20090123767 | ALIPHATIC-AROMATIC POLYESTERS, AND ARTICLES MADE THEREFROM | May, 2009 | Gohil et al. |
20070235121 | Method for Sealing Gaps | October, 2007 | Smelik |
20060014007 | Phenol resin, use of a phenol resin as well as moulded product formed therefrom | January, 2006 | Schuren et al. |
20100047523 | HYDROPHOBIC COMPOSITES AND METHODS OF MAKING THE SAME | February, 2010 | Kim et al. |
20090136694 | Multi-Layer Arrangement Method For A Tubular Net On A Support Tube | May, 2009 | Arias Lopez |
20040013889 | Sandwich type board | January, 2004 | Carbajo et al. |
20030087046 | Artificial rock and method for forming an artificial rock | May, 2003 | Carpenter |
20070264447 | Optical Film Laminated Body | November, 2007 | Oya et al. |
20090191393 | ENVIRONMENT-FRIENDLY CARD | July, 2009 | LU |
20020192416 | Synthetic paper shelf liner | December, 2002 | Hawley et al. |
20080166509 | SILICONE TUBING FORMULATIONS AND METHODS FOR MAKING SAME | July, 2008 | Simon et al. |
[0001] The control of noise and vibration in composite structures is an important area of current research in aerospace, automotive and other industries. For example, spacecraft vibrations initiated by attitude adjusting thrusters, motors and thermally induced stresses inhibit accurate aiming of antennas and other equipment carried by the craft. Such vibrations can cause severe damage to the craft and its associated equipment. Fatigue failure of structural components can occur at stresses well below static load limits.
[0002] Traditional passive noise and vibration control methods are heavy, bulky, and perform only marginally. For example, the acoustics of aerospace vehicles during launch are severe enough to cause damage to payloads and guidance control systems and could cause failure of the mission. Typically, standard metallic and composite technologies rely upon the use of heavy acoustic blankets to reduce the damaging effects of sound pressure fields during launch. Structurally amplified acoustic and vibration energy exacerbates the problem due to low inherent damping in fairings and other structural components. A practical way of increasing damping and improving acoustic properties in mechanical structures is required.
[0003] Composite materials have been used to construct a wide variety of structural elements, including tubes, enclosures, beams, plates and irregular shapes. Objects as diverse as rocket motor housings and sporting goods, notably skis, archery arrows, vaulting poles and tennis rackets have been structured from composite materials. While composite constructions have offered many significant advantages, such as excellent strength and stiffness properties, together with light weight, the poor vibration damping properties of such construction have been of concern.
[0004] The invention relates to fiber reinforced composite structures and applications that use wavy fiber patterns in the plane of the laminate, and that increase damping with little or no sacrifice in strength.
[0005] The invention also relates to the methods and apparatus for manufacturing the aforementioned composite material structures.
[0006] Another aspect of the invention is directed toward the fabrication of a wavy fiber pre-preg (fibers preimpregnated with epoxy resin). Such pre-pregs not only have an aesthetic appeal but also may be fabricated with selected variable volume fractions to accommodate a variety of applications.
[0007] The present invention relates to fiber reinforced resin matrix composites, and more particularly, to improved crossply laminate structures made from wavy composite materials. Such materials and structures made from wavy composites have enhanced structural properties and represent a greatly enhanced method of manufacturing crossply laminates.
[0008] Fiber reinforced resin matrix composites have been used for decades to provide stiff and strong lightweight structures to a wider field of applications in aerospace, sports, automotive, marine, civil infrastructure, and consumer markets. Favorable characteristics include high stiffness and strength to weight ratios, corrosion resistance, and tailorable structural properties. Disadvantages primarily involve cost, especially labor costs in fabricating practical structures.
[0009] Because of its anisotropy, fiber reinforced composites can be used to tailor the properties of the structure to the expected loads in a very efficient manner, especially if structural loads are limited to bending only, axial loads only, or torsion loads only, etc. When applied loads on a structure are uncertain or are known but involve many modes (i.e. axial, bending, and torsion for example) then in these cases, careful design and multiple fiber orientations are necessary to prevent failure of the structure. In these cases, multiple fiber orientations can give the structure of the composite properties that range from anisotropic to quasi-isotropic to isotropic depending on the materials or laminate structure (Hyer 1997).
[0010] There are three basic methods used to obtain isotropy or near-isotropy in composite structures. These three methods use special materials such as chopped fiber mats and woven fiber cloth, filament winding, and ply stacking of oriented cloth or unidirectional pre-preg. Each method has its advantages and disadvantages. Fiber mats or sprayed chopped fibers are easy to use and give near isotopic properties but cannot be used to tailor the stiffness and strength properties of composites to efficiently resist loads and are not typically used in other than light loading conditions.
[0011] Woven fiber cloth can be made in a number of fiber orientations, weights, and weaves, and can be tailored to a degree but are typically more expensive, usually require manual lay-up fabrication methods, and can limit the flexibility of the design if the fiber orientation is not optimal for the particular application. Additionally, woven cloth fibers are typically cut, interrupting fiber continuity especially where primary orientation of the fiber must be changed abruptly.
[0012] Filament winding methods offer continuity of fibers and automation as primary advantages but can present significant difficulties in obtaining the necessary fiber orientations for efficient structural properties. In these cases, it is customary to interrupt the fiber continuity to add layers of unidirectional pre-preg to accomplish the desired structural properties. Additional disadvantages include significant investment in capital and other fabrication issues.
[0013] Ply stacking of unidirectional and/or woven cloth offers the most flexible method of making composite structures that meet the desired properties of the structure. Advantages include not only flexible manufacturing, but include ease in compaction, more uniform properties, and minimal investment in capital equipment. Disadvantages include interruption of fiber continuity, and high labor costs (Reinfelder, Jones et al. 1998) Therefore, a need exists for a method and a composite structure that provides multiple fiber orientations, has the characteristics of ply-stacked composite structures, can be automated, and minimizes or eliminates the interruption of fibers.
[0014] The present invention relates to fiber reinforced resin matrix composites, and more particularly, to improved tubular wavy composite based laminate structures with high damping, and improved torsional properties. The present invention relates to a generalized tubular wavy composite structure that is easier to manufacture, and can be used to create high quality, high capability, golf club shafts, baseball bats, automotive drive shafts, helicopter drive shafts, fishing rods, oil drilling pipe, and other tubular or structural members where damping, stiffness, and strength are important.
[0015] The following terms used herein will be understood to have their ordinary dictionary meaning as follows:
[0016] Composite: made up of distinct parts. In the general sense, refers to any fiber reinforced material but especially any cured fiber reinforced matrix structure.
[0017] Crossply, crossply lay-up, or crossply laminate: Two or more laminae made from unidirectional pre-preg arranged in such a manner that the primary direction of the fiber or strong material direction in the layers differ in orientation, or “cross” each other.
[0018] Fiber: a thread or a structure or object resembling a thread. A slender and greatly elongated natural or synthetic filament. (Includes metal fibers)
[0019] Lamina(te): a thin plate . . . : layer(s)
[0020] Matrix: material in which something is enclosed or embedded.
[0021] Offset: In the context of this invention, means a generalized lead or lag of one waveform relative to another, similar to a phase angle in electronic engineering.
[0022] Off-axis: In the context of this invention, means a rotational difference of the strong axis between one laminae waveform relative to another or some reference.
[0023] Pre-preg: Fiber reinforced, resin matrix impregnated materials where the matrix is partially cured and ready for use. A special “uncured” case of the more general term “Composite”.
[0024] Resin: an uncured binder, especially an uncured polymer binder or matrix used to bind fibers or fibrous materials; the matrix component of an uncured pre-preg.
[0025] Viscoelastic: having appreciable and conjoint viscous and elastic properties. Note: a special case of the term “viscoelastic” is “anisotropic viscoelastic”, which is a viscoelastic material reinforced with fibers that give the material anisotropic properties. When the term viscoelastic is used in the text it should be construed to encompass this special case.
[0026] Wavy crossply, wavy crossply lay-up, or wavy crossply laminate: Two or more wavy fiber laminae arranged in such a manner that the primary direction of the fiber or strong material direction in the layers differ in orientation.
[0027] Wavy: The pattern of fiber lay that has a sinusoidal look, especially a sinuous wavy fiber in the plain of a laminate; the wave pattern need not be periodic or uniform.
[0028] Composite: made up of distinct parts. In the general sense, refers to any fiber reinforced material but especially any cured fiber reinforced matrix structure.
[0029] Crossply, crossply lay-up, or crossply laminate: Two or more laminae made from unidirectional pre-preg arranged in such a manner that the primary direction of the fiber or strong material direction in the layers differ in orientation, or “cross” each other.
[0030] Fiber: a thread or a structure or object resembling a thread. A slender and greatly elongated natural or synthetic filament. (Includes metal fibers)
[0031] Lamina(te): a thin plate . . . : layer(s)
[0032] Matrix: material in which something is enclosed or embedded.
[0033] Offset: In the context of this invention, means a generalized lead or lag of one waveform relative to another, similar to a phase angle in electronic engineering.
[0034] Off-axis: In the context of this invention, means a rotational difference of the strong axis between one laminae waveform relative to another or some reference.
[0035] Pre-preg: Fiber reinforced, resin matrix impregnated materials where the matrix is partially cured and ready for use. A special “uncured” case of the more general term “Composite”.
[0036] Resin: an uncured binder, especially an uncured polymer binder or matrix used to bind fibers or fibrous materials; the matrix component of an uncured prepreg.
[0037] Viscoelastic: having appreciable and conjoint viscous and elastic properties. Note: a special case of the term “viscoelastic” is “anisotropic viscoelastic”, which is a viscoelastic material reinforced with fibers that give the material anisotropic properties. When the term viscoelastic is used in the text it should be construed to encompass this special case.
[0038] Wavy crossply, wavy crossply lay-up, or wavy crossply laminate:
[0039] Two or more wavy fiber laminae arranged in such a manner that the primary direction of the fiber or strong material direction in the layers differ in orientation.
[0040] Wavy: The pattern of fiber lay that has a sinusoidal look, especially a sinuous wavy fiber in the plain of a laminate; the wave pattern need not be periodic or uniform.
[0041] Fiber: a thread or a structure or object resembling a thread. A slender and greatly elongated natural or synthetic filament. (Includes metal fibers)
[0042] Matrix: material in which something is enclosed or embedded.
[0043] Viscoelastic: having appreciable and conjoint viscous and elastic properties. Note: a special case of the term “viscoelastic” is “Anisotropic Viscoelastic”, defined below. When the term viscoelastic is used in the following text it should be construed to encompass this special case.
[0044] Lamina(te): a thin plate . . . : LAYER(S)
[0045] Composite: made up of distinct parts.
[0046] CWC: (Continuous Wave Composite) defines any fiber-matrix combination having at least one fiber without a break (or interruption) and having a pattern which can be defined by a mathematical algorithm. It generally has a wavy appearance. It can consist of “unidirectional” fibers (although in this case the fibers would be placed in a wavy pattern) or woven cloth (which also will have a wavy pattern to the warp or weft).
[0047] CWCV: (Continuous Wave Composite Viscoelastic) defines a combination of CWC and viscoelastic materials designed to induce damping in a structure.
[0048] CWC-AV: (Anisotropic Viscoelastic) defines a viscoelastic material or matrix with an embedded wavy fiber pattern. Such a material would have anisotropic, elastic, and viscoelastic properties. It is a special case of both CWC laminates and “viscoelastic” and can be used in conjunction with conventional CWC fiber-matrix combinations to provide damping and unique structural properties. Any use of “CWC” or “viscoelastic” in the following text can be construed to encompass this special case.
[0049] One of the simplest and often very effective passive damping treatments involves the use of thermo-viscoelastic (TVE) materials. These materials, represented by Avery-Dennison's FT series (FT-1191 is one example), exhibit both elastic and dissipative qualities which make them useful in a number of passive damping treatments.
[0050] Some of the first uses of thermo-viscoelastic materials to increase structural damping involved the use of surface patches of aluminum foil and viscoelastic adhesives. Called constrained or embedded-layer damping, these methods produce modest gains in damping.
[0051] One of the more common passive damping methods, Constrained Layer Damping or CLD (Kerwin, 1959), is achieved by bonding a thin layer of metal sheet, usually aluminum, to an existing structure with a viscoelastic adhesive. Shear strains develop in the viscoelastic material when the original structure bends or extends. Damping occurs when the deformation of the viscoelastic adhesive creates internal friction in the viscoelastic material, generating heat and thus dissipating energy.
[0052] Compared to an undamped structure, this approach, is modestly successful but its effectiveness decreases markedly as the ratio of the thickness of the base structure to the thickness of the viscoelastic material increases (Hwang and Gibson, 1992). Thus surface treatments alone cannot provide significant levels of damping to structural members where greater strength and stiffness are important. Hwang and Gibson (1992) reported this problem and showed that the advantage of aluminum foil viscoelastic constrained layer damping was eclipsed by the inherent damping in conventional composites when the required thickness of the structure exceeds about eight millimeters (0.3 inches). They determined that a ±45° graphite/epoxy composite provided approximately uniform damping of about 1.5% in thick sections, that was at least one order of magnitude greater than comparable aluminum structures.
[0053] Co-cured composite-viscoelastic structures are formed when layers of uncured fiber composites and TVE (thermal-viscoelastic or viscoelastic) materials are alternately stacked and cured together in an oven. Damping occurs in these structures when a load causes differential movement of the opposing laminates, causing shearing in the sandwiched viscoelastic material. The various methods that use this concept of differential shearing of the viscoelastic material can be classified by the fiber orientation methods used to induce damping in the TVE material.
[0054] Conventional angled ply composite designs use ±θ lay-ups of straight fiber pre-preg materials to encase the viscoelastic layers, and were first proposed by Barrett (1989) in a design for damped composite tubular components. Barrett combined the concepts of constrained layer damping with anisotropic shear coupling in the constraining composite layers to create a tube that achieved both high damping and high axial stiffness. Barrett's research showed that maximum shearing was experienced at the ends of the tubes and that clamping the constraining layers of the tube at the ends eliminated much of the damping effect, rendering the design impractical for most applications.
[0055] Chevron patterned designs also use conventional angled ply (±θ) composite lay-ups of straight fibers but vary the fiber orientation several times throughout the structure in a given laminate. Called SCAD (Stress Coupled Activated Damping), it was first proposed by Benjamin Dolgin of NASA and implemented by Olcott et al. (1991a).
[0056] In Olcott's implementation of Dolgin's design, each composite layer is comprised of multiple plies of pre-preg composite material arranged in a series of chevron-like patterns. Each composite layer is also comprised of several “segments” of material where the fiber angle in a given segment is oriented in a single direction throughout its thickness. Segments on opposite sides of the embedded viscoelastic material have the opposite angular orientation. At least two adjacent segments in a given composite layer are required to form a chevron and are joined together by staggering and overlapping the pre-preg plies in the segment.
[0057] By tailoring the fiber angle, thickness, and segment lengths, significant shearing in the viscoelastic layer was observed over the entire structure, not just at the ends as in Barrett's design (Olcott et al., 1991b; Olcott, 1992).
[0058] Olcott's research showed that the fiber orientation, segment length, segment overlap length, material choice, and material thickness, had to be carefully controlled to maximize damping in a structure (Olcott, 1992). His best design, built and tested, was a 51 cm (20 inch) tube that used a fiber lay of ±25° and a segment length of 3.8 cm (1.5 inches). This single damping layer tube produced almost 9% damping in the axial mode. Olcott also experimented with the use of chevron damping patterns in the flanges of a composite “I” beam with good success [Olcott, 1992 #19].
[0059] Pratt, et. al. [Pratt, 1997 #105] proposed several processes for making the wavy composites contemplated by Dolgin, their use in combination with viscoelastic materials for increased damping in composite structures, and the manufacture and use of several specialized wave forms.
[0060] The following publications, incorporated herein by reference, are cited for further details on this subject.
[0061] 1. Pratt, W. F. (1998). “Damped Composite Applications and Structures Using Wavy Composite Patterns,” Patent Application 60/027,975. US & PCT.
[0062] 2. Pratt, W. F. (1999). “Patterned Fiber Composites, Process, Characterization, and Damping Performance,” Ph.D. Dissertation. Provo, Utah, Brigham Young University, 195 pgs. (Note: not yet publicly released as of Sept. 19, 2000).
[0063] 3. Pratt, W. F. (2000). “Method of making damped composite structures with fiber wave patterns,” U.S. Pat. No. 6,048,426. US & PCT, Brigham Young University.
[0064] 4. Darrow, Burgess, “Reinforced Web,” 1931, U.S. Pat. No. 1,800,179.
[0065] 5. Dolgin, Benjamin P., “Composite Passive Damping Struts for Large Precision Structures,” 1990, U.S. Pat. No. 5,203,435.
[0066] 6. Dolgin, Benjamin P., “Composite Struts Would Damp Vibrations,” NASA Technical Briefs, 1991, Vol. 15, Issue 4, p. 79.
[0067] 7. Hyer, M. W. (1997). “Stress Analysis of Fiber-Reinforced Composite Materials,” The McGraw-Hill Companies, Inc.
[0068] 8. Mellor, J. F. (1997). “Development and Evaluation of Continuous Zig-zag Composite Damping Material in Constrained Layer Damping,” Masters Thesis, Provo, Utah, Brigham Young University.
[0069] 9. Olcott, D. D., (1992). “Improved Damping in Composite Structures Through Stress Coupling, Co-Cured Damping Layers, and Segmented Stiffness Layers,” Ph.D. Thesis, Provo, Utah, Brigham Young University,
[0070] 10. Reinfelder, W., C. Jones, et al. (1998). “Fiber reinforced composite spar for a rotary wing aircraft and method of manufacture thereof”, U.S. Pat. No. 5,755,558. US, Sikorsky Aircraft Corporation.
[0071] 11. Trego, A. (1997). “Modeling of Stress Coupled Passively Damped Composite Structures in Axial and Flexural Vibration,” Brigham Young University, Ph.D. Thesis, Provo, Utah, Brigham Young University.
[0072] 12. Pratt, W. F. (1998). “Damped Composite Applications and Structures Using Wavy Composite Patterns,” Patent Application 60/027,975. US & PCT.
[0073] 13. Pratt, W. F. (1999). “Patterned Fiber Composites, Process, Characterization, and Damping Performance,” Ph.D. Dissertation. Provo, Utah, Brigham Young University, 195 pgs. (Note: not yet publicly released as of Sept. 19, 2000).
[0074] 14. Pratt, W. F. (2000). “Method of making damped composite structures with fiber wave patterns,” U.S. Pat. No. 6,048,426. US & PCT, Brigham Young University.
[0075] 15. Pratt, W. F. (2000). “Crossply Wavy Composite Structures,” Provisional Patent Application 60/240,645. US & PCT.
[0076] 16. Dolgin, Benjamin P., “Composite Passive Damping Struts for Large Precision Structures,” 1990, U.S. Pat. No. 5,203,435.
[0077] 17. Dolgin, Benjamin P., “Composite Struts Would Damp Vibrations,” NASA Technical Briefs, 1991, Vol. 15, Issue 4, p. 79.
[0078] 18. Hyer, M. W. (1997). “Stress Analysis of Fiber-Reinforced Composite Materials,” The McGraw-Hill Companies, Inc.
[0079] 19. Olcott, D. D., (1992). “Improved Damping in Composite Structures Through Stress Coupling, Co-Cured Damping Layers, and Segmented Stiffness Layers,” Ph.D. Thesis, Provo, Utah, Brigham Young University.
[0080] 20. Cabales, Raymund S.; Kosmatka, John B.; Belknap, Frank M., “Golf shaft for controlling passive vibrations,” 1999, U.S. Pat. No. 5,928,090.
[0081] 21. Cabales, Raymund S.; Kosmatka, John B.; Belknap, Frank M., “Golf shaft for controlling passive vibrations,” 2000, U.S. Pat. No. 6,155,932.
[0082] 22. Pratt, William. F; Allen, Matthew; Jensen, C. Greg, “Designing with Wavy Composites,” SAMPE Technical conference, 2001, Vol. 45, Book 1, pp 302-215.
[0083] 23. Pratt, William. F; Allen, Matthew; Skousen, Troy S., “Highly Damped Lightweight Wavy Composites,” Air Force Technical Report AFRL-VS-TR-2001 -tbd, 2001.
[0084] 24. Easton, James L.; Filice, Gary W.; Souders, Roger; Teixeira, Charles, “Tubular metal ball bat internally reinforced with fiber composite,” 1994, U.S. Pat. No. 5,364,905.
[0085] 25. Lewark, Blaise A., “Reinforced baseball bat,” 2000, U.S. Pat. No. 6,036,610.
[0086] 26. Sample, Joe M., “Break resistant ball bat,” 20001, U.S. Pat. No. 6,238,309.
[0087] Pratt (reference 1) proposed the use of wavy composite contemplated by Dolgin (references 5 and 6) as constraining layers for a soft viscoelastic damping material in several combinations of wavy composite, viscoelastic, and conventional materials. Additionally, Pratt proposed the use of “wavy pre-preg for use with or without a separate viscoelastic layer” but did not teach or further amplify the construction or benefits. Pratt (reference 2, page 92) proposed, constructed, and tested balanced wavy composite crossply samples (without viscoelastic layers) for the purpose of determining the properties of wavy composite.
[0088] Darrow (reference 4) proposed a device for obtaining a permanent sinuous waveform in metallic wires for the production of rubber tires but never contemplated modern fibers, resin systems and composite structures.
[0089] Dolgin (reference 5) proposed a specialty composite structure made from opposing chevron and sinusoidal patterned composite lamina constraining a viscoelastic layer. In reference 6 Dolgin stated that the production of wavy sinusoidal pre-preg should be possible but did not describe any process or apparatus. Neither reference taught or cited any method of constructing or using wavy or chevron patterned composites as replacements for unidirectional pre-preg based wavy crossply laminates.
[0090] Hyer (reference 7) is a good all-around and current basic composite book that covers the properties of composites, especially unidirectional pre-preg based crossply laminates. Wavy composite is not mentioned at all.
[0091] Mellor (reference 8) proposed the use of standard bi-directional cloth in a zig-zag (chevron) pattern contemplated by both Dolgin and Olcott as a constraining layer for viscoelastic materials. No use of this concept as a structural material in a wavy crossply structure was contemplated, mentioned, or taught.
[0092] Olcott (reference 9) predated Mellor and proposed, fabricated, and tested the chevron patterns used as constraining layers for viscoelastic damping layers contemplated by Dolgin. Olcott did not contemplate use of wavy or chevron patterned laminae without the use of viscoelastic layers.
[0093] Reinfelder, et al, (reference 10) discussed the construction of a rotary wing spar for use on a helicopter. It is a good example of the superiority of crossply laminates and is an example of an application that could benefit from the use of wavy crossply laminate structures.
[0094] Trego (reference 11) extended the Finite Element Analysis model proposed by Olcott (reference 9) and built several chevron based constrained layer damping tubes to validate the model. No mention of using wavy composites in wavy crossply lay-ups was made or proposed.
[0095] Crossply lay-ups, as discussed by Reinfelder, et al, and Hyer, typically involve the use of unidirectional pre-preg with fiber orientations designed to maximize the desired structural properties. For example, if a tube is to be loaded in the longitudinal or axial mode, most if not all of the unidirectional fibers would be oriented in the longitudinal (or 0°) direction for maximum stiffness. Some small percentage of total fibers in the tube may be oriented perpendicular to these fibers for hoop strength, to prevent separation, or to prevent buckling, but such fibers would not resist longitudinal loads. Such tubes are easy to make by cutting an appropriate length of unidirectional pre-preg from a roll and rolling the composite onto a mandrel. No fibers (for the 0° layers) are cut or interrupted. Loads are resisted best when fibers are not cut. If cut, loads between such fibers are transmitted through the matrix or resin and stiffness and strength can be considerably reduced. A tube with all or mostly 0° fibers would be very efficient in resisting longitudinal loads but would not resist any significant torque or bending loads because such loads would be resisted primarily by the shear strength of the matrix and not by fibers.
[0096] A better design for resisting torque loads in a tube would be to add additional layers of fibers oriented at angles to the longitudinal axis so that the fibers would spiral around the tube. Such fibers would provide the primary resistance to torque loads and would provide resistance to shearing loads along the neutral axis during bending similar to a truss like structure. To avoid cutting the fibers (except at the ends of a tube) the unidirectional pre-preg would have to be spirally wound on the tube which is a concept that sounds simple, but in reality is extremely difficult to do correctly. More typically, the unidirectional materials are cut at an angle from a larger sheet and the “off-axis” rectangle of material thus created is rolled on to the tube as is done for the longitudinal fiber plies. This leaves a series of cut fibers that spiral around the tube ending on a discernable seam that runs the length of the tube. This represents a potentially significant weakness in the crossply laminate. If several such layers of opposing “off-axis” plies are used, the normal practice is to offset the ending and beginning of such plies so that the seams of each layer are offset. (Reinfelder, et al, 1998).
[0097] Pratt (reference 1) proposed the use of wavy composite contemplated by Dolgin (references 5 and 6) as constraining layers for a soft viscoelastic damping material in several combinations of wavy composite, viscoelastic, and conventional materials. Additionally, Pratt proposed the use of “wavy pre-preg for use with or without a separate viscoelastic layer” but did not teach or further amplify the construction or benefits. Pratt (reference 2, page 92) proposed, constructed, and tested balanced wavy composite crossply samples (without viscoelastic layers) for the purpose of determining the properties of wavy composite. Pratt (reference 15) revealed and taught the advantages of using wavy crossply composite laminates in structures to provide improved structural properties, especially resistance to torque, bending, and axial loads.
[0098] Dolgin (reference 5) proposed a specialty composite structure made from opposing chevron and sinusoidal patterned composite lamina constraining a viscoelastic layer. In reference 6 Dolgin stated that the production of wavy sinusoidal pre-preg should be possible but did not describe any process or apparatus. Neither reference taught or cited any method of constructing or using wavy or chevron patterned composites as replacements for unidirectional pre-preg based wavy crossply laminates, nor the use of combinations of wavy crossply laminates in conjunction with Dolgin's (references 5 and 6) wavy damping methods.
[0099] Hyer (reference 7) is a good all-around and current basic composite book that covers the properties of composites, especially unidirectional pre-preg based crossply laminates. Wavy composite is not mentioned at all.
[0100] Olcott (reference 9) proposed, fabricated, and tested the chevron patterns used as constraining layers for viscoelastic damping layers contemplated by Dolgin. Olcott did not contemplate use of wavy or chevron patterned laminae without the use of viscoelastic layers.
[0101] Crossply lay-ups, as discussed by Reinfelder, et al, and Hyer, typically involve the use of unidirectional pre-preg with fiber orientations designed to maximize the desired structural properties.
[0102] Cabales, et.al. in references 20 and 21 propose the construction of golf club shafts using concepts invented by Dolgin (reference 5) and techniques proposed by Olcott (reference 19). The basic design contemplated by Cabales, et.al. relied on two load bearing laminates on the inside and outside of the shaft, placing a “damping device” in the space between these laminates using viscoelastic and “V” or “herringbone” fiber patterns proposed by Olcott (reference 19). These V or herringbone patterns are constructed from strips of unidirectional material that is cut on an angle and then joined by a series of overlapping butt joints (reference 19). Such methods are impractical in the extreme requiring an estimated 70 separate pieces of composite for one “damping device” that must be hand assembled for one shaft. Additionally, because of the inherent weakness of the overlapped butt joints, a minimum of four layers must be used for any V or herringbone damping layer (reference 19). Such a shaft, if it can be accurately assembled at all, would weigh at least 50% more than a steel golf shaft and would therefore be unacceptable to the public. In short, such a design is impractical if not impossible.
[0103] Finally, Cabales, et.al. did not contemplate the use of wavy or sinuous fiber reinforced materials either in their claims or the disclosure of the invention but instead specifically cited Olcott's “V” or herringbone method in the claims. Additionally, Cabales, et.al. state that the use of precisely controlled regions or lengths of viscoelastic material application are required for the efficient damping of higher vibration modes of the shaft. More recent research in references 22 and 23 show that peak damping frequency and damping magnitude at any given frequency are only functions of the wave period and will dampen all modes based on the characteristics of the material. Since Olcott did not use methods of testing that produce an accurate characterization or material nomograph of the “V”, herringbone, or “zig-zag” laminate design, such an understanding of the material's true properties was never accomplished and Olcott and others were left to erroneously conclude that damping performance was a function of the length of the damping regions and not a function of the period of the pattern. Finally, Cabales et.al. indicate that the “V” or “herringbone”, or “zig-zag” patterns in the layers (items
[0104] In reference 15, Pratt revealed an enhanced method of making composite structures with crossply characteristics but constructed entirely from wavy composite. Pratt showed how wavy composite pre-preg can be used to create virtually seamless crossply-like laminates with little or no interruption of fibers. Such a laminate displays the properties of both unidirectional and crossply characteristics in that it can efficiently resist both axial and transverse shearing loads.
[0105] Application of Dolgin's sinuous or wavy composite damping concept shown in
[0106] Easton, et.al. in Reference 24 describes an internally reinforced metal ball bat wherein the internal reinforcing material is comprised of bi-directional composite cloth layers applied to the interior of the barrel. The advantages cited were reinforcement, added strength and quicker shape recovery after impact. Lewark in Reference 25 reinforced a wooden bat in the handle region with bi-directional composite cloth layers to provide for breakage resistance. Sample in Reference 26 provided reinforcement to the handle of a wooden bat with straight fibers oriented along the length of the handle. None of these references mention wavy composite nor a method for reinforcing the handle of a bat with crossply wavy composite nor adding damping to the body of the bat using wavy composite damping layers. This is true for wooden bats, hollow metal bats, composite bats, or hybrid designs combining wood, and/or metal, and/or composite.
[0107] The composite structures of this invention may take a variety of forms, including plates with or without stiffeners, beams, curved surfaces, or irregular shapes. In any event, each structure has at least one CWC laminate and at least one viscoelastic layer. The viscoelastic layer need not be a separate material or layer but may be formed by a thin boundary layer of matrix from the composite during curing; such a CWC material would of course have a special matrix.
[0108] Damping is induced in the structure primarily by the differential shearing of the viscoelastic layer by the CWC laminate. This shearing induces elongation of the long chain polymers in the viscoelastic which in turn generates heat, causing energy loss in the structure. This energy loss accounts for the primary source of damping in the structure.
[0109] There remains a need for a composite structure capable of diverse configuration with improved damping characteristics and which avoids the limitations of the structural approaches heretofore suggested for use with composite materials.
[0110] The terminology CWC (continuous wave composite) will be used to define any fiber-matrix combination having at least one fiber without a break (or interruption) and having a pattern which can be defined by a mathematical algorithm. Typically, such curves have G
[0111] The terminology CWCV (continuous wave composite viscoelastic) will be used to define a composite structure which uses at least one layer of CWC material having viscoelastic properties (or ‘anisotropic viscoelastic’); or at least one layer of CWC material combined with at least one layer of viscoelastic material either in a sandwich construction or adjacent construction.
[0112] A CWCV is defined by specifying the angle of the fiber lay along the composite layers (e.g. the orientation angles of the fiber with respect to the loading direction), the thickness of the composite layers, and the number of composite and viscoelastic layers in the structure.
[0113] The lay of fiber in a CWCV composite layer is varied continuously in a periodic wavelike form. A simple sinusoid wave form may be used, however, other wave forms which may or may not be periodic may also be used. It is also envisioned to employ an optimal wave form for damping particular vibration frequencies at particular locations of a structure.
[0114] The ends of a CWCV structure according to the present invention may be restrained without significantly reducing the overall damping properties of the structure. There results a structural element possessing high axial stiffness and low weight. The structural elements of this invention offer markedly superior damping capabilities but are nevertheless useable with simple attachment fixtures and methods.
[0115] Damping is induced in the structure primarily by the differential shearing of the viscoelastic layer by the CWC laminate. This shearing induces elongation of the long chain polymers in the viscoelastic which in turn generates heat, causing energy loss in the structure. This energy loss accounts for the primary source of damping in the structure.
[0116] The invention also includes fiber patterns which change their wavelength and/or waveform along the loading direction. The inventor has discovered that for a given frequency and temperature many viscoelastic adhesives will require an optimal wavelength to maximize damping in the structure. While a structure with a constant wavelength can be optimized for a given frequency and/or temperature, placement of a changing wavelength or waveform can optimize a structure for a broader range of frequencies and/or temperatures.
[0117] Stress coupled composite structures having one fiber angle at any given point along the loading direction are not able to withstand as much stress as one having multiple angles contained within a matrix. This is because failures occur in composite materials starting at areas of maximum in-plane shear stress in the composite layer, and propagate in the matrix material along the fiber direction.
[0118] The present invention further envisions complex fiber patterns, such as those shown in FIGS.
[0119] A period modulated wave shape where two or more waves of differing period with or without the same amplitude, combined into one composite shape. This could be used to optimize damping and/or stiffness in complex structures where modal vibration and/or forcing functions require special design considerations.
[0120] An amplitude modulated wave shape could be used to modify stiffness and damping properties at varying positions in the structure.
[0121] A wave shape composed of two or more similar or dissimilar wave forms of different periods such that the combined wave form shows a mixed characteristic of all such combined waves. This would allow tailoring of structural properties for multiple modes and forcing functions.
[0122] A bessel based wave shape, a fourier series driven shape, sawtooth, trapezoidal, square wave, and modulated (by other similar or dissimilar wave forms) patterns.
[0123] Optimized patterns not necessarily algorithmically driven which are tailored by an optimization program to provide special structural response characteristics.
[0124] Random and/or neo-random patterns, and patterns which are a mixture of random or neo-random and periodic wave shapes.
[0125] A structure which uses conventional straight fiber composites to constrain an anisotropic viscoelastic material.
[0126] It has been shown that higher frequency resonance or forcing functions require shorter wave periods for optimization of damping in CWCV structures. See, for example, the following publications incorporated herein by reference:
[0127] 1. Pratt, W. F., Rotz, C. A. and Jensen, C. G. 1996 “Improved Damping and Stiffness in Composite Structures Using Geometric Fiber Wave Patterns,” Proceedings of the ASME Noise Control and Acoustics Division, Vol. NCA 23-2, pp. 37-43.
[0128] 2. Pratt, W. F., Rotz, C. A., and Jensen, C. G., 1996, “On the Use of Continuous Wave Composite Structures in Stress Coupled Interlaminar Damping,” Advanced Materials: Development, Characterization Processing, and Mechanical Behavior Book of Abstracts, Vol. MD 74, pp. 63-64.
[0129] 3. Pratt, W. F., Rotz, C. A., and Jensen, C. G., 1996, “On the Use of Continuous Wave-like Geometric Fiber Patterns in Composite Structures to Improve Structural Damping,” Proceedings of the ASME Aerospace Division, Vol. AD 52, pp. 415-433.
[0130] In summary, a continuous wave fiber composite material according to the present invention may include one or more anisotropic composite layers with or without viscoelastic properties, and therefore respectively used without or with a separate viscoelastic layer. Of course, one may also utilize composite layers with viscoelastic properties (i.e., the viscoelastic material may comprise all or part of the matrix material binding the fibers) and separate viscoelastic layers as well. Features of the pattern of reinforcing fibers may include:
[0131] A constant wavelength and/or waveform (see
[0132] A wavelength and/or waveform that varies along the length of the structure (see
[0133] A pattern in one CWC laminae having multiple wavelengths and/or waveforms (see
[0134] Multiple combinations of CWC laminae and viscoelastic layers using one or more of the above features (see
[0135] In a further aspect of the present invention, an apparatus and method for manufacturing composite materials such as those described above are also envisioned.
[0136] Generally, characteristics of the processes and machines include:
[0137] laying the fiber(s) in a controlled pattern which can be periodic or non-periodic;
[0138] producing a fiber reinforced composite material consisting of matrices containing continuous fibers. The matrices can consist of conventional polymers, viscoelastic materials, or more exotic materials including (but not limited to) metal, ceramic, or combinations of materials. The fibers can consist of unidirectional tow or woven mats.
[0139] The present invention is directed to the use of wavy composite and damping materials in basic structural components typically representing parts of panels, plates, and beams.
[0140] The invention is also directed to a CWC (continuous wave composite) which forms a continuously wavy pre-preg for use with or without a separate viscoelastic layer.
[0141] In both the CWCV and CWC structures, the wavy characteristic of the fiber is optimally varied in at least one of a period, amplitude or shape characteristic.
[0142] In accordance with another aspect of the invention, there is provided a fiber reinforced viscoelastic tape with may be used in many diverse applications.
[0143] The invention is also directed to the use of basic wavy composite damping structural components to form specific practical devices and applications.
[0144] The present invention is directed to “continuous wave composite viscoelastic” (CWCV) structures, as well as the methods and apparatus of manufacturing them.
[0145] The composite structures of this invention may take a variety of forms, including tubes, plates, beams or other regular or irregular shapes. In any event, a typical structure will at a minimum include a first stiffness layer or matrix, a damping material, and a second stiffness layer or matrix. Each stiffness layer or matrix will include at least one reinforcing fiber and will be at least several thousandths of an inch thick. Layers with multiple plies and of much greater thickness; e.g. several inches, are envisioned. The fibers of a multi-ply layer may be of similar or dissimilar orientation. The damping material may be of any appropriate thickness, depending upon the application involved, as well as the properties of the damping material selected. The damping material may comprise another layer interposed between the stiffness layers, or may be incorporated into the stiffness layer. Typically, the damping material will be as thin as is practical, to avoid adding excess weight to the structure. It is not unusual, however for a layer of damping material to exceed in thickness the total thickness of the stiffness layers. The stiffness layers may be constructed of any of the reinforcing fibers and matrix materials which would otherwise be appropriate for a particular application. The damping material will ordinarily be selected to provide optimum damping loss at the temperatures and vibrational frequencies expected to be encountered by the composite structure.
[0146] The present invention is directed to an improved composite structure and method for manufacturing the same from wavy fiber pre-preg materials. Generally, characteristics of the structure and methods include:
[0147] Two or more wavy laminae used in opposing patterns or offset patterns in a composite structure, where the laminate properties created have variable crossply characteristic.
[0148] Laminate properties that can be tailored by the stacking sequence, waveform, offset, axis orientation, and material used.
[0149] Wavy crossply structures that can be laid down by tape laying machines and apparatus with as little as one axis of control.
[0150] Wavy crossply structures that minimize the interruption of fibers thereby making the laminate stronger and less prone to failure.
[0151] Wavy composite pre-preg can be used to create virtually seamless crossply-like laminates with little or no interruption of fibers. This is simply accomplished by combining two or more wavy composite plies using opposing waveforms in its simplest form, or by using combinations of opposing and offset wavy composite waveforms to form the laminate. Such a laminate displays the properties of both unidirectional and crossply characteristics in that it can efficiently resist both axial and transverse shearing loads.
[0152] The fact that such a structure, which has fibers oriented in multiple directions, can be laid down with standard automation equipment (with as little as one axis of control) makes the structure and method economical. This is in contrast to laminates and methods used to make conventional unidirectional pre-preg based crossply laminates which cannot readily be automated. Additionally, experience has shown that wavy pre-preg can be more easily draped over contoured surfaces and tooling, further easing fabrication.
[0153] Finally, there is a finite maximum width to pre-preg (typically 60 inches maximum) which often causes laminators to have to splice and overlap sheets of unidirectional pre-preg together to form large laminae. This is especially true for off-axis unidirectional laminae. This introduces seams which often represent a significant weakness in the laminate (see
[0154] The present invention also relates to the use of wavy composite and unidirectional composite in crossply lay-ups in the generalized fabrication of tubes, wing spars, rotary wing spars, and similar structures.
[0155] The present invention is directed to an improved composite structure and method for manufacturing the same from wavy fiber pre-preg materials. Generally, characteristics of the structure and methods include:
[0156] Wavy composite structures with high damping consisting of at least one wavy composite layer combined with at least one viscoelastic damping layer.
[0157] Two or more wavy laminae used in opposing patterns or offset patterns in a composite structure, where the laminate properties created have variable crossply characteristic that can be tailored by the stacking sequence, waveform, offset, axis orientation, and material used.
[0158] Wavy crossply structures that can be laid down by tape laying machines and apparatus with as little as one axis of control.
[0159] Wavy crossply structures that minimize the interruption of fibers thereby making the laminate stronger and less prone to failure.
[0160] The present invention also relates to the use of wavy composite and unidirectional composite in crossply lay-ups in the fabrication of tubes, golf club shafts, torque tubes, drive shafts, fishing rods, baseball bats, and similar structures.
[0161] The present invention also relates to the use of wavy composite and unidirectional composite in crossply lay-ups using interrupted viscoelastic methods as shown in Figures in the fabrication of tubes, golf club shafts, torque tubes, drive shafts, fishing rods, baseball bats, and similar structures.
[0162] The accompanying drawings (FIGS.
[0163]
[0164]
[0165]
[0166]
[0167]
[0168]
[0169]
[0170]
[0171]
[0172]
[0173]
[0174]
[0175] The accompanying drawings (FIGS.
[0176]
[0177]
[0178]
[0179]
[0180]
[0181]
[0182]
[0183]
[0184]
[0185]
[0186]
[0187]
[0188]
[0189]
[0190]
[0191]
[0192]
[0193]
[0194]
[0195]
[0196] The CWCV shown in FIGS.
[0197] The CWCV plate is the most basic unit built with these new materials. It can be shaped and bent to make stiffener building blocks. CWCV plates, stiffeners and cores cab be combined in any combination to form intermediate structural members. The intermediate structural members can be combined with additional CWCV building blocks to form larger structures.
[0198]
[0199] In
[0200] The CWCV plate shown in
[0201] The laminate in
[0202]
[0203]
[0204]
[0205]
[0206] In summary, it is possible for the designer to combine multiple layers of CWC laminates, viscoelastic materials, and conventional materials in any number of configurations according to the design criteria of the engineer. The examples of
[0207] According to one aspect of the invention, a CWCV plate is bent to form any of the other building blocks all of which are termed “stiffeners”. There are four basic shapes of a stiffener building block including the hat-stiffener, the I-beam, the C-channel, and the Z-channel. The terminology “hat-stiffener” will mean any channel shaped stiffener commonly used on lightweight structures. Generally they are “U” shaped in cross section but they can be any cross sectional shape such as semi-circle, “V” shaped, three sided square, etc.
[0208] The CWCV hat-stiffener is shown as Item
[0209] As shown in
[0210] The composition of the hat-stiffener (
[0211]
[0212] In
[0213] The laminate (
[0214] The laminate (
[0215] The laminate (
[0216]
[0217] The CWCV I-beam stiffener is shown as Item
[0218] As shown in
[0219] The I-beam stiffener (
[0220] The flanges (
[0221]
[0222]
[0223]
[0224]
[0225]
[0226] As stated above, the examples of
[0227] As shown in
[0228] The sandwiched core (
[0229] The plate (
[0230]
[0231] The plate (
[0232] The plate (
[0233] The laminates (
[0234] As stated above, the examples of
[0235]
[0236]
[0237]
[0238] As previously discussed, the basic building blocks shown in
[0239] The use of highly damped materials is beneficial in the building of virtually every structure. In civil structures the use of the CWCV building blocks of FIGS.
[0240]
[0241] There are many more possible combinations of CWCV laminates, stiffeners, core materials, etc. that will be obvious to one skilled in the art.
[0242] Skis, snowboards, waterskis and other sports equipment can benefit from the addition of structural materials with inherent damping as represented by the use of CWCV building blocks. For example, downhill racers rely on the dynamics of their skis ability to provide solid contact with the ground and maintain control. Skis that chatter are a hazard. Skis with inherent structural damping are therefore of great value to the sport.
[0243]
[0244] As shown in
[0245]
[0246] Two specific examples of skis that have been built using CWCV plates and conventional materials are shown in
[0247] An alternative embodiment of the ski shown in
[0248] There are many other combinations of viscoelastic or anisotropic viscoelastic materials, and conventional composites, special coatings, or other materials which can be used to design and build the ski, and will be obvious to one skilled in the art.
[0249] For example, in the case of the water ski, it may be desirable to eliminate the metallic edges (
[0250] The example CWCV ski structures discussed above could be used for snow skis, snow boards, surf boards, slalom skis, beams, boards, and many sports equipment or structural components where damping, strength, and stiffness are important. CWCV Tubes.
[0251] A CWCV tube can be made from the basic CWCV plate building block discussed in
[0252] The CWCV tubes shown in
[0253] The tubular examples of
[0254] A single layer of wavy composite has a fiber lay that oscillates between a negative maximum angle and a positive maximum angle in a pre-determined pattern. As a result, the individual laminae will vary in stiffness and displacement characteristics along its length as the angle of the fiber changes. Thus where the angle is 0° relative to the length of the waveform, the laminae will have the characteristics of a 0° unidirectional composite, and where the angle diverges from 0° the laminae will have the characteristics of an off-axis unidirectional laminae. If several opposing wavy composite laminae are joined together in a symmetric lay-up (see
[0255] Refer to
[0256] Thus, for one pair of opposing wavy laminae, the angle will be at a ± maximum but the second pair of opposing wavy laminae will have a fiber angle that is at 0° or nearly 0° relative to the general direction of the laminate. This gives the laminate an equivalent unidirectional lay-up of four total layers where two of the layers are unidirectional plies with a ± fiber orientation, and the other two layers were equivalent to two 0° unidirectional laminae. The difference is that the construction of a unidirectional version of a crossply laminate cannot be easily automated; the construction of a wavy crossply laminate can be automated. In the process of characterizing the properties of damped wavy composites, several sample tubes constructed from wavy composite with constrained viscoelastic layers were compared to equivalent undamped unidirectional crossply tubes. It was found that damped wavy tubes took significantly less time to fabricate. As a result, and in an effort to save labor time, several undamped tubes were manufactured using the lay-up shown in
[0257] The following discussion further amplifies the advantages of using wavy composite pre-preg in wavy crossply lay-ups.
[0258] This concept is shown in general in
[0259] Wavy composites do not have this limitation. As shown in
[0260] In order to make a crossply laminate from unidirectional pre-preg similar to concepts shown in
[0261] If, however, the designer were to use wavy composite, the equivalent of the 0°/+45°/−45° laminate could be completed using wavy plies offset as shown in
[0262] The present invention includes a structure such as is shown in
[0263] The present invention also includes a laminate consisting of a mix of wavy composite layer(s) (items
[0264] The most useful configuration is shown as items
[0265] Combining two or more “pairs” of wavy laminae need not be joined together along their longitudinal axes but may be laid at some off-axis angle with respect to each other as is shown in
[0266] To further illustrate the capability of wavy crossply laminates, the following table documents the equivalent axial stiffness of several different configurations of wavy crossply laminates using (for example) a typical carbon fiber-resin combination to represent the material properties of both unidirectional and wavy composite. Table 1 shows the configuration of each laminate. Each laminate is defined by the words “unidirectional”, or “wavy crossply”, or “wavy crossply & unidirectional” defining the materials used in the lay-up. This is shown in the “Laminate” column of the table. The laminate configuration is further defined by the angle of the plies relative to the longitudinal direction of the sample tube used to model the lay-up. This is shown in the “Configuration” column of the table. For example, “0°” means all fibers are oriented at zero degrees to the reference, or run longitudinally in the tube. The relative axial stiffness of the laminate is given in the column labeled “Axial modulus.” This represents the smeared axial material properties of the lay-up. Axial modulus represents the relative ability of the laminate to resist tension or compression loads, and even bending loads if the neutral axis shear forces are ignored. The “Shear modulus” column represents the ability of the laminate to resist torsion or shear loads.
TABLE 1 Laminate Configuration Axial modulus Shear modulus 1. Unidirectional 0° 142.2 GPa 5.2 GPa 2. Unidirectional +30°/−30° 51.4 GPa 29.2 GPa 3. Unidirectional 0°/+30°/−30° 84.3 GPa 21.5 GPa 4. Wavy crossply ±30° wavy (one pair) ( 82.4 GPa 12.6 GPa 6) 5. Wavy crossply ±45° wavy (two pair) with quarter 53.9 GPa 27.5 GPa waveform offset between pairs ( item 7) 6. Wavy crossply ±30° wavy (one pair) with a 90° 72.6 GPa 10.9 GPa & Unidirectional unidirectional transverse ply ( 7. Wavy crossply ±30° wavy (two pair) with quarter 88.6 GPa 20.0 GPa waveform offset between pairs ( item 7) 8. Wavy crossply ±30° wavy (two pair) with quarter 73.7 GPa 16.0 GPa & Unidirectional waveform offset between pairs, with a 90° unidirectional transverse ply ( 9. Wavy crossply ±30° wavy (two pair) with quarter 98.0 GPa 17.8 GPa & Unidirectional waveform offset between pairs, with one 0° unidirectional ply.
[0267] Laminate 1 is a unidirectional fiber composite lay-up that shows the 0 degree properties of the fiber reinforce composite used to model all subsequent lay-ups. Laminate 2 shows the properties of a conventional ±30 degree unidirectional composite crossply lay-up. Note that the equivalent axial modulus of laminate two is considerably reduced from that of laminate 1, but the equivalent shear modulus is greatly improved over the shear modulus of laminate 1. This is a classic example of how crossply composites lose axial modulus rapidly as the angle of the fiber diverges from zero degrees, but their ability to resist shear loads improves.
[0268] As discussed above and shown in
[0269] Wavy composite can be used to create wavy crossply laminates equivalent to the unidirectional crossply laminates discussed above. Wavy crossply laminate #5 is equivalent in both axial and shear modulus to unidirectional crossply laminate #2. Likewise, wavy crossply laminate #7 is equivalent in both axial and shear modulus to unidirectional crossply laminate #3. Both wavy crossply laminates are significantly easier to fabricate, do not cut fibers (and therefore do not show any seam), and can be readily automated. The same cannot be said for the two unidirectional crossply laminates.
[0270] The remaining entries of Table 1 example only a few of the many different combinations possible by using wavy composite materials. For example, wavy crossply laminate #4 represents the axial and shear modulus of one pair of opposing wavy laminae (
[0271] If greater transverse strength was desired in the crossply laminate, the designer would add an additional layer of unidirectional composite. This is shown in laminates #6 which is a modified version of #4, and in laminate #8 which is a modified version of laminate #7. Both can still be readily automated in fabrication since the 90 degree layers could be added easily. Additionally, 0 degree unidirectional layers can be added to augment the axial modulus without unduly sacrificing the shear modulus. This is shown as laminate #9 in Table 1 and compares favorably with laminates 3, 7, and 8.
[0272] The present invention does not limit the waveforms used to identical wave patterns, periods, to a particular waveform (such as a sine wave, cosine wave, etc.), a particular orientation, or to a particular offset. The properties desired in the laminate may require a non-periodic waveform or a combination of waveforms of any type, and unidirectional or woven cloth laminae. The selection of waveforms, materials, orientations, or offsets to use will depend on the properties desired in the laminate. The selection will be obvious to one skilled in the art. The wavy laminates discussed here and illustrated in the figures are for example purposes only.
[0273] Finally, the range of possible uses of the example wavy crossply lay-ups shown in Table 1, is potentially limitless. In reference 12, a construction for a rotary wing spar is revealed which uses unidirectional and woven fiber composite layers to provide efficient axial, bending, and torsional stiffness. Although the examples of Table 1 were based upon the analysis of a sample tube, the same or similar wavy composite lay-ups could be used to construct an equivalent spar at a greatly reduced costs. Other applications include automotive, aerospace, and marine drive shafts, composite wing structures of all types, panels, composite I-beams, channels, and virtually an endless combination of possibilities. Composite arrow shafts and golf club shafts would likewise benefit from greatly reduced labor costs in construction. Other applications will be obvious to those skilled in the art.
[0274] By combining the concepts shown in references 1, 15, 5, and 6, it is possible to create a lightweight, damped, golf club shaft that improves “feel”, dramatically reduces free vibrations, widens the “sweet” spot on the club head, and reduces shock to the user's anatomy.
[0275] Refer to
[0276] Thus, for one pair of opposing wavy laminae, the angle will be at a ± maximum but the second pair of opposing wavy laminae will have a fiber angle that is at 0° or nearly 0° relative to the general direction of the laminate. This gives the laminate an equivalent unidirectional lay-up of four total layers where two of the layers are unidirectional plies with a ± fiber orientation, and the other two layers were equivalent to two 0° unidirectional laminae.
[0277] If this wavy crossply structure is combined with one or more viscoelastic layers and one or more constraining wavy composite layer, the result is a lightweight golf club shaft with high damping and excellent bending and torsional stiffness. Additionally, the wavy fiber composite has an aesthetically pleasing look which in good daylight seems to shimmer and sparkle. Golf club shafts can be constructed entirely from wavy composite and viscoelastic damping materials. The primary bending and torsional load resistance is provided by a wavy crossply structure; damping is provided by two viscoelastic layers and two double ply wavy composite constraining layers, as shown in part in
[0278] As seen in
[0279] Other methods of construction of the damped wavy golf club shaft are possible including but not limited to progressively welding the various viscoelastic layers, rearranging the order of layers, or adding or subtracting additional layers of viscoelastic, wavy constraining layers, or load bearing layers, as shown in
[0280] The structure shown in
[0281] If greater damping, stiffness, or strength is desired, it is possible to place intermediate “welds” by removing viscoelastic material from key areas of the laminate as shown in
[0282] The structure of the golf club shaft shown in
[0283] The structure of the golf club shaft can easily be extended to the production of baseball bats and similar devices where, for example, the overwrapping of the handle and part of or all of the barrel would provide both additional strength and resistance to splitting (for wooden bats). Additionally, the dramatic reduction in resonance amplitudes and duration after impact will reduce or eliminate the “sting” often associated with off-sweet spot hits. For metal bats or bats made from composite, this wavy composite damping concept can be added to the interior of the bat during construction or exterior during retrofitting. In this case, experience has shown that the reduction of vibrations and sting is likewise very apparent.
[0284] The preferred configuration for a wooden bat is to wrap the handle from about one inch from the butt end to a point approximately 18 inches from the butt end. The first four layers of wavy composite would be two pairs of opposing wavy composite with one pair offset from the other pair by a quarter wavelength as shown in
[0285] The preferred configuration for a hollow metal bat would be to affix the wavy composite damping and reinforcement layers to the inside of the bat by wrapping an expanding mandrel with wavy composite layers and viscoelastic in as many single or opposing pairs as desired, insert the mandrel into the barrel end of the bat, expand the mandrel, and cure the wavy composite-viscoelastic damping layers inside the metal bat. This preferably would happen in the first 18 inches of the handle (from the butt end) since this is the area where most of the vibrations that “sting” a batter occur. If reinforcement is desired, crossply wavy layers could be added to the damping layers and the mandrel inserted as previously discussed. In this manner, the reinforcing layers of wavy crossply material would be next to the metal on the inside of the bat, and the damping layers towards the interior of the hollow bat. For retrofits to existing metal bats, the handles could be wrapped as was discussed for the wooden bats.
[0286] The structure of the golf club shaft can easily be extended to the production of fishing rods by simple scaling. The benefits would be the reduction of tip resonance and magnitude of vibration which causes the lure to have an unnatural movement.
[0287] This structure can be applied to the production of highly damped gun barrels where Item
[0288] While the structure of the golf shaft shown in
[0289] These methods can be used to construct highly damped and capable boring bars for machining of deep cavities on lathes. Other machine tool components that would benefit from these methods include spindle extensions where resistance to both bending and torsional loading and reduction of resonance magnitudes is important to the prevention of chatter.
[0290] Likewise the use of these methods can easily be adapted to the production of oil drilling pipe where the damping and stiffness offered by the design shown in
[0291] The production of larger versions of the concept shown in FIGS.
[0292] The concepts illustrated in the figures and discussed above need not rely solely on the use of waveforms that are oriented with the major axis of the tube or structure. Additionally, it is possible, with allowance for the differences in diameter of the laminate and a corresponding requirement to change the wavelength of the pattern, to place one or more of the waves off-axis to the length of the mandrel, or tube. In this case careful planning and alignment of the waveforms is required to provide for matching of the opposing waveforms necessary for efficient damping performance. The waveform required for any particular layer will be a function of the effective diameter of the laminate in the structure, the previous waveform, and the off-axis angle of the laminate. This insures that the opposing waveforms in successive layers oppose each other properly throughout the thickness of the structure where the diameter and thus effective length of the off-axis orientation increases in proportion to the diameter of the laminate. The major advantage of an off-axis orientation of the wavy damping layers would be the increased efficiency, stiffness, and damping properties of the laminate for torsional loads.
[0293] The concepts illustrated in the figures and discussed above need not rely solely on the use of waveforms that are sinusoidal but may make use of any sinuous waveform that taylors the damping and stiffness of structure. As long as the minimum diameter of the curvature of the wavy composite is not excessive which would have a tendency to promote fiber breakage, the waveform may appear to have any useful sinuous shape. Additionally, all these designs contemplate the use of bi-directional composite cloth that has had the warp sinuously shaped, with the fill fibers of the same fiber type or of a different type in various percentages of fill. The advantage of fill fibers in the wavy composite pre-preg is that it prevents premature failure of the laminate at the areas of maximum fiber angle.
[0294] Other applications will be obvious to those skilled in the art.