20030171451 | Bony tissue fillers and restoratives containing biocompatible particle | September, 2003 | White et al. |
20040204515 | Chemical resistant epoxy composition | October, 2004 | Rojasova et al. |
20100081731 | Poly(Arylene Ether)/Polyamide Composition and Method of Making | April, 2010 | Ting |
20080300342 | Polyolefin Resin Composition and Electric Wire Using the Same | December, 2008 | Kodama et al. |
20070237569 | Ink Backflow Preventive from Water-Based Ball-Point Pens | October, 2007 | Omatsu et al. |
20080021132 | Low friction type anti-fouling paint | January, 2008 | Kim |
20080293015 | Adhesive Liner | November, 2008 | Wong et al. |
20040138330 | Light curing-type paint resin for shade adjustment | July, 2004 | Grundler et al. |
20090076194 | Hydrophobic silica and its use in silicone rubber | March, 2009 | Meyer et al. |
20100035041 | DERIVATIZED SOLID EPOXY RESIN AND USES THEREOF | February, 2010 | Kramer et al. |
20020193462 | Dental composite containing discrete nanoparticles | December, 2002 | Angeletakis et al. |
[0001] The present application is a division of application Ser. No. 08/826,305 filed Mar. 27, 1997, entitled “Aqueous Coating Agent for Forming Lubricating Film,” currently pending.
[0002] The present invention relates to an aqueous coating agent for forming lubricating films, in particular, to an aqueous coating agent for forming lubricating films suitable for prolonged use on sliding members of torque-transmitting parts utilized in automobile drive and prime mover systems.
[0003] Conventional aqueous coating agents for forming lubricating films, in particular those for use with sliding parts, comprise substances which possess excellent oil-proof and heat-resistant properties and are formed by dispersing molybdenum disulfide, graphite powder or carbon fibers in binders such as a polyimide resin, an epoxy resin, or a phenol resin.
[0004] Although aforementioned coating agents for forming lubricating films in an aqueous-system form are known as well, in the majority of cases such coating agents are based on organic solvents. For example, in their earlier patent application (Japanese Laid-Open Patent Application Kokai 6-200275) the authors of the present patent application utilize an organic solvent.
[0005] Recently, however, more strict requirements were imposed concerning environment protection and reducing the impact on human health. For this reason, many industries had to quickly switch from organic solvent systems to aqueous systems.
[0006] For the same reason, there is a strong demand for aqueous systems exists also in the field of coating agents for forming lubricating films. An example of such a water-based coating agent for forming lubricating films is disclosed in Japanese Laid-Open Patent Application Kokai 7-11088 wherein silica is used as an agent for imparting lubricating properties. However, this aqueous coating agent for forming lubricating films appears to be unsuitable for prolonged use on sliding members of torque-transmitting parts utilized in automobile drive and prime mover systems.
[0007] The present invention is aimed at elimination of the problems of the prior art, and it is an object of the present invention to provide an aqueous coating agent for forming lubricating films with improved lubricating properties, long-service life, in particular, on sliding members of torque-transmitting parts utilized in automobile drive and prime mover systems, and excellent load-bearing properties.
[0008] The present invention is characterized by the fact that, in an aqueous coating agent for forming lubricating films, a number of specific solid lubricating agents is used in a specific weight ratio range, and that the aforementioned solid lubricating agents is used in a specific weight ratio with regard to a hydrophilic resin.
[0009] In other words, the problems inherent in the prior art are solved by utilizing an aqueous coating agent for forming lubricating films that comprises the following first component, second component, and third component: the first component: a hydrophilic resin; the second component: a solid lubricating agent comprising MoS
[0010] The invention will be further described with reference to practical embodiments. Although there are no special limitations with regard to the hydrophilic resin which is the aforementioned first component, it is recommended that it be a hydrophilic organic resin. What is meant here under by term “hydrophilic properties” is that the aforementioned organic resin is either soluble in water, or is at least stable in it in a dispersed form. An organic resin with aforementioned hydrophilic properties is a resin which normally has in its molecule a hydrophilic polar group. The following are examples of hydrophilic polar groups:
[0011] Furthermore, it is possible to utilize organic resins which do not possess the aforementioned hydrophilic properties, such as epoxy resins, alkyd resins, acrylic resins, and silicone resins, provided their hydrophilic properties have been improved. Such an improvement can be achieved, e.g., by: (1) imparting hydrophilic properties as a result of graft polymerization or copolymerization of a monomer having a hydrophilic group capable of imparting hydrophilic properties to an organic resin which has no hydrophilic properties; or (2) introducing the hydrophilic group itself to an organic resin without hydrophilic properties as a result of amination, hydroxylation, carboxylation, or esterification. Especially preferable is an epoxy ester obtained by esterifying a hydroxyl group of an epoxy resin with linseed oil, dehydrated castor oil, soybean oil, and coconut oil, and the like.
[0012] It is recommended that the solid lubricating agent which is the aforementioned second component be represented by MoS
[0013] MoS
[0014] A weight ratio of the second component to the first component, i.e., the weight of the solid lubricating agent to the weight of the hydrophilic resin (hereinafter referred to as a “PB ratio”) should be from 0.7 to 3. The most preferable PB ratio is within the range of 0.9 to 2.5.
[0015] If the PB ratio is beyond the range of 0.7 to 3, e.g., if the solid lubricating agent is used in an excessive amount so that the aforementioned PB ratio exceeds 3, the strength of the coating film will be reduced and the service life of the lubricant will be shortened. Moreover, this will reduce anticorrosive properties to the level unsuitable for practical use. If, on the other hand, the hydrophilic resin is used in an excessive amount so that the PB ratio becomes lower than 0.7, it would be impossible to obtain a lubricating coating film with lubricating properties suitable for practical application.
[0016] There are no special limitations with regard to the amount of water, which is the aforementioned third component, provided it is used within the range that ensures obtaining of the aqueous coating agent for the formation of lubricating films with characteristics that satisfy the object of the invention.
[0017] Furthermore, in order to improve compatibility between water and the aforementioned hydrophilic resin, an agent that improves compatibility of the hydrophilic resin for water can be added to the aqueous coating agent of the present invention for forming lubricating films. The use of such an agent provides more efficient dissolving of the hydrophilic resin in water and stabilizes dispersion of this resin in water. Moreover, the use of such an agent broadens the assortment of types of hydrophilic resins suitable for the purposes of the present invention. As a result, e.g., less expensive hydrophilic resins can be selected. The aforementioned compatibility agent may be represented by water-soluble amines, NaOH, or the like. A preferable one is ethanolamine. Nevertheless, there are no special limitations with regard to the type of the compatibility agent, provided it ensures compatibility of the hydrophilic resin used for the purposes of the present invention with water.
[0018] The aqueous coating agent of the present invention may be combined with other additives such as dyes, anti-corrosive agents, heat-resistance improvers, and the like. Furthermore, the aqueous coating agent of the present invention may be combined small amounts of graphite, tungsten disulfide, boron nitride, mica, or other solid lubricants, provided they are not detrimental to the effect of the invention.
[0019] The aqueous coating agent of the invention for forming lubricating films may be prepared by different methods. One example of these methods is given below.
[0020] (1) Water (total quantity), a hydrophilic resin (30% of the entire charge), and a compatibility agent (total quantity) are mixed and stirred, until the hydrophilic resin is dissolved in water.
[0021] (2) One third (1/3) of the total amount of solid lubricating agents and other additives are loaded and treated for 30 minutes in a mill. This operation is repeated three times until the entire quantity of the aforementioned components is loaded.
[0022] (3) The remainder of the entire amount of the hydrophilic resin is loaded, and the mixture is treated in a mill for 10 minutes.
[0023] The invention will be further described in detail with reference to practical and comparative examples. In the following practical and comparative examples, the FALEX Pin And Vee Block Test Machine was used. “FALEX” is a registered trademark of Bellwood. The outer surfaces of the pin and V-block of this machine were subjected to sand blasting, and after treating with a phosphoric acid Mn
[0024] The coating film used in the aforementioned experiment was obtained by drying an 8 to 13 μm thick coating film, formed by applying an appropriate coating agent, for 30 minutes at 25° C. with subsequent curing for 1 hour at 200° C.
[0025] In Practical Examples 1-1 to 1-6, the Falex Endurance Life was determined for aqueous coating agents suitable for forming lubricating films. Tests were carried out with the use of the aforementioned FALEX testers and the test procedure. The results are shown in Tables 1, 2, and 3.
[0026] Practical Examples 1-1, 1-3, 1-4, 1-5, and 1-6 show the effect exerted on the FALEX Endurance Life by the addition of at least one type of antimony sulfide selected from the group consisting of Sb
[0027] As can be seen from the results of the tests given in Tables 1 to 4, the addition of at least one type of an antimony sulfide, selected from the group consisting of Sb
[0028] In particular, the Falex Endurance Life was especially high with further addition of SbTABLE 1 Practical Examples 1-1 1-2 1-3 Hydrophilic Epoxy resin 14.0 16.87 14.0 *1 resin (dry Melamine 2.1 2.52 2.1 *2 residue) resin MoS 25.0 21.30 24 *3 Antimony Sb 8.0 2.8 8 sulfide Sb — — — Water 49.7 42.7 43.3 Antimony Sb — 2.8 — oxide Solvent Ethanol- 1.0 1.9 1.0 amine Bentonite 0.3 0.3 0.3
[0029]
TABLE 2 Practical examples 1-1 1-2 1-3 MoS 1:0.32 1:0.13 1:0.33 *4 antimony sulfide Solid lubricant 2.05 1.38 1.99 /resin FALEX 340 460 340 Endurance Life (min)
[0030]
TABLE 3 Practical Examples 1-4 1-5 1-6 Hydrophilic Epoxy resin 14.0 14.0 14.0 *1 resin (dry Melamine 2.1 2.52 2.1 *2 residue) resin MoS 24 24 24 *3 Antimony Sb 8.0 8 — sulfide Sb — — 8 Water 43.5 43.5 43.5 Antimony Sb — — — oxide Solvent Ethanol- 1.0 1.0 1.0 amine Bentonite 0.3 0.3 0.3
[0031]
TABLE 4 Practical examples 1-4 1-5 1-6 MoS 1:0.33 1:0.33 1:0.33 *4 antimony sulfide Solid lubricant/ 1.99 1.99 1.99 resin FALEX 430 320 310 Endurance Life (min)
[0032] Type of Sb
[0033] 1-1: Sb
[0034] 1-2: Sb
[0035] 1-3: Sb
[0036] 1-4: Sb
[0037] 1-5: Sb
[0038] MoS
[0039] The FALEX Endurance Life was determined by the same method as in Practical Example 1, with the exception that in Practical examples 2-1 to 2-1 1 the aqueous lubricating-film-forming agents were used with different weight ratios of solid lubricating agents to resins. The results are shown in Tables 5 to 8.
TABLE 5 Practical Examples 2-1 2-2 2-3 Resin (dry Epoxy resin 26.7 22.9 20.0 *1 residue) MoS 24 24 24 *3 Antimony Sb 8 8 8 sulfide Water 27.6 33.2 37.5 Solvent Ethanol- 2.0 1.8 1.6 amine Bentonite 0.3 0.3 0.3 MoS 1:0.33 1:0.33 1:0.33 *4 Solid lubricant/resin 1.2 1.4 1.6 FALEX Endurance Life (min) 360 470 425
[0040]
TABLE 6 Practical Examples 2-4 2-5 2-6 Resin (dry Epoxy resin 17.8 16.0 12.8 *1 residue) MoS 24 24 24 *3 Antimony Sb 8 8 8 sulfide Water 40.9 43.6 48.4 Solvent Ethanol- 1.4 1.2 1.0 amine Bentonite 0.3 0.3 0.3 MoS 1:0.33 1:0.33 1:0.33 *4 Solid lubricant/resin 1.8 2.0 2.5 FALEX Endurance Life (min) 370 340 375
[0041]
TABLE 7 Practical Examples 2-7 2-8 2-9 Resin (dry Epoxy resin 26.7 22.9 20.0 *1 residue) MoS 24 24 24 *3 Antimony Sb 8 8 8 sulfide Water 27.6 33.2 37.7 Solvent Ethanol- 2.0 1.8 1.8 amine Bentonite 0.3 0.3 0.3 MoS 1:0.33 1:0.33 1:0.33 *4 Solid lubricant/resin 1.2 1.4 1.6 FALEX Endurance Life (min) 470 480 400
[0042]
TABLE 8 Practical Examples 2-10 2-11 Resin (dry Epoxy resin 16.0 12.8 *1 residue) MoS 24 24 *3 Antimony Sb 8 8 sulfide Water 43.2 48.0 Solvent Ethanol- 1.6 1.4 amine Bentonite 0.3 0.3 MoS 1:0.33 1:0.33 *4 Solid lubricant/resin 2.0 2.5 FALEX Endurance Life (min) 430 430
[0043] The FALEX Endurance Life was determined by the same method as in Practical Example 1, with the exception that in Practical Examples 3-1 to 3-4 the aqueous lubricating-film-forming agents were used with different weight ratios of MoSTABLE 9 Practical Examples 3-1 3-2 Resin (dry Epoxy resin 19.9 19.9 *1 residue) Melamine 3.0 3.0 *2 resin MoS 28.8 25.6 *3 Antimony Sb 3.2 6.4 sulfide Water 42.9 42.9 Solvent Ethanol- 1.9 1.9 amine Bentonite 0.3 0.3 MoS 1:0.11 1:0.25 *4 Solid lubricant/resin 1.4 1.4 FALEX Endurance Life (min) 380 460
[0044]
TABLE 10 Practical Examples 3-3 3-4 Resin (dry Epoxy resin 19.9 19.9 *1 residue) Melamine 3.0 3.0 *2 resin MoS 24 22.4 *3 Antimony Sb 8.0 9.6 sulfide Water 42.9 42.9 Solvent Ethanol- 1.9 1.9 amine Bentonite 0.3 0.3 MoS 1:0.33 1:0.42 *4 Solid lubricant/resin 1.4 1.4 FALEX Endurance Life (min) 480 470
[0045] The FALEX Endurance Life was determined by the same method as in Practical Example 1, with the exception that in Practical Examples 4-1 and 4-2 the aqueous lubricating-film-forming agents were used with a phenol resin. The results are shown in Table 11.
TABLE 11 Practical Examples 4-1 4-2 Resin (dry Epoxy resin 15. 8 20.8 *5 residue) MoS 22.8 22.8 *3 Antimony Sb 5.7 5.7 sulfide Water 18.38 17.47 Solvent Ethanol- 1.8 1.8 amine Bentonite 0.3 0.3 Solid lubricant/resin 1.80 1.37 *4 MoS 1:0.23 1:0.23 FALEX Endurance Life (min) 430 400
[0046] The FALEX Endurance Life was determined by the same method as in Practical Examples, with the exception that in Comparative Examples 1 through 9 the aqueous lubricating-film-forming agents were used with properties that did not satisfy the requirements specified for the aqueous lubricating-film-forming agents of the present invention. The results of the tests for Comparative Examples 1 through 6 are shown in Tables 12 through 17. As can be seen from Tables 12 through 17, comparison, e.g., between Practical Examples 1, 2 and Comparative Examples 8, 9 emphasizes the meaning of a weight ratio of solid lubricants to water-soluble resins. Furthermore, it can be seen from Comparative Example 7 that mere replacement of antimony sulfide with SbTABLE 12 Comparative Examples 1 2 3 Resin (dry Epoxy resin 14.0 14.0 14.0 *1 residue) Melamine 2.1 2.1 2.1 *2 resin MoS 15 5.0 24.0 *3 MoDTP — — — ZnS 5.0 — 2.7 Ca 5.0 — — PTFE-2 1.88 — 0.6 PTFE-1 — 15.0 — (1) — — 0.1
[0047]
TABLE 13 Comparative Examples 1 2 3 Sb — — — *3 BN — — — Water 55.72 62.6 55.2 Solvent 1.0 1.0 1.0 Bentonite 0.3 0.3 0.3 Solid lubricant/ 1.67 1.24 1.70 *4 resin FALEX Endurance 118 10 65 Life (min)
[0048]
TABLE 14 Comparative Examples 4 5 6 Resin (dry Epoxy resin 14.0 14.0 14.0 *1 residue) Melamine 2.1 2.1 2.1 *2 resin MoS 9.5 9.5 24.0 *3 MoDTP — 1.0 — ZnS 2.5 2.5 — Ca — — — PTFE-2 — PTFE-1 — (1) —
[0049]
TABLE 15 Comparative Examples 4 5 6 Sb 12.5 12.5 — *3 BN — — 10.0 Water 58.1 57.1 48.6 Solvent 1.0 1.0 1.0 Bentonite 0.3 0.3 0.3 Solid lubricant/ 1.52 1.58 2.11 *4 resin FALEX 186 163 36 Endurance Life (min)
[0050]
TABLE 16 Comparative Examples 7 8 Resin (dry Epoxy resin 14.0 26.58 *1 residue) Melamine 2.1 4.51 *2 resin MoS 24 12.35 *3 Antimony Sb — 1.62 sulfide Sb — — Water 43.5 36.7 Antimony Sb 8.0 1.62 oxide Solvent Ethanol- 1.0 3.0 amine Bentonite 0.3 0.3 (see note above!!!)
[0051]
TABLE 17 Comparative Examples 7 8 MoS — 1:0.13 *4 Solid lubricant/resin 1.99 0.5 FALEX Endurance Life 200 140 (min)
[0052] The starting materials which have been used in aforementioned Practical and Comparative Examples are described in more detail below:
[0053] Epoxy resin (epoxy resin ester modified with linseed-oil and tung-oil): (RESYDROL WE 237L). “RESYDROL” is a registered trademark of Vianova-Kunstharz Aktiengesellschaft of Vienna.
[0054] Melamine resin (non-plasticized melamine resin): (RESYDROL WM 501)
[0055] MoS
[0056] MoS
[0057] Sb
[0058] Sb
[0059] Sb
[0060] Sb
[0061] Sb
[0062] [ANTIMONTRIOXIDE LCH/RS]
[0063] MoDTP: Molybdenum dithiophosphate
[0064] PTEF-1: Polytetrafluoroethylene powder
[0065] PTEF-2: Polytetrafluoroethylene dispersion
[0066] The invention is efficient in that it provides a coating agent which greatly reduces dissipation of organic solvents into environment and at the same time is capable of forming long-lasting lubricating films with perfect load-carrying capacity for use on sliding parts.