Title:
Air Conditioner Units Having Dehumidification Features
Kind Code:
A1


Abstract:
Air conditioner units are provided. An air conditioner unit includes an outdoor heat exchanger, the outdoor heat exchanger including a coil assembly through which refrigerant is flowable, and an indoor heat exchanger, the indoor heat exchanger comprising a coil assembly through which refrigerant is flowable. The air conditioner unit further includes an auxiliary heat exchanger disposed between the outdoor heat exchanger and the indoor heat exchanger along a refrigerant flow path, the auxiliary heat exchanger including a coil assembly through which refrigerant is flowable and further including a phase change material. The air conditioner unit further includes a compressor in fluid communication with the outdoor heat exchanger, the indoor heat exchanger and the auxiliary heat exchanger, and a bulkhead disposed between the outdoor heat exchanger and the indoor heat exchanger along a transverse direction, the bulkhead defining the indoor portion and the outdoor portion.



Inventors:
Junge, Brent Alden (Evansville, IN, US)
Kempiak, Michael John (Osceola, IN, US)
Application Number:
14/988826
Publication Date:
07/06/2017
Filing Date:
01/06/2016
Assignee:
General Electric Company (Schenectady, NY, US)
International Classes:
F25B49/02; F25B13/00; F25D17/06
View Patent Images:
US Patent References:
20170234582N/A2017-08-17
20170205152N/A2017-07-20
20170176056N/A2017-06-22
20170141724N/A2017-05-18
20160178222N/A2016-06-23
9109841N/A2015-08-18
20150068245N/A2015-03-12
20130146000N/A2013-06-13
20130087316N/A2013-04-11
20110239696N/A2011-10-06
20110120131N/A2011-05-26
20100307180N/A2010-12-09
20090211732N/A2009-08-27
5678626N/A1997-10-21
4173865N/A1979-11-13



Other References:
Solutions, E. (n.d.). PureTemp technical data sheets. Retrieved from PureTemp: http://www.puretemp.com/stories/puretemp-technical-data-sheets
Advanced Cooling Technologies. (n.d.). PCM Selection. Retrieved August 29, 2017, from https://www.1-act.com/pcmselection/
Veganbaking.net. (n.d.). Fat and Oil Melt Point Temperatures. Retrieved from Veganbaking.net: http://www.veganbaking.net/articles/tools/fat-and-oil-melt-point-temperatures
Primary Examiner:
DIAZ, MIGUEL ANGEL
Attorney, Agent or Firm:
Dority & Manning, P.A. and Haier US Appliance (Solutions, Inc. Post Office Box 1449 Greenville SC 29602-1449)
Claims:
What is claimed is:

1. An air conditioner unit, comprising: an outdoor heat exchanger disposed in an outdoor portion, the outdoor heat exchanger comprising a coil assembly through which refrigerant is flowable; an indoor heat exchanger disposed in an indoor portion, the indoor heat exchanger comprising a coil assembly through which refrigerant is flowable; an auxiliary heat exchanger disposed between the outdoor heat exchanger and the indoor heat exchanger along a refrigerant flow path, the auxiliary heat exchanger comprising a coil assembly through which refrigerant is flowable and further comprising a phase change material; a compressor in fluid communication with the outdoor heat exchanger, the indoor heat exchanger and the auxiliary heat exchanger; and a bulkhead disposed between the outdoor heat exchanger and the indoor heat exchanger along a transverse direction, the bulkhead defining the indoor portion and the outdoor portion.

2. The air conditioner unit of claim 1, wherein the phase change material is sealed within an auxiliary coil assembly.

3. The air conditioner unit of claim 1, wherein the phase change material has a solid-to-liquid phase change temperature of between 45 degrees Fahrenheit and 65 degrees Fahrenheit.

4. The air conditioner unit of claim 1, wherein the phase change material is a first phase change material, and wherein the auxiliary heat exchanger further comprises a second phase change material, the second phase change material having a solid-to-liquid phase change temperature different from a solid-to-liquid phase change temperature of the first phase change material.

5. The air conditioner unit of claim 4, wherein the second phase change material has a solid-to-liquid phase change temperature of between 95 degrees Fahrenheit and 115 degrees Fahrenheit.

6. The air conditioner unit of claim 1, wherein the phase change material comprises a vegetable oil.

7. The air conditioner unit of claim 1, wherein the auxiliary heat exchanger is disposed in the indoor portion.

8. The air conditioner unit of claim 1, further comprising a vent aperture defined in the bulkhead.

9. The air conditioner unit of claim 8, further comprising a fan disposed in the outdoor portion, the fan operable to actively flow air through the vent aperture.

10. The air conditioner unit of claim 9, wherein the fan is constantly active when the air conditioner unit is operational.

11. The air conditioner unit of claim 8, wherein the auxiliary heat exchanger is aligned with vent aperture along the transverse direction.

12. The air conditioner unit of claim 1, further comprising a controller in communication with the compressor and configured to activate and deactivate the compressor.

13. An air conditioner unit, comprising: an outdoor heat exchanger disposed in an outdoor portion, the outdoor heat exchanger comprising a coil assembly through which refrigerant is flowable; an indoor heat exchanger disposed in an indoor portion, the indoor heat exchanger comprising a coil assembly through which refrigerant is flowable; an auxiliary heat exchanger disposed between the outdoor heat exchanger and the indoor heat exchanger along a refrigerant flow path, the auxiliary heat exchanger comprising a coil assembly through which refrigerant is flowable and further comprising a phase change material sealed within an auxiliary coil assembly, the phase change material having a solid-to-liquid phase change temperature of between 45 degrees Fahrenheit and 65 degrees Fahrenheit; a compressor in fluid communication with the outdoor heat exchanger, the indoor heat exchanger and the auxiliary heat exchanger; and a bulkhead disposed between the outdoor heat exchanger and the indoor heat exchanger along a transverse direction, the bulkhead defining the indoor portion and the outdoor portion.

14. The air conditioner unit of claim 13, wherein the phase change material is a first phase change material, and wherein the auxiliary heat exchanger further comprises a second phase change material, the second phase change material having a solid-to-liquid phase change temperature different from a solid-to-liquid phase change temperature of the first phase change material.

15. The air conditioner unit of claim 14, wherein the second phase change material has a solid-to-liquid phase change temperature of between 95 degrees Fahrenheit and 115 degrees Fahrenheit.

16. The air conditioner unit of claim 13, wherein the phase change material comprises a vegetable oil.

17. The air conditioner unit of claim 13, wherein the auxiliary heat exchanger is disposed in the indoor portion.

18. The air conditioner unit of claim 13, further comprising a vent aperture defined in the bulkhead.

19. The air conditioner unit of claim 18, further comprising a fan disposed in the outdoor portion, the fan operable to actively flow air through the vent aperture.

20. The air conditioner unit of claim 19, wherein the fan is constantly active when the air conditioner unit is operational.

Description:

FIELD OF THE INVENTION

The present disclosure relates generally to air conditioner units, and more particularly to air conditioner units which include improved dehumidification features.

BACKGROUND OF THE INVENTION

Air conditioner units are conventionally utilized to adjust the temperature within structures such as dwellings and office buildings. In particular, one-unit type room air conditioner units may be utilized to adjust the temperature in, for example, a single room or group of rooms of a structure. A typical such air conditioner unit includes an indoor portion and an outdoor portion. The indoor portion is generally located indoors, and the outdoor portion is generally located outdoors. Accordingly, the air conditioner unit generally extends through a wall, window, etc. of the structure.

In the outdoor portion of a conventional air conditioner unit, a compressor that operates a refrigerating cycle is provided. At the back of the outdoor portion, an outdoor heat exchanger connected to the compressor is disposed, and facing the outdoor heat exchanger, an outdoor fan for cooling the outdoor heat exchanger is provided. At the front of the indoor portion of a conventional air conditioner unit, an air inlet is provided, and above the air inlet, an air outlet is provided. A blower fan and a heating unit may additionally be provided in the indoor portion. Between the blower fan and heating unit and the air inlet, an indoor heat exchanger connected to the compressor is provided.

When cooling operation starts, the compressor is driven to operate the refrigerating cycle, with the indoor heat exchanger serving as a cold-side evaporator of the refrigerating cycle, and the outdoor heat exchanger as a hot-side condenser. The outdoor heat exchanger is cooled by the outdoor fan to dissipate heat. As the blower fan is driven, the air inside the room flows through the air inlet into the air passage, and the air has its temperature lowered by heat exchange with the indoor heat exchanger, and is then blown into the room through the air outlet. In this way, the room is cooled.

When heating operation starts, the compressor may be driven to operate a heat pump cycle, with the indoor heat exchanger serving as a hot-side condenser and the outdoor heat exchanger as a cold-side evaporator. The heating unit may additionally be operated to raise the temperature of air in the air passage. As the blower fan is driven, the air inside the room flows through the air inlet into the air passage, and the air has its temperature raised by heat exchange with the indoor heat exchanger, and is then blown into the room through the air outlet. In this way, the room is heated.

Further, conventional air conditioner units include a bulkhead which is positioned between the indoor portion and outdoor portion, and thus generally separates the components within the indoor portion from the components in the outdoor portion. Various components may additionally be connected to the bulkhead, such as the blower fan and heating unit.

In some cases, it may be desirable to allow outdoor air through the bulkhead into a room into which the air conditioner unit extends. Accordingly, many bulkheads include vent apertures for allowing such airflow. However, issues may occur when the outdoor air being flowed through the vent aperture is, for example, at a relatively high humidity level and/or relatively high temperature level. Such air may, for example, cause discomfort to a user of the air conditioner appliance.

To resolve this humidity issue, some air conditioner units include separate systems for dehumidifying air that is flowed through such vent apertures. However, such systems are typically costly and complex, and can reduce the efficiency of the air conditioner unit.

Accordingly, improved air conditioner units are desired. In particular, air conditioner units which can facilitate dehumidification while remaining relatively simple and inexpensive, and without requiring separate dehumidification systems, would be advantageous.

BRIEF DESCRIPTION OF THE INVENTION

Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.

In accordance with one embodiment, an air conditioner unit is provided. The air conditioner unit includes an outdoor heat exchanger disposed in an outdoor portion, the outdoor heat exchanger including a coil assembly through which refrigerant is flowable. The air conditioner unit further includes an indoor heat exchanger disposed in an indoor portion, the indoor heat exchanger comprising a coil assembly through which refrigerant is flowable. The air conditioner unit further includes an auxiliary heat exchanger disposed between the outdoor heat exchanger and the indoor heat exchanger along a refrigerant flow path, the auxiliary heat exchanger including a coil assembly through which refrigerant is flowable and further including a phase change material. The air conditioner unit further includes a compressor in fluid communication with the outdoor heat exchanger, the indoor heat exchanger and the auxiliary heat exchanger, and a bulkhead disposed between the outdoor heat exchanger and the indoor heat exchanger along a transverse direction, the bulkhead defining the indoor portion and the outdoor portion.

In accordance with another embodiment, an air conditioner unit is provided. The air conditioner unit includes an outdoor heat exchanger disposed in an outdoor portion, the outdoor heat exchanger including a coil assembly through which refrigerant is flowable. The air conditioner unit further includes an indoor heat exchanger disposed in an indoor portion, the indoor heat exchanger comprising a coil assembly through which refrigerant is flowable. The air conditioner unit further includes an auxiliary heat exchanger disposed between the outdoor heat exchanger and the indoor heat exchanger along a refrigerant flow path, the auxiliary heat exchanger including a coil assembly through which refrigerant is flowable and further including a phase change material sealed within an auxiliary coil assembly, the phase change material having a solid-to-liquid phase change temperature of between 45 degrees Fahrenheit and 65 degrees Fahrenheit. The air conditioner unit further includes a compressor in fluid communication with the outdoor heat exchanger, the indoor heat exchanger and the auxiliary heat exchanger, and a bulkhead disposed between the outdoor heat exchanger and the indoor heat exchanger along a transverse direction, the bulkhead defining the indoor portion and the outdoor portion.

These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:

FIG. 1 provides a perspective view of an air conditioner unit, with a room front exploded from a remainder of the air conditioner unit for illustrative purposes, in accordance with one embodiment of the present disclosure;

FIG. 2 is a perspective view of components of an indoor portion of an air conditioner unit in accordance with one embodiment of the present disclosure;

FIG. 3 is a rear perspective view of a bulkhead assembly in accordance with one embodiment of the present disclosure;

FIG. 4 is a perspective section view of components of an air conditioner unit in accordance with one embodiment of the present disclosure;

FIG. 5 is a schematic diagram of a thermodynamic assembly for an air conditioner unit in accordance with one embodiment of the present disclosure; and

FIG. 6 is a cross-sectional view of an auxiliary heat exchanger and fan in accordance with one embodiment of the present disclosure.

DETAILED DESCRIPTION OF THE INVENTION

Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.

Referring now to FIG. 1, an air conditioner unit 10 is provided. The air conditioner unit 10 is a one-unit type air conditioner, also conventionally referred to as a room air conditioner. The unit 10 includes an indoor portion 12 and an outdoor portion 14, and generally defines a vertical direction V, a lateral direction L, and a transverse direction T. Each direction V, L, T is perpendicular to each other, such that an orthogonal coordinate system is generally defined.

A housing 20 of the unit 10 may contain various other components of the unit 10. Housing 20 may include, for example, a rear grill 22 and a room front 24 which may be spaced apart along the transverse direction by a wall sleeve 26. The rear grill 22 may be part of the outdoor portion 14, which the room front 24 is part of the indoor portion 12. Components of the outdoor portion 14, such as an outdoor heat exchanger 30, outdoor fan 36 (see FIG. 5), and compressor 32 may be housed within the wall sleeve 26. A casing 34 may additionally enclose the outdoor fan, as shown.

Referring now also to FIG. 2, indoor portion 12 may include, for example, an indoor heat exchanger 40, a blower fan 42, and a heating unit 44. These components may, for example, be housed behind the room front 24. Additionally, a bulkhead 46 may generally support and/or house various other components or portions thereof of the indoor portion 12, such as the blower fan 42 and the heating unit 44. Bulkhead 46 may generally separate and define the indoor portion 12 and outdoor portion 14.

Outdoor and indoor heat exchangers 30, 40 may be components of a sealed thermodynamic assembly 100 which may alternately be operated as a refrigeration assembly (and thus perform a refrigeration cycle) or a heat pump (and thus perform a heat pump cycle). The assembly may, for example, further include compressor 32 and an expansion valve 33 (see FIG. 5), both of which may be in fluid communication with the heat exchangers 30, 40 to flow refrigerant therethrough as is generally understood. A reversing valve 35 may additionally be provided for converting the assembly 100 between a cooling mode and a heating mode. When the assembly is operating in a cooling mode and thus performs a refrigeration cycle, the indoor heat exchanger 40 acts as an evaporator and the outdoor heat exchanger 30 acts as a condenser. When the assembly is operating in a heating mode and thus performs a heat pump cycle, the indoor heat exchanger 40 acts as a condenser and the outdoor heat exchanger 30 acts as an evaporator. The outdoor and indoor heat exchangers 30, 40 may each include coil assemblies, as discussed herein, through which a refrigerant may flow for heat exchange purposes, as is generally understood.

Bulkhead 46 may include various peripheral surfaces that define an interior 50 thereof. For example, and additionally referring to FIG. 3, bulkhead 46 may include a first sidewall 52 and a second sidewall 54 which are spaced apart from each other along the lateral direction L. A rear wall 56 may extend laterally between the first sidewall 52 and second sidewall 54. The rear wall 56 may, for example, include an upper portion 60 and a lower portion 62. Upper portion 60 may for example have a generally curvilinear cross-sectional shape, and may accommodate a portion of the blower fan 42 when blower fan 42 is housed within the interior 50. Lower portion 62 may have a generally linear cross-sectional shape, and may be positioned below upper portion 60 along the vertical direction V. Rear wall 56 may further include an indoor facing surface 64 and an opposing outdoor facing surface. The indoor facing surface 64 may face the interior 50 and indoor portion 12, and the outdoor facing surface 66 may face the outdoor portion 14.

Bulkhead 46 may additionally extend between a top end 61 and a bottom end 63 along vertical axis V. Upper portion 60 may, for example, include top end 61, while lower portion 62 may, for example, include bottom end 63.

Bulkhead 46 may additionally include, for example, an air diverter 68, which may extend between the sidewalls 52, 54 along the lateral direction L and which may flow air therethrough.

In exemplary embodiments, blower fan 42 may be a tangential fan. Alternatively, however, any suitable fan type may be utilized. Blower fan 42 may include a blade assembly 70 and a motor 72. The blade assembly 70, which may include one or more blades disposed within a fan housing 74, may be disposed at least partially within the interior 50 of the bulkhead 46, such as within the upper portion 60. As shown, blade assembly 70 may for example extend along the lateral direction L between the first sidewall 52 and the second sidewall 54. The motor 72 may be connected to the blade assembly 70, such as through the housing 74 to the blades via a shaft. Operation of the motor 72 may rotate the blades, thus generally operating the blower fan 42. Further, in exemplary embodiments, motor 72 may be disposed exterior to the bulkhead 46. Accordingly, the shaft may for example extend through one of the sidewalls 52, 54 to connect the motor 72 and blade assembly 70.

Heating unit 44 in exemplary embodiments includes one or more heater banks 80. Each heater bank 80 may be operated as desired to produce heat. In some embodiments as shown, three heater banks 80 may be utilized. Alternatively, however, any suitable number of heater banks 80 may be utilized. Each heater bank 80 may further include at least one heater coil or coil pass 82, such as in exemplary embodiments two heater coils or coil passes 82. Alternatively, other suitable heating elements may be utilized.

The operation of air conditioner unit 10 including compressor 32 (and thus the thermodynamic assembly 100 generally) blower fan 42, heating unit 44, and other suitable components may be controlled by a processing device such as a controller 85. Controller 85 may be in communication (via for example a suitable wired or wireless connection) to such components of the air conditioner unit 10. By way of example, the controller 85 may include a memory and one or more processing devices such as microprocessors, CPUs or the like, such as general or special purpose microprocessors operable to execute programming instructions or micro-control code associated with operation of unit 10. The memory may represent random access memory such as DRAM, or read only memory such as ROM or FLASH. In one embodiment, the processor executes programming instructions stored in memory. The memory may be a separate component from the processor or may be included onboard within the processor.

Unit 10 may additionally include a control panel 87 and one or more user inputs 89, which may be included in control panel 87. The user inputs 89 may be in communication with the controller 85. A user of the unit 10 may interact with the user inputs 89 to operate the unit 10, and user commands may be transmitted between the user inputs 89 and controller 85 to facilitate operation of the unit 10 based on such user commands. A display 88 may additionally be provided in the control panel 87, and may be in communication with the controller 85. Display 88 may, for example be a touchscreen or other text-readable display screen, or alternatively may simply be a light that can be activated and deactivated as required to provide an indication of, for example, an event or setting for the unit.

Referring to FIGS. 3 and 4, a vent aperture 90 may be defined in the rear wall 56 of bulkhead 46. Vent aperture 90 may allow air flow therethrough between the indoor portion 12 and outdoor portion 14, and may be utilized in an installed air conditioner unit 10 to allow outdoor air to flow therethrough into the indoor portion 12.

In some embodiments, a fan 110 may be provided for flowing outdoor air through the vent aperture 90. Fan 110 may, when active, be operable to actively flow outdoor air through the vent aperture 90. Fan 110 may, in some embodiments as illustrated, be disposed within outdoor portion 14. Additionally or alternatively, fan 110 may be partially or wholly disposed in vent aperture 90 or partially or wholly disposed in indoor portion 12. Accordingly, outdoor air flow may be flowed past fan 110 into and through vent aperture 90.

Referring now to FIGS. 1 and 4, unit 10 may further include a temperature sensor 120 and/or a humidity sensor 122. The temperature sensor 120 and the humidity sensor 122 may, for example, be disposed within the outdoor portion 14, and may be configured to measure the temperature and relative humidity, respectively, of outdoor air. Any suitable temperature sensor and humidity sensor may be utilized in accordance with the present disclosure. As discussed herein, temperature sensor 120 and humidity sensor 122 may be utilized to control operation of the thermodynamic assembly 100. Accordingly, temperature sensor 120 and humidity sensor 122 may be in communication with the main thermodynamic assembly 100, such as through controller 85.

As discussed, in some cases it may be desirable to treat air being flowed into the indoor portion 12. For example, outdoor air which has a relatively high humidity level and/or temperature level may require treating, such as to reduce the humidity level and/or temperature level of the air. In particular, it may be desirable to continue to treat outdoor air to reduce the humidity level thereof when the thermodynamic assembly 100 (and specifically the compressor 32 thereof) is not active but the outdoor air continues to be flowed into the indoor portion 12 (i.e. through the vent aperture 90). Accordingly, units 10 in accordance with the present disclosure may further include features and apparatus for facilitating improved dehumidification operation as desired. Specifically, unit 10, and the thermodynamic assembly 100 thereof, may include an auxiliary heat exchanger 110 which includes features for facilitating continued treatment of outdoor air, such as for dehumidification purposes, when the compressor 32 is inactive. Accordingly, units 10 in accordance with the present disclosure provide improved dehumidification capabilities while negate any need for any separate dehumidification systems in units 10. Further, the cost and complexity of the unit 10 is reduced, while providing desired dehumidification.

Referring now to FIGS. 1, 4, 5 and 6, outdoor heat exchanger 30 and indoor heat exchanger 40 may each include a coil assembly 102, 104, respectively. The coil assemblies 102, 104 may each include coils (also known as flow conduits, passages, tubes, etc.) through which refrigerant flows for heat exchange purposes, as is generally understood. As illustrated, thermodynamic assembly 100 may additionally include an auxiliary heat exchanger 110. The auxiliary heat exchanger 110 may include a coil assembly 112, which may additionally include coils (also known as flow conduits, passages, tubes, etc.) through which refrigerant flows for heat exchange purposes. The auxiliary heat exchanger 110 may be disposed between the outdoor heat exchanger 30 and the indoor heat exchanger 40 along a refrigerant flow path. The refrigerant flow path is the flow path of refrigerant through thermodynamic system 100 during operation of the system in a heating mode or cooling mode.

Auxiliary heat exchanger 110 may, similar the indoor heat exchanger 40, act as an evaporator in the cooling mode and a condenser in the heating mode. For example, in the cooling mode, the auxiliary heat exchanger 110 may be downstream of the outdoor heat exchanger 30 (and the expansion valve 33) and upstream of the indoor heat exchanger 40 along the refrigerant flow path. Accordingly, refrigerant may flow through the coil assembly 102, then through the expansion valve 33, then through the coil assembly 112, and then through the coil assembly 104. The refrigerant may then further flow through the compressor 32 and back to and through the coil assembly 102. In the heating mode, the auxiliary heat exchanger 110 may be upstream of the outdoor heat exchanger 30 (and expansion valve 33) and downstream of the indoor heat exchanger 40 along the refrigerant flow path. Accordingly, refrigerant may flow through the coil assembly 104, then through the coil assembly 112, then through the expansion valve 33, and then through the coil assembly 102. The refrigerant may then further flow through the compressor 32 and back to and through the coil assembly 104.

Auxiliary heat exchanger 110 may further include one or more phase change materials. For example, auxiliary heat exchanger 110 may include a first phase change material 114. A phase change material in accordance with the present disclosure is a substance with a relatively high heat of fusion which, melting and solidifying at a certain temperature, is capable of storing and releasing energy. The first phase change material 114 may, for example, be sealed within a first auxiliary coil assembly 116, as illustrated. The auxiliary coil assembly 116 may be separate from the coil assembly 112, such that the first phase change material 114 is separate and independent from the refrigerant.

The first phase change material 114 may advantageously facilitate improved treatment of outdoor air, and in particular continued dehumidification of outdoor air when the compressor 32 is not active. For example, operation of the compressor 32 and thus the thermodynamic assembly 100 in the cooling mode may, in addition to cooling air flowing through the heat exchangers 40, 110, additionally cool the phase change material 114 and cause the phase change material 114 to solidify. When the compressor is deactivated, the cooled and solidified phase change material 114 may continue to treat outdoor air flowed therepast, as discussed herein, thus advantageously cooling and/or dehumidifying the outdoor air. Such treatment may eventually cause the phase change material 114 to change from a solid to a liquid, but subsequent activation of the compressor 32 and operation of the assembly 100 may again cool the phase change material 114 for subsequent use.

In exemplary embodiments, phase change material 114 may include a vegetable oil. Further, in exemplary embodiments, phase change material 114 may have a solid-to-liquid phase change temperature of between 45 degrees Fahrenheit and 65 degrees Fahrenheit, such as between 50 degrees Fahrenheit and 60 degrees Fahrenheit. The solid-to-liquid phase change temperature is the temperature at which the solid-to-liquid or liquid-to-solid transition occurs for the phase change material.

In some embodiments, auxiliary heat exchanger 110 may additionally include a second phase change material 118. The second phase change material 118 may have a solid-to-liquid phase change temperature that is different from the solid-to-liquid phase change temperature of the first phase change material 114. The second phase change material 118 may, for example, be sealed within a second auxiliary coil assembly 119, as illustrated. The auxiliary coil assembly 119 may be separate from the coil assembly 112 and separate from the auxiliary coil assembly 116, such that the second phase change material 114 is separate and independent from the refrigerant and the first phase change material 114.

The second phase change material 118 may advantageously further facilitate improved treatment of outdoor air, and in particular continued heating of outdoor air when the compressor 32 is not active. For example, operation of the compressor 32 and thus the thermodynamic assembly 100 in the heating mode may, in addition to heating air flowing through the heat exchangers 40, 110, additionally heat the phase change material 118 and cause the phase change material 118 to liquify. When the compressor is deactivated, the heated and liquified phase change material 118 may continue to treat outdoor air flowed therepast, as discussed herein, thus advantageously heating the outdoor air. Such treatment may eventually cause the phase change material 118 to change from a liquid to a solid, but subsequent activation of the compressor 32 and operation of the assembly 100 may again heat the phase change material 118 for subsequent use.

In exemplary embodiments, phase change material 118 may include a vegetable oil. Further, in exemplary embodiments, phase change material 118 may have a solid-to-liquid phase change temperature of between 95 degrees Fahrenheit and 115 degrees Fahrenheit, such as between 100 degrees Fahrenheit and 110 degrees Fahrenheit.

In exemplary embodiments as illustrated, auxiliary heat exchanger 110 may be disposed in the indoor portion 12. Further, as illustrated, auxiliary heat exchanger 110 in exemplary embodiments may be aligned with the vent aperture 90 along the transverse direction T. Further, fan 92 may be aligned with the vent aperture 90 (and auxiliary heat exchanger 110) along the transverse direction T. Accordingly, vent aperture 90 may be aligned between the fan 92 and auxiliary heat exchanger 110 along the transverse direction T. Such alignment advantageously facilitates the flow of outdoor air through fan 92 and aperture 90 to and through the auxiliary heat exchanger 110, thus resulting in treatment of the outdoor air as discussed herein.

As discussed, air conditioner unit 10 may include a controller 85. Controller 85 may additionally be in communication with temperature sensor 120 and humidity sensor 122 as well as fan 92. Controller 85 may, for example, selectively activate and deactivate the compressor 32. Such activation and deactivation may, for example, be based on outdoor air temperature and/or humidity values, as measured for example by the temperature sensor 120 and/or humidity sensor 122. For example, the controller 85 may activate or deactivate the compressor 32 when a temperature value or humidity value exceeds or falls below a predetermined threshold temperature or humidity value.

Additionally, controller 85 may be configured to operate fan 92. In exemplary embodiments, fan 92 may be constantly active when the air conditioner unit 10 is operational, i.e. when the unit 10 is on and the compressor 32 is either active or inactive. Such constant operation of the fan 92 may facilitate a constant supply of outdoor air into the indoor portion 12 and thus into a room in which the unit 10 is installed. Activation may heat or cool the air flowing from the outdoor portion 14 into the indoor portion 12, depending on whether the unit 10 (and thermodynamic assembly 10 thereof) is in a cooling mode or heating mode.

Controller 85 may further, based on instructions transmitted thereby to the compressor 32 and thermodynamic assembly 100 generally, sense whether current operation is in a heating mode or a cooling mode. The current mode of operation may, for example, determine the manner in which various subsequent steps are carried out. Notably, the thermodynamic assembly 100 being generally in a particular mode does not require that the assembly 100 generally is active. Rather, being in a particular mode may require only that the thermodynamic assembly is configured for activation in that particular mode and/or was active in that particular mode immediately prior to such determination by controller 85.

Notably, the predetermined thresholds as discussed herein may, in some embodiments, be empirically determined and programmed into controller 85. Additionally or alternatively, various predetermined thresholds as discussed herein may be user adjustable, such as via user interaction with unit 10 via user inputs 89.

This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.