[0001] The present invention concerns an ad-hoc wireless communications systems and more particularly selecting a path for communications between source and target devices in such a system.
[0002] Communications networks and techniques for establishing a path between two devices such as would be found in the public switched telephone network are known to exist. Various ad-hoc communications systems, such as Bluetooth and IEEE 802.11b have been proposed and are being developed. These systems generally allow a device to form a connection with various other devices over a short range and thus over a limited geographic area. It is expected that as the systems proliferate and the number of devices using the systems dramatically increases these geographic areas may become even more limited.
[0003] These ad-hoc systems have been designed such that no allowance for roaming or handoff or connection from one area to another has been explicitly provided. Yet many expect that a user within one geographic area in these systems may well wish to communicate with a user in another such area. No such capability has been provided to date in the systems as specified by their respective specifications or standards. What is needed is a way to provide and select a communication path between disparate units in an ad-hoc communications system.
[0004] The accompanying figures, where like reference numerals refer to identical or functionally-similar elements throughout the separate views and which are incorporated in and form part of the specification, further illustrate various embodiments in accordance with the present invention. The figures together with the detailed description, hereinafter below, serve to explain various principles and advantages in accordance with the present invention.
[0005]
[0006]
[0007]
[0008]
[0009]
[0010] In overview form the present disclosure concerns wireless ad-hoc communications systems or networks and providing or selecting a communications path between communications devices operating therein or therewith. The systems of particular interest are those using ad-hoc techniques to establish small networks of communications devices in close proximity with each other. Such systems are known variously as personal area networks (PAN, an example being Bluetooth), or local or wireless local area networks (LAN or WLAN, examples include 802.11a or b, European HyperLan (version of 802.11) and Home RF). Such networks are characterized by a limited coverage area for service for any one device. As further discussed below various inventive principles and combinations thereof are advantageously employed to provide and select a communications path between a source device and a target device operating on such systems provided these principles or equivalents are utilized.
[0011] The instant disclosure is provided to further explain in an enabling fashion the best modes of making and using various embodiments in accordance with the present invention. The disclosure is further offered to enhance an understanding and appreciation for the inventive principles and advantages thereof, rather than to limit in any manner the invention. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.
[0012] It is further understood that the use of relational terms such as first and second, top and bottom, and the like are used solely to distinguish one from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. Much of the inventive functionality and many of the inventive principles are best implemented with or in software programs or instructions. It is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating such software instructions and programs without any undue experimentation. Therefore further discussion of such software, if any, will be limited in the interest of brevity and minimization of any risk of obscuring the principles and concepts in accordance with the present invention.
[0013] The present disclosure will discuss various embodiments in accordance with the invention. These embodiments include methods, communications devices, and communications systems employing each or all of the aforesaid. The system diagram of
[0014] With that overview some general discussion of the Bluetooth system will be provided in order to facilitate a better understanding of and appreciation for the inventive principles, concepts, and advantages of the present invention. The Bluetooth system operates in the 2.4 Giga-Hertz frequency range using frequency hopping techniques. In most countries 79 frequencies spaced one Mega-Hertz apart are provided. Each master device has an identification number that controls or establishes the particular frequency pattern or hoping channel used by the piconet including the master and any slaves connected via this piconet. Additionally the master controls channel access. Up to seven slaves can be active on any one piconet and up to
[0015] The Bluetooth channel is divided into time slots each 625 micro seconds in length with each time slot corresponding to a frequency hop giving a hopping rate, when active, of 1600 hops per second. Generally communications exchanges on the channel utilize a time division duplex arrangement wherein the master and slave alternate transmissions with the master transmitting on even numbered slots and the slave on odd numbered slots. Various types of links between the master and slaves are supported including synchronous connection oriented (SCO) links for voice service for example and asynchronous connection less (ACL) links for packet data service for example depending on the services required by the respective devices.
[0016] Very briefly a bluetooth unit uses either an inquiry procedure or paging procedure pursuant to channel access. The inquiry procedure allows a unit to discover which units are in range and what their device addresses, clocks, etc. are while the page procedure allows the formation of a connection. If an inquiry procedure is used and a neighboring unit is discovered, the inquiring unit will have to enter a page procedure to establish a connection with the neighboring unit. In any event, using these basic procedures and others, each of which is specified in the Bluetooth specifications, a scatternet, as noted above, can be formed. And with that and the principles disclosed herein, it becomes possible to find or establish a path for communications between two units or devices even when these units do not share a direct connection. While the above discussions have focused on Bluetooth based systems other ad-hoc wireless communications systems such as 802.11a or b, European Hyper Lan, Home RF, etc. have similar system concepts and capabilities. The balance of the discussions herein will focus more on the inventive principles and concepts and less, if any, on the mechanics and specifics of implementation in, for example, a Bluetooth based embodiment. In view of this disclosure and the specifications for such systems it is clear that one of ordinary skill will be able to practice the invention without undue experimentation.
[0017] Using the principles and concepts disclosed herein a path through an ad-hoc communications system such as a Bluetooth system can be determined or selected. Referring once more to
[0018] By extending this notion, any device using the inquiry procedures can discover its neighbor devices. The diagram or matrix or neighbor matrix shown in
[0019] Further by measuring received signal strength as devices respond to the inquiry a device can get an assessment of likely quality of a link between the devices. The substance of the response or a further exchange can be used to: determine or assess other merits of the link; such as other attributes of link quality, such as bit error rate; what capabilities the neighbor device may support and whether these align with a users preferences; a traffic load at the neighbor device; or availability of the neighbor device for a contemplated communications task dependent on length of the task, remaining battery life, services desired for the task. Although
[0020]
[0021] The transceiver
[0022] In more, as well as more germane, detail, pursuant to the communications device, as a source device or unit, selecting a path for communications with a target or destination device, the transceiver
[0023] Suppose that device
[0024] Next each of the layer one devices will determine, for example as a result of a request from the source device
[0025] Continuing, for example as a result of a request by the preceding layer devices using the inquiry and paging procedures, to identify successive layers until the target device is identified results in layer
[0026] In the preferred embodiment where the information is returned to the source device the controller of that device will now select the path including intervening neighbor devices capable of communicating with each other to form the path for communications from the transceiver of the source device to the target device. In our example the source device
[0027] Various factors will enter into assigning these weights for each link or portion of a potential path. For example along with determining the devices within each layer by discovering a device's neighbor devices it must also be determined or confirmed that each of the neighbor devices is appropriate and available to participate in the path. For example is the link quality for a link ending at one of the neighbor device and originating at another one in a preceding layer above some threshold value where this threshold may be task specific. Besides link quality does the neighbor device have appropriate capabilities? For example, if the source device needs a connection oriented link for its purposes selecting a device that only supports connection less links is not appropriate. Does the traffic load or likely traffic load, at the neighbor device, allow for additional duties? For example, if an SCO link is already supported and we need another such link this may not be desirable. Is there some other factor such as remaining battery life that may impact availability of the neighbor device? This will depend on likely load or likely duration contemplated for the path. What link or path is likely to produce or result in less additional system overhead? For example it may be advantageous to use existing links representing existing connections rather than forming new ones. It is likely that an assigned weight must satisfy some threshold in order for that link to be selected as a portion of the path. In this case the tree structure of
[0028] Note that
[0029] In a method embodiment the present invention may be explained with reference to the
[0030] Then step
[0031] In practice where this device to device communications is supported it may prove to be advantageous for each device to pre-determine and periodically update its own list of neighbor devices including capability and availability for supporting various device to device ad-hoc communications paths. In that case when a device requests such information it would be more or less immediately available and could be returned very quickly. Alternatively each device may determine or discover the information shown in
[0032] The actual path selection as described above can be done at or through the source device or source communications unit or it can be performed at the target or destination unit. In either case the relevant information including each potential link or portion of the path will have to be forwarded to the respective unit making the decision. Alternatively the decision regarding the path could be performed with a controller at the common storage location(s) provided again all relevant information was available to that controller. This would include the various criteria involved in weighting the links and sub paths or sufficient information regarding the contemplated exchange between the source and target units so as to allow a proper weight to be assigned.
[0033] A further approach to the responsibility for selecting the path would be a distributed decision process wherein each neighbor device in the path or potential sub paths would make certain decisions. For example if a link originating at one device and terminating at another is unsatisfactory the originating device can make that decision provided the basis for making the determination is available. For example if the source device requires a certain link quality such as signal to noise or received signal strength the device could eliminate links on that basis. Alternatively if two or more links terminate at a device and the device knows or can determine their composite weights the best sub-path can be selected and the other eliminated. With this approach the target device would likely be the final decision point and the selected path would need to be returned to the source unit. Note; no one device including the source device needs to be aware of the complete path. Rather each device only needs to be aware of one other device in the case of the source and target devices or two other devices in the case of an intervening device.
[0034] An additional approach or way of looking at the above explained approach to selecting a path from a source device to a target device is the source device broadcasts a token, for example as part of the inquiry process, that includes an identifier or address for the source device and the target device together with any specifics required for weighting a link or path to any neighbor device that can receive the broadcast message. Each neighbor device that receives the broadcast adds a weight for the link over which the broadcast was received, selects the best of multiple links and then re-broadcasts the token including the resultant weight and its own address. In this fashion the token spreads until it reaches the target device. The target device makes any final path selection and returns a response message back down the path, requesting that each member of the path become active and participate in the subsequent communications or exchange with the source device.
[0035] Various embodiments concerning device to device communications in a wireless ad-hoc communications system, such as Bluetooth, 802.11a or b, European HyperLan, or Home RF and more particularly selecting a path for such communications to advantageously provide such services for communications devices have been discussed and described. The disclosure extends to the constituent elements or equipment comprising such systems and the methods employed thereby and therein. Using the inventive principles and concepts disclosed herein advantageously allows or provides for device to device communications within the systems without using or accessing any services external to the ad-hoc system. This disclosure is intended to explain how to fashion and use various embodiments in accordance with the invention rather than to limit the true and intended scope and spirit thereof. The invention is intended to be defined solely by the appended claims, as may be amended during the pendency of this application for patent, and all equivalents thereof.