAATGTGTTCTTCTCCCAGCAATGTTTT 2618 Arg36 Term GGAATTGCTGCTC AGA-TGA CTTGGATCAAAATAAGCTTGATCTTCTTT CAAATATC 2619 TGCTGCTC 2620 Reducing linolenic acid TATTTTGATCCAAGTGCTCCACCACCCTTCAAGATTGCAAATATCA 2621 omega-3 fatty acid GAGCAGCAATTCCA desaturase CTCTGAGTTATGTTCTGAGGGATGTGTTGG CCAACACATCCCTCAGAACATAACTCAGAGATCTCAATGTGTTCTT 2622 Leu41 Term CTCCCAGCAATGTT AAA-TAA AAGGGTGGTGGAGCACTTGGATCAAAATA CAATTCCA 2623 GCAATGTT 2624 Reducing linolenic acid CATCCACCCGCACCCGCACCCGCCCCGCTGACGGCGGCAATGGC 2625 omega-3 fatty acid CCGGCTCGTGCTCTCC desaturase GCCTGCGCGCCGGCCGGGGCGCCATTGCGGCGC GCGCCGCAATGGCGCCCCGGCCGGCGCGCAGGCGGCGGACGG 2626 Glu8 Term GCGCGAGGCCCGAGCACT GAG-TAG CGCCGTCAGCGGGGCGGGTGCGGGTGCGGGTGGATG TGCTCTCC 2627 CGAGCACT 2628 Reducing linolenic acid ACCCGCACCCGCACCCGCCCCGCTGACGGCGGCAATGGCCCGG 2629 omega-3 fatty acid CTCGTGCTCTCCGAGTG desaturase GCGCGCCGGCCGGGGCGCCATTGCGGCGCGGTCA TGACCGCGCCGCAATGGCGCCCCGGCCGGCGCGCAGGCGGCGG 2630 Cys9 Term ACGGGCGCGAGGCCCGA TGC-TGA TTGCCGCCGTCAGCGGGGCGGGTGCGGGTGCGGGT TCCGAGTG 2631 AGGCCCGA 2632 Reducing linolenic acid CCGCACCCGCACCCGCCCCGCTGACGGCGGCAATGGCCCGGCT 2633 omega-3 fatty acid CGTGCTCTCCGAGTGCT desaturase GCGCCGGCCGGGGCGCCATTGCGGCGCGGTCACC GGTGACCGCGCCGCAATGGCGCCCCGGCCGGCGCGCAGGCGGC 2634 Ser10 Term GGACGGGCGCGAGGCCC TCG-TAG CATTGCCGCCGTCAGCGGGGCGGGTGCGGGTGCGG CGAGTGCT 2635 CGAGGCCC 2636 Reducing linolenic acid GCTCGGGCCTCGCGCCCGTCCGCCGCCTGCGCGCCGGCCGGGG 2637 omega-3 fatty acid CGCCATTGCGGCGCGGT desaturase CGCCGTCGTCCCGCGTCCGCGTCCATCCACCGCGA TCGCGGTGGATGGACGCGGACGCGGGACGACGGCGCGGCGCCG 2638 Ser29 Term CGGAGAGCGCGGGGGGT TCA-TGA GGCGCGCAGGCGGCGGACGGGCGCGAGGCCCGAGC GGCGCGGT 2639 CGGGGGGT 2640 Reducing linolenic acid CCCCCTCCCCCACGCACACGCACAGATCCATCCGCGGCCATGGC 2641 omega-3 fatty acid CCCCGCAATGAGGCCG desaturase AGGACCACCGCTCCGAGTTCGACGCCGCCAAGC GCTTGGCGGCGTCGAACTCGGAGCGGTGGTCCTCGGTGGCCTTG 2642 Glu8 Term CAGCTCGCCTCCTGCT GAG-TAG GGATGGATCTGTGCGTGTGCGTGGGGGAGGGGG TGAGGCCG 2643 CTCCTGCT 2644 Reducing linolenic acid CCTCCCCCACGCACACGCACAGATCCATCCGCGGCCATGGCCCC 2645 omega-3 fatty acid CGCAATGAGGCCGGAG desaturase GACCACCGCTCCGAGTTCGACGCCGCCAAGCCGC GCGGCTTGGCGGCGTCGAACTCGGAGCGGTGGTCCTCGGTGGCC 2646 Gln9 Term TTGCAGCTCGCCTCCT CAG-TAG CGCGGATGGATCTGTGCGTGTGCGTGGGGGAGG GGCCGGAG 2647 CGCCTCCT 2648 Reducing linolenic acid CCCCCACGCACACGCACAGATCCATCCGCGGCCATGGCCCCCGC 2649 omega-3 fatty acid AATGAGGCCGGAGCAG desaturase ACCGCTCCGAGTTCGACGCCGCCAAGCCGCCGC GCGGCGGCTTGGCGGCGTCGAACTCGGAGCGGTGGTCCTCGGT 2650 Glu10 Term GGCCTTGCAGCTCGCCT GAG-TAG TGGCCGCGGATGGATCTGTGCGTGTGCGTGGGGG CGGAGCAG 2651 GCTCGCCT 2652 Reducing linolenic acid ACGCACAGATCCATCCGCGGCCATGGCCCCCGCAATGAGGCCGG 2653 omega-3 fatty acid AGCAGGAGGCGAGCTG desaturase GTTCGACGCCGCCAAGCCGCCGCCCTTCCGCATC GATGCGGAAGGGCGGCGGCTTGGCGGCGTCGAACTCGGAGCGG 2654 Cys13 TermTGGTCCTCGGTGGCCTT TGC-TGA GCGGGGGCCATGGCCGCGGATGGATCTGTGCGT GCGAGCTG 2655 GTGGCCTT 2656 Reducing linolenic acid CTTCACAAATCACAAATCGGAATCAGATCCACCACGACACCCCGG 2657 omega-3 fatty acid CGGCAATGGCGGCGT desaturase TTCCGAGGACGCCCGTCTCTTCTTCGACGCCGC GCGGCGTCGAAGAAGAGACGGGCGTCCTCGGAAGCCTTGCAGTC 2658 Ser4 Term GGCCTCCTGGGTCGCC TCG-TAG GGTGGATCTGATTCCGATTTGTGATTTGTGAAG GGCGGCGT 2659 GGGTCGCC 2660 Reducing linolenic acid ATCACAAATCGGAATCAGATCCACCACGACACCCCGGCGGCAATG 2661 omega-3 fatty acid GCGGCGTCGGCGACC desaturase CGCCCGTCTCTTCTTCGACGCCGCCAAGCCCC GGGGCTTGGCGGCGTCGAAGAAGAGACGGGCGTCCTCGGAAGC 2662 Gln7 Term CTTGCAGTCGGCCTCCT CAG-TAG GGGTGTCGTGGTGGATCTGATTCCGATTTGTGAT CGGCGACC 2663 GGCCTCCT 2664 Reducing linolenic acid ACAAATCGGAATCAGATCCACCACGACACCCCGGCGGCAATGGC 2665 omega-3 fatty acid GGCGTCGGCGACCCAG desaturase CCCGTCTCTTCTTCGACGCCGCCAAGCCCCCGC GCGGGGGCTTGGCGGCGTCGAAGAAGAGACGGGCGTCCTCGGA 2666 Glu8 Term AGCCTTGCAGTCGGCCT GAG-TAG CCGGGGTGTCGTGGTGGATCTGATTCCGATTTGT CGACCCAG 2667 GTCGGCCT 2668 Reducing linolenic acid TCAGATCCACCACGACACCCCGGCGGCAATGGCGGCGTCGGCGA 2669 omega-3 fatty acid CCCAGGAGGCCGACTG desaturase TTCGACGCCGCCAAGCCCCCGCCCTTCCGCATC GATGCGGAAGGGCGGGGGCTTGGCGGCGTCGAAGAAGAGACGG 2670 Cys10 Term GCGTCCTCGGAAGCCTT TGC-TGA CGCCATTGCCGCCGGGGTGTCGTGGTGGATCTGA GCCGACTG 2671