Title:
TURBOMACHINE INCLUDING A NON-DESTRUCTIVE FASTENER ELEMENT FOR JOINING COMPONENTS
Kind Code:
A1


Abstract:
A turbomachine includes a first component including a first surface and a second surface spaced from the first surface by a gap. One of the first and second surfaces includes a non-destructive fastener element receiving opening and a wire retention feature. A second component extends into the gap between the first and second surfaces. A non-destructive fastener element is detachably mounted to the first component. The non-destructive fastener element includes a post member and a wire member operatively connected to the post member. The post member extends into the non-destructive fastener element receiving opening preventing removal of the second component and the wire member engages with the wire retention feature to secure the non-destructive fastener element to the first component.



Inventors:
Dimmick III, John Herbert (Greenville, SC, US)
Application Number:
14/026525
Publication Date:
03/19/2015
Filing Date:
09/13/2013
Assignee:
General Electric Company (Schenectady, NY, US)
Primary Class:
Other Classes:
416/204R
International Classes:
F01D5/32
View Patent Images:
Related US Applications:
20090162200ROTOR BLADESJune, 2009Tibbott et al.
20090013532AIRFOILS FOR USE IN ROTARY MACHINES AND METHOD FOR FABRICATING SAMEJanuary, 2009Wood et al.
20100003134Wind and wave power generationJanuary, 2010Edwards et al.
20090053059Ceiling fan and manufacturing method thereofFebruary, 2009Lung-fa
20090001730VERTICAL AXIS WINDMILL WITH WINGLETTED AIR-TILTABLE BLADESJanuary, 2009Kuo et al.
20100040478Cooled Airfoils and Gas Turbine Engine Systems Involving Such AirfoilsFebruary, 2010Abdel-messeh et al.
20100028160Compressor blade leading edge shim and related methodFebruary, 2010Schaeffer et al.
20080219853Multi-alloy turbine rotors and methods of manufacturing the rotorsSeptember, 2008Baker et al.
20080063523Rotor For A Flotation MachineMarch, 2008Niitti
20090123288METAL IMPELLER BLADE MANUFACTURED BY MOLDING AND METHOD OF MANUFACTURING THE IMPELLER BLADEMay, 2009Baumas et al.
20080050245TURBOMACHINE ROTOR BLADEFebruary, 2008Cloarec



Primary Examiner:
LEGENDRE, CHRISTOPHER RYAN
Attorney, Agent or Firm:
General Electric Company (GE Global Patent Operation 901 Main Avenue 3rd Floor Norwalk CT 06851)
Claims:
What is claimed is:

1. A turbomachine comprising: a first component including a first surface and a second surface spaced from the first surface by a gap, one of the first and second surfaces including a non-destructive fastener element receiving opening and a wire retention feature; a second component extending into the gap between the first and second surfaces; and a non-destructive fastener element detachably mounted to the first component, the non-destructive fastener element including a post member and a wire member operatively connected to the post member, the post member extending into the non-destructive fastener element receiving opening preventing removal of the second component and the wire member engaging with the wire retention feature to secure the non-destructive fastener element to the first component.

2. The turbomachine according to claim 1, wherein the wire member extends through the post member.

3. The turbomachine according to claim 1, wherein the post member includes a base portion and a post portion that projects substantially perpendicularly from the base portion, the post member including at least one wire receiving passage that extends through the base portion substantially perpendicularly relative to the post portion.

4. The turbomachine according to claim 3, wherein the base portion includes an access port extending through the base portion and bisecting the at least one wire receiving passage, the access port being configured and disposed to receive a wire member cutting tool.

5. The turbomachine according to claim 3, wherein the wire member extends from a first end to a second end through an intermediate portion, the wire member extending through the at least one wire receiving passage.

6. The turbomachine according to claim 5, wherein the first component includes another wire retention feature arranged adjacent to the non-destructive fastener element receiving opening, the wire retaining feature snap-fittingly receiving the first end or the wire member and the another fastener retaining feature snap-fittingly receiving the second end of the wire member.

7. The turbomachine according to claim 5, wherein the at least one wire receiving passage includes a first wire receiving passage and a second wire receiving passage spaced from the first wire receiving passage.

8. The turbomachine according to claim 7, wherein the first end of the wire member extends through the first wire receiving passage and the second end of the wire member extends through the second wire receiving passage, the intermediate portion forming a loop.

9. The turbomachine according to claim 8, wherein the wire retention feature comprises a projection extending from the first surface adjacent the non-destructive fastener element receiving opening, the loop extending about the projection to retain the non-destructive fastener element to the first component.

10. A turbomachine comprising: a rotor including a radial outer edge having a blade mounting region provided with a plurality of blade mounts disposed circumferentially about the radial outer edge, a first groove defining member extending about the radial outer edge and a second groove defining member extending circumferentially about the rotor radially inwardly of the plurality of blade mounts; a plurality of blades mounted to the rotor, each of the plurality of blades including a retaining component and a blade mounting portion, the retaining component including a first surface and the blade mounting portion including a second surface spaced from the first surface by a gap, one of the first and second surfaces including a non-destructive fastener element receiving opening and a wire retention feature; a blade retaining element received by the first and second groove defining members and extending into the gap between the first and second surfaces; and a non-destructive fastener element detachably mounted to the segmented cover component, the non-destructive fastener element including a post member and a wire member operatively connected to the post member, the post member extending into the non-destructive fastener element receiving opening preventing removal of the segmented cover component and the wire member engaging with the wire retention feature to secure the non-destructive fastener element to the blade retaining element.

11. The turbomachine according to claim 10, wherein the wire member extends through the post member.

12. The turbomachine according to claim 10, wherein the post member includes a base portion and a post portion that projects substantially perpendicularly from the base portion, the post member including at least one wire receiving passage that extends through the base portion substantially perpendicularly relative to the post portion.

13. The turbomachine according to claim 12, wherein the base portion includes an access port extending through the base portion and bisecting the at least one wire receiving passage, the access port being configured and disposed to receive a wire member cutting tool.

14. The turbomachine according to claim 12, wherein the wire member extends from a first end to a second end through an intermediate portion, the wire member extending through the at least one wire receiving passage.

15. The turbomachine according to claim 14, wherein the retaining component includes another wire retaining feature arranged adjacent to the non-destructive fastener element receiving opening, the wire retaining feature snap-fittingly first end of the wire member and the another wire retaining feature snap-fittingly receiving the second end of the wire member.

16. The turbomachine according to claim 14, wherein the at least one wire receiving passage includes a first wire receiving passage and a second wire receiving passage spaced from the first wire receiving passage.

17. The turbomachine according to claim 16, wherein the first end of the wire member extends through the first wire receiving passage and the second end of the wire member extends through the second wire receiving passage, the intermediate portion forming a loop.

18. The turbomachine according to claim 17, wherein the wire retention feature comprises a projection extending from the first surface adjacent the non-destructive fastener element receiving opening, the loop extending about the projection to retain the non-destructive fastener element to the blade retaining element.

19. The turbomachine according to claim 10, wherein the blade retaining component comprises a segmented cover component extending across the blade mounting region, the segmented cover component being configured and disposed to reduce leakage between the corresponding ones of the plurality of blades and the rotor.

20. The turbomachine according to claim 10, wherein the rotor defines a turbine rotor arranged in a turbine portion of the turbomachine.

Description:

BACKGROUND OF THE INVENTION

The subject matter disclosed herein relates to the art of turbomachines and, more particularly, to a turbomachine including a non-destructive fastener element for joining components.

Gas turbomachines include a compressor portion linked to a turbine portion through a common compressor/turbine shaft and a combustor assembly. An inlet airflow is passed through an air intake toward the compressor portion. In the compressor portion, the inlet airflow is compressed through a number of sequential stages toward the combustor assembly. In the combustor assembly, the compressed airflow mixes with a fuel to form a combustible mixture. The combustible mixture is combusted in the combustor assembly to form hot gases. The hot gases are guided to the turbine portion through a transition piece. The hot gases expand through a number of turbine stages acting upon turbine buckets mounted on wheels to create work that is output, for example, to power a generator, a pump, or to provide power to a vehicle.

Each turbine stage may include a cover plate disposed about a central rotor that supports the buckets. The cover plates may reduce the effects of the hot gases on the central rotor and the buckets. Some cover plates may be shoe-horned into place about the central rotor. Other cover plates rely on in-field customization before mounting to the central rotor. Once installed, a fastener element, typically in the form of a pin, is passed through a base portion of each bucket to secure the cover plate to the rotor. The pin is often peened or staked in place to the base of the bucket. Removal of the pin may be both time and labor intensive resulting in undesirable down time for the turbomachine.

BRIEF DESCRIPTION OF THE INVENTION

According to one aspect of an exemplary embodiment, a turbomachine includes a first component including a first surface and a second surface spaced from the first surface by a gap. One of the first and second surfaces includes a non-destructive fastener element receiving opening and a wire retention feature. A second component extends into the gap between the first and second surfaces. A non-destructive fastener element is detachably mounted to the first component. The non-destructive fastener element includes a post member and a wire member operatively connected to the post member. The post member extends into the non-destructive fastener element receiving opening preventing removal of the second component and the wire member engages with the wire retention feature to secure the non-destructive fastener element to the first component.

According to another aspect of the exemplary embodiment, a turbomachine includes a rotor including a radial outer edge having a blade mounting region provided with a plurality of blade mounts disposed circumferentially about the radial outer edge, a first groove defining member extending about the radial outer edge and a second groove defining member extending circumferentially about the rotor radially inwardly of the plurality of blade mounts. A plurality of blades is mounted to the rotor. Each of the plurality of blades includes a retaining component and a blade mounting portion. The retaining component includes a first surface and the blade mounting portion includes a second surface spaced from the first surface by a gap. One of the first and second surfaces includes a non-destructive fastener element receiving opening and a wire retention feature. A blade retaining element is received by the first and second groove defining members and extends into the gap between the first and second surfaces. A non-destructive fastener element is detachably mounted to the retaining component. The non-destructive fastener element includes a post member and a wire member operatively connected to the post member. The post member extends into the non-destructive fastener element receiving opening preventing removal of the blade retaining component and the wire member engages with the wire retention feature to secure the non-destructive fastener element to the retaining component.

These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.

BRIEF DESCRIPTION OF DRAWINGS

The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:

FIG. 1 is a block diagram illustrating a turbomachine system including a turbomachine provided with a non-destructive fastener element, in accordance with an exemplary embodiment;

FIG. 2 is a partial cross-sectional view of a turbine portion having a turbine rotor having a segmented cover component joined to a blade through the non-destructive fastener element of FIG. 1;

FIG. 3 is a partial perspective view of the turbine rotor of FIG. 2;

FIG. 4 is a partial perspective view of a segmented cover component joined to a retaining component of the blade with a non-destructive fastener element, in accordance with an aspect of the exemplary embodiment;

FIG. 5 is a partial cross-sectional side view of the segmented cover component and retaining component of FIG. 4;

FIG. 6 is a partial perspective view of a non-destructive fastener element joining a segmented cover component to a retaining component, in accordance with another aspect of the exemplary embodiment;

FIG. 7 is a perspective view of the segmented cover component positioned at the retaining component of FIG. 6;

FIG. 8 is a perspective view of a non-destructive fastener element in accordance with another aspect of the exemplary embodiment;

FIG. 9 is a partial perspective view of the non-destructive fastener element of FIG. 7 joining the segmented cover component to the retaining component of FIG. 6;

FIG. 10 is a partial perspective view of a non-destructive fastener element joining the segmented cover component to a retaining component, in accordance with yet another aspect of the exemplary embodiment;

FIG. 11 is a perspective view of the segmented cover component positioned at the retaining component of FIG. 10;

FIG. 12 is a perspective view of a non-destructive fastener element, in accordance with yet another aspect of the exemplary embodiment;

FIG. 13 is a partial cross-sectional side view of the segmented cover component and retaining component of FIG. 12;

FIG. 14 is a perspective view of a non-destructive fastener element, in accordance with still yet another aspect of the exemplary embodiment;

FIG. 15 is a partial cross-sectional view of the non-destructive fastener element of FIG. 14 securing a segmented cover component;

FIG. 16 is a perspective view of a non-destructive fastener element, in accordance with still another aspect of the exemplary embodiment;

FIG. 17 is a partial cross-sectional view of the non-destructive fastener element of FIG. 16 securing a segmented cover component;

FIG. 18 is a perspective view of a non-destructive fastener element, in accordance with yet another aspect of the exemplary embodiment; and

FIG. 19 is a partial cross-sectional view of the non-destructive fastener element of FIG. 18 securing a segmented cover component.

The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.

DETAILED DESCRIPTION OF THE INVENTION

A turbomachine, in accordance with an exemplary embodiment, is indicated generally at 2 in FIG. 1. Turbomachine 2 includes a compressor portion 4 operatively connected to a turbine portion 6 through a combustor assembly 8. Combustor assembly 8 includes one or more combustors 10 that may be arranged in a can-annular array. Compression portion 4 is also mechanically linked to turbine portion 6 through a common compressor/turbine shaft 12. Compressor portion 4 includes an inlet 14 that may receive an ambient airflow. The airflow passes through, and is compressed by, compressor 4. A portion of the airflow passes to combustor assembly 8 to mix with fuel to form a combustible mixture. Another portion of the airflow passing from compressor portion 4 passes into turbine portion 6 for cooling. The combustible mixture is combusted in combustor assembly 8 and passed into turbine portion 6 as hot gases. The hot gases expand through turbine portion 6 and exit through an exhaust portion 16. Turbine portion 6 converts thermal energy from the hot gases to mechanical energy used to power a load 18. Load 18 may be a generator, a pump or other driven device connected to shaft 12.

Turbine portion 6 includes a turbine rotor 30 that supports a plurality of buckets or blade components 33. Blade components 33, when exposed to the hot gases flowing through turbine portion 6, cause turbine rotor 30 to rotate. At this point, it should be understood that the number of turbine rotors may vary. As shown in FIGS. 2 and 3, turbine rotor 30 extends from a central hub 37 to a radial outer edge 39. Radial outer edge 39 includes a blade mounting region 41 having a plurality of blade mounts 43 shown in the form of dovetail slots 45. Turbine rotor 30 includes a plurality of first groove defining members, one of which is indicated at 48 forming a first groove 50 arranged about radial outer edge 39 and a second groove defining member 54 defining a second groove 56 arranged radially inwardly of blade mounting region 41.

Each of the plurality of blade components 33 is coupled to turbine rotor 30 at corresponding ones of the plurality of blade mounts 43. Each blade component 33 includes an airfoil portion 59 that extends from a blade mounting portion 61. Blade mounting portion 61 is shown in the form of a dovetail member 63 that is received by dovetail slot 45. Each blade component 33 also includes at least one retaining component 66 having an outer surface 69 that is generally parallel to, and spaced from, an outer surface 72 of blade mounting portion 61. A second retaining component (not separately labeled) may also be provided. A gap 74 is formed between retaining component 66 and first outer surface 72 of blade mounting portion 61.

One or more blade retaining elements, 80 is mounted to radial outer edge 39 and held in place, at least in part, by retaining component 66. In accordance with an aspect of the exemplary embodiment, blade retaining element 80 takes the form of a plurality of segmented cover components, one of which is indicated at 81. Of course it should be understood that blade retaining element 80 may also take the form of a locking wire. Each segmented cover component 81 includes a hook element 83 that engages with second groove defining member 54 and a radial outer lip 85 that is extends into gap 74 and is received by first groove 50. Segmented cover components 80 may shield turbine rotor 30 from hot gases, may seal a coolant flow path, and may dampen vibrations, may axially retain blade components 33 or the like. Segmented cover component 81 is secured to turbine rotor 30 through a plurality of non-destructive fastener elements, one of which is indicated at 94 that extend through respective ones of retaining component 66 of each blade component 33.

In accordance with one aspect of the exemplary embodiment illustrated in FIGS. 4-5, retaining component 66 includes a non-destructive fastener element receiving opening 96 and an adjacent wire retention feature 97. Non-destructive fastener element 94 includes a post member 107 and a wire member 110. At this point it should be understood that the term “non-destructive” describes a fastener element that may be installed without permanent deformation and removed without suffering irreparable damage so that subsequent re-use is possible. Post member 107 includes a central opening or wire receiving passage 113. Wire member 110 extends from a first end 116 to a second end 117 through an intermediate portion 118. First end 116 is received within wire receiving passage 113 and retained by post member 107. Second end 117 is received by wire retaining feature 97 on retaining component 66. Second end 117 includes a hook section 120 that snap-fittingly grips cover retaining component 66. Once installed, post member 107 extends toward segmented cover component 81. Radial outer lip 85 prevents segmented cover component 81 from being withdrawn when non-destructive fastener element 94 is installed, as shown in FIG. 5. Non-destructive fastener element 94 may be removed by simply deforming wire member 110 and releasing second end 117 from wire retaining feature 97.

Reference will now follow to FIGS. 6-9 in describing a non-destructive fastener element 130 in accordance with another aspect of the exemplary embodiment. In the exemplary embodiment shown, each blade component 33 includes a retaining component 133 having an outer surface 135. Retaining component 133 includes a non-destructive fastener element receiving opening 138 having a lead-in feature 139 that facilitates insertion of non-destructive fastener element 130. Retaining component 133 also includes a first wire retention feature 140 arranged on one side of non-destructive fastener element receiving opening 138 and a second wire retention feature 142 arranged on an opposing side of non-destructive fastener element receiving opening 138. Each of the first and second wire retention features 140 and 142 includes a corresponding lead-in section 144 and 145.

Non-destructive fastener element 130 includes a post member 154 having a base portion 156 and a post portion 158. Base portion 156 includes a wire receiving passage 160 that extends generally perpendicularly to a longitudinal axis of post portion 158. Base portion 156 also includes an access port 166 that bisects wire receiving passage 160. A wire member 174 extends through wire receiving passage 160. Access port 166 provides access for a tool, such as a drill bit, to sever wire member 174 in the event that removal is not easily/readily accomplished, as detailed below. Wire member 174 extends from a first end 176 to a second end 177 through an intermediate portion 178. First end 176 includes a first hook section 180 and second end 177 includes a second hook section 181. First and second ends 176,177 are configured to be snap-fittingly received by first and second wire retaining features 140 and 142. First and second lead-in sections 144 and 145 facilitate insertion of first and second ends 176 and 177. Once installed, post portion 158 extends toward segmented cover component 81. Radial outer lip 85 prevents segmented cover component 81 from being withdrawn when non-destructive fastener element 130 is installed, as shown in FIG. 5. Non-destructive fastener element 130 may be removed by simply deforming wire member 174 and releasing first and second ends 176 and 177 from retaining component 133.

Reference will now follow to FIGS. 10-13 in describing a non-destructive fastener element 190 in accordance with yet another aspect of the exemplary embodiment. In the exemplary embodiment shown, blade component 33 includes a retaining component 193 having a first surface 195 and a projection 198. Projection 198 juts out, or extends radially inwardly, toward shaft 12. Of course it should be understood that projection 198 may be replaced by one or more recesses. Retaining component 193 also includes a non-destructive fastener element receiving opening 204 having a lead-in feature 205. Non-destructive fastener element 190 includes a base portion 216 and a post portion 218. Base portion 216 includes first and second wire receiving passages 221 and 223. First wire receiving passage 221 extends along a first side of base portion 216 and second wire receiving passage 223 extends along a second, opposing side of base portion 216 and is generally parallel to first wire receiving passage 221.

Non-destructive fastener element 190 also includes a wire member 230 coupled to base portion 216. Wire member 230 extends from a first end 233 to a second end 234 through an intermediate portion 235. First end 233 extends through first wire receiving passage 221 and second end 234 extends through second wire receiving passage 223 such that a loop 239 is formed in intermediate section 235. With this arrangement, post portion 218 is passed through non-destructive fastener element receiving opening 204 and wire member 230 is flexed allowing loop 239 to pass over, and engage with, projection 198. Post portion 218 extends toward segmented cover component 81 to prevent removal.

At this point it should be understood that the exemplary embodiment describes a non-destructive fastener element for joining turbomachine components. While described as retaining a segmented cover component, it should be understood that the non-destructive fastener element may be used to join other structures both static and rotating. Further, it should be understood that in addition to being used in a turbine portion, the non-destructive fastener element may be used in the combustor assembly and or the compressor portion or other areas of the turbomachine. Further, it should be understood that the shape of the non-destructive fastener element may vary. FIGS. 14 and 15 illustrate a non-destructive fastener element 300, in accordance with another aspect of the exemplary embodiment. FIGS. 16 and 17 illustrate a non-destructive fastener element 304, in accordance with yet another aspect of the exemplary embodiment. FIGS. 18 and 19 illustrate a non-destructive fastener element 308, in accordance with still yet another aspect of the exemplary embodiment

While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.