[0001] This application claims priority under 35 U.S.C. 119(e) to U.S. Provisional Application Serial No. 60/328,542, filed Oct. 11, 2002, which is expressly incorporated by reference herein.
[0002] The present invention relates to a wound treatment system and specifically to a vacuum therapy wound treatment system for surface wounds. More specifically, the present invention relates to the drainage and collection of exudate from the wound surface through vacuum therapy.
[0003] Medical professionals, such as nurses and doctors, routinely treat patients having surface wounds of varying size, shape, and severity. It is known that controlling the topical atmosphere adjacent a wound can enhance the healing process. For example, by applying medicinal agents or even water over a wound, dirt and bacteria are either killed or washed away, thereby promoting healing. In addition, applying a negative pressure or vacuum to a wound draws out exudate, which might contain dirt and bacteria, from the wound to further promote healing.
[0004] A vacuum bandage is a bandage having a cover for sealing about the outer perimeter of the wound and under which a vacuum is established to act on the wound surface. This vacuum applied to the wound surface accelerates healing of chronic wounds. Typically, suction tubes are provided for drawing exudate away from the wound. If the cover is a flexible cover, which is typically more comfortable for the patient, a porous packing may be provided under the cover to provide the space in which the vacuum is formed. The following U.S. Patents establish the nature of vacuum treatment bandages and devices: U.S. Pat. Nos. 6,095,992, 6,080,189, 6,071,304, 5,645,081, 5,636,643, 5,358,494, 5,298,015, 4,969,880, 4,655,754, 4,569,674, 4,382,441, and 4,112,947. All of such references are incorporated herein by reference for purposes of disclosing the nature of such vacuum treatment of wounds.
[0005] As shown, for example, in U.S. Pat. No. 5,645,081 (hereinafter the '081 patent), a method of treating tissue damage is provided by applying negative pressure to a wound. The negative pressure is provided in sufficient duration and magnitude to promote tissue migration in order to facilitate the closure of the wound.
[0006] Various other prior art references teach the value of the vacuum bandage or the provision of vacuum to the surface of a chronic wound. Several Russian language articles exist that establish the efficacy of vacuum therapy. Examples of such prior art articles, each of which discusses the use of application of vacuum to a wound to promote healing, are as follows: “Vacuum therapy in the treatment of acute suppurative diseases of soft tissues and suppurative wound”, Davydov, et al. Vestn. Khir., September 1988 (the September 1988 article); “Pathenogenic mechanism of the effect of vacuum therapy on the course of the wound process”, Davydov, et al. Khirurigiia, June 1990 (the June 1990 article); and “Vacuum therapy in the treatment of suppurative lactation mastitis”, Davydov, et al., Vestn. Khir., November 1986 (the November 1986 article).
[0007] The Russian articles distinguish wound drainage from the use of vacuum therapy for healing. The Russian authors report that vacuum therapy resulted in faster cleansing of the wound and more rapid detoxification than with the traditional incision-drainage method. The November 1986 article describes the vacuum therapy techniques as a reduction of 0.8-1.0 atmosphere for 20 minutes at the time of surgery, and subsequent 1.5 to 3 hour treatments at a reduced pressure of 0.1 to 0.15 from atmosphere, twice daily. These Russian articles teach the use of negative pressure to effect healing. The articles describe using several sessions per day, each lasting up to one hour, with a vacuum of 76-114 mmHg.
[0008] The Russian articles teach using this vacuum method to decrease the number of microbes in the wound. The June 1990 article teaches that vacuum therapy provides a significant antibacterial effect. The June 1990 article describes the stepped up inflow of blood to the zone around the wound, which leads to an increase in the number of leukocytes reaching the focus of inflammation. Subsequent articles and patents further develop the benefits obtained with vacuum therapy. The prior art, therefore, teaches the benefit and value of a vacuum bandage.
[0009] Accordingly, a vacuum therapy system for treating a patient with a wound is provided. The system includes a vacuum bandage comprising a cover to seal about the wound. The cover also defines a space above the wound in which a vacuum is to be formed. The bandage further comprises a port which provides communication with the space. The system further includes a receptacle to be placed below the wound. The receptacle is connected to the port to receive exudate from the wound. Finally, the system includes a vacuum source spaced apart from the receptacle and connected to the receptacle. The vacuum source is effective to provide a vacuum in the receptacle and in the space above the wound.
[0010] Illustratively, the system may comprise one or more of the following features alone or in combination with each other: a first tube coupled to the port of the bandage and the receptacle, a second tube coupled to the vacuum source and the receptacle, a means for attaching the receptacle to a support below the wound, a means for supporting the vacuum source away from the receptacle, and/or a control dominating the vacuum source to establish the amount of vacuum applied to the space and the time when the vacuum is applied to the space.
[0011] Further illustratively, the receptacle of the system may comprise one or more of the following features alone or in combination with each other: an antimicrobial filter, an air vent to allow an inner area of the receptacle to communicate with the surrounding atmosphere, a mounting portion, and an upper portion and a lower portion coupled to the upper portion. The anti-microbial filter may be hydrophobic, and the upper portion of the receptacle may be made of a rigid material while the lower portion pf the receptacle may be made of a flexible material.
[0012] The vacuum source of the system may comprise a vacuum pump and associated controls and/or a flow sensor to be connected to a vacuum line. Illustratively, the flow sensor may be configured to determine the level of vacuum present in the receptacle.
[0013] A method for treating a wound on a patient is also provided including the steps of sealing a bandage having a port about the wound to define a space above the wound in which a vacuum can be formed, placing a receptacle below the wound, and placing a vacuum source spaced away from the receptacle. The method further includes the steps of connecting the receptacle to the port of the bandage, connecting the vacuum source to the receptacle, and operating the vacuum source to evacuate the receptacle and provide a vacuum in the space above the wound. The method further includes the step of controlling the level of vacuum applied to the space and the time of application of the vacuum.
[0014] Additional features and advantages of the apparatus will become apparent to those skilled in the art upon consideration of the following detailed descriptions exemplifying the best mode of carrying out the apparatus as presently perceived.
[0015] The detailed description particularly refers to the accompanying figures in which:
[0016] FIGS.
[0017]
[0018]
[0019]
[0020]
[0021]
[0022]
[0023]
[0024] A vacuum therapy system
[0025] Illustrative vacuum bandages and vacuum and irrigation systems are disclosed in U.S. patent application Ser. No. 09/725,352 to Lockwood, et al. titled “VACUUM THERAPY AND CLEANSING DRESSING FOR WOUNDS”, U.S. patent application Ser. No. 09/725,666 to Risk et al. titled “WOUND TREATMENT APPARATUS”, and U.S. patent application Ser. No. 09/369,113 to Henley et al. titled “WOUND TREATMENT APPARATUS”. Each of these applications are assigned to the same assignee as the present application and are specifically incorporated herein by reference.
[0026] Vacuum bandage
[0027] Illustrative receptacle
[0028] As shown in
[0029] As mentioned above, first end
[0030] In addition to the vacuum source
[0031] As described above, the components of system
[0032] Illustratively, a flow sensor (not shown) may be coupled to second tube
[0033] In operation, it is possible that at a period of time after negative pressure is created above the wound, system
[0034] In use, receptacle
[0035] In illustrative embodiments, receptacle
[0036] Mounting portion
[0037] Another illustrative mounting portion
[0038] Although the invention has been described in detail with reference to certain preferred embodiments, variations and modifications exist within the scope and spirit of the invention.