Title:
Novel Method of Diagnosing, Monitoring, Staging, Imaging and Treating Various Cancers
Kind Code:
A1


Abstract:
The present invention provides a new method for detecting, diagnosing, monitoring, staging, prognosticating, imaging and treating selected cancers including gynecologic cancers such as breast, ovarian, uterine and endometrial cancer and lung cancer.



Inventors:
Salceda, Susana (San Jose, CA, US)
Sun, Yongming (San Jose, CA, US)
Recipon, Herve (San Francisco, CA, US)
Cafferkey, Robert (San Jose, CA, US)
Application Number:
13/211767
Publication Date:
01/19/2012
Filing Date:
08/17/2011
Assignee:
diaDexus, Inc. (South San Francisco, CA, US)
Primary Class:
Other Classes:
424/9.1, 424/138.1, 424/178.1, 435/6.12, 435/7.92, 530/387.1, 536/23.1, 536/24.5
International Classes:
A61K51/10; G01N33/53; A61K39/395; A61K49/00; A61K49/16; A61K51/00; A61P35/00; A61P35/04; A61P43/00; C07H21/02; C07H21/04; C07K16/00; C07K16/30; C07K16/32; C12N15/09; C12Q1/68; G01N33/574; H01M4/86; H01M8/02; H01M8/10; H01M8/24
View Patent Images:
Related US Applications:
20090208430GLOW AND SUNLESS TANNING COLOR ENHANCEMENT BY CATIONIC COPOLYMERSAugust, 2009Polonka et al.
20090269415NOVEL THERAPEUTIC AGENT DERIVED FROM MARINE ORGANISMOctober, 2009Foong et al.
20070264315PASTE USABLE AS A DRESSING ON THE ORAL MUCOSAE OR THE SKINNovember, 2007Fournie et al.
20080175834Carboxypertidase U (Cpu) MutantsJuly, 2008Cronet et al.
20080171089Stable anti-nausea oral spray formulations and methodsJuly, 2008Blondino et al.
20050100619Cholesterol lowering supplementMay, 2005Chen et al.
20050129790Polyphenol-containing stem and vine extracts and methods of useJune, 2005Folts et al.
20090257995HARMFUL BACTERIUM CONTROL AGENT CONTAINING BACILLUS THURINGIENSISOctober, 2009Mochizuki
20090202589FERMENTER SYSTEM FOR BIOTECHNICAL PROCESSESAugust, 2009Müller et al.
20100028307PLURIPOTENT STEM CELL DIFFERENTIATIONFebruary, 2010O'neil
20060110351Use of silanes on cosmetic agents and methods for treating hairMay, 2006Koehler et al.



Other References:
Jack et al (JBC, 1990, 265: 14481-14486)
Primary Examiner:
AEDER, SEAN E
Attorney, Agent or Firm:
LICATA & TYRRELL P.C. (66 E. MAIN STREET MARLTON NJ 08053)
Claims:
What is claimed is:

1. A method for detecting the presence of cancer in a patient comprising: (a) measuring the level of the native protein expressed by the gene comprising the polynucleotide sequence of any of SEQ ID NOs: 1, 10, 11, 12 and 13 in a sample from a patient; and (b) comparing the measured level of said protein in said patient with the level of said protein in a control, wherein an increase in the measured level of said protein in said patient versus said control is associated with the presence of a cancer.

2. A method of detecting metastases of a cancer in a patient comprising: (a) identifying a patient having a cancer that is not known to have metastasized; (b) measuring the level of the native protein expressed by the gene comprising the polynucleotide sequence of any of SEQ JD NOs: 1, 10, 11, 12 and 13 in a sample from a patient; and (c) comparing the measured level of said protein with the level of said protein in a control, wherein an increase in measured levels of said protein in the patient versus the control is associated with a cancer which has metastasized.

3. A method of staging cancer in a patient having cancer comprising: (a) identifying a patient having cancer; (b) measuring the level of the native protein expressed by the gene comprising the polynucleotide sequence of any of SEQ ID NOs: 1, 10, 11, 12 and 13 in a sample from a patient; and (c) comparing the measured level of said protein with level of said protein in a control, wherein an increase in the measured level of said protein in said patient versus the control is associated with a cancer which is progressing and a decrease in the measured level of said protein in said patient versus the control is associated with a cancer which is regressing or in remission.

4. A method of monitoring cancer in a patient for the onset of metastasis comprising: (a) identifying a patient having cancer that is not known to have metastasized; (b) periodically measuring the level of the native protein expressed by the gene comprising the polynucleotide sequence of any of SEQ ID NOs: 1, 10, 11, 12 and 13 in a sample from a patient; and (c) comparing the periodically measured levels of said protein with level of said protein in a control, wherein an increase in any one of the periodically measured levels of said protein in the patient versus the control is associated with cancer which has metastasized.

5. A method of monitoring the change in stage of cancer in a patient comprising: (a) identifying a patient having cancer; (b) periodically measuring the level of the native protein expressed by the gene comprising the polynucleotide sequence of any of SEQ ID NOs: 1, 10, 11, 12 and 13 in a sample from a patient; and (c) comparing the periodically measured of said protein with level of said protein a control, wherein an increase in any one of the periodically measured levels of said protein in the patient versus the control is associated with a cancer which is progressing in stage and a decrease is associated with a cancer which is regressing in stage or in remission.

6. A method of imaging cancer in a patient comprising administering to the patient an antibody which binds to the native protein expressed by the gene comprising the polynucleotide sequence of any of SEQ ID NOs: 1, 10, 11, 12 and 13.

7. The method of claim 6 wherein said antibody is labeled with paramagnetic ions or a radioisotope.

8. A method of treating cancer in a patient comprising administering to the patient an antibody which binds to the native protein expressed by the gene comprising the polynucleotide sequence of any of SEQ ID NOs: 1, 10, 11, 12 and 13.

9. The method of claim 8 wherein the antibody is conjugated to a cytotoxic agent.

10. An isolated nucleic acid molecule selected from the group consisting of: (a) a nucleic acid molecule comprising a nucleic acid sequence of SEQ ID NOs: 1, 10, 11, 12 or 13; (b) a nucleic acid sequence of SEQ ID NOs: 1, 10, 11, 12 or 13; (c) the native mRNA encoded by the gene comprising any of the polynucleotide sequences of SEQ ID NOs: 1, 10, 11, 12 or 13; or (d) the gene comprising any of the polynucleotide sequences of SEQ ID NOs: 1, 10, 11, 12 or 13.

11. The nucleic acid molecule according to claim 10, wherein the nucleic acid molecule is a cDNA.

12. The nucleic acid molecule according to claim 10, wherein the nucleic acid molecule is a RNA.

13. The nucleic acid molecule according to claim 1, wherein the nucleic acid molecule is a human nucleic acid molecule.

14. A native protein expressed by the nucleic acid molecule according to claim 10.

15. An isolated polypeptide selected from the group consisting of: (a) the native protein expressed by the gene comprising the polynucleotide sequences of SEQ ID NOs: 1, 10, 11, 12 or 13; or (b) the protein encoded by polynucleotide sequence of SEQ ID NOs: 1, 10, 11, 12 or 13.

Description:

This application is a continuation of U.S. application Ser. No. 12/787,675 filed May 26, 2010, which is a continuation of U.S. application Ser. No. 09/763,978 filed Apr. 25, 2001, now issued as 7,737,255, which is the U.S. National Phase of PCT/US1999/019655 filed Sep. 1, 1999, which claims the benefit of priority from U.S. Provisional Application Ser. No. 60/098,880 filed Sep. 2, 1998, each of which are herein incorporated by reference in their entireties.

FIELD OF THE INVENTION

This invention relates, in part, to newly developed assays for detecting, diagnosing, monitoring, staging, prognosticating, imaging and treating various cancers, particularly gynecologic cancer including ovarian, uterine endometrial and breast cancer, and lung cancer.

BACKGROUND OF THE INVENTION

The American Cancer Society has estimated that over 560,000 Americans will die this year from cancer. Cancer is the second leading cause of death in the United States, exceeded only by heart disease. It has been estimated that over one million new cancer cases will be diagnosed in 1999 alone.

In women, gynecologic cancers account for more than one-fourth of the malignancies.

Of the gynecologic cancers, breast cancer is the most common. According to the Women's Cancer Network, 1 out of every 8 women in the United States is as risk of developing breast cancer, and 1 out of every 28 women are at risk of dying from breast cancer. Approximately 77% of women diagnosed with breast cancer are over the age of 50. However, breast cancer is the leading cause of death in women between the ages of 40 and 55.

Carcinoma of the ovary is another very common gynecologic cancer. Approximately one in 70 women will develop ovarian cancer during her lifetime. An estimated 14,500 deaths in 1995 resulted from ovarian cancer. It causes more deaths than any other cancer of the female reproductive system. Ovarian cancer often does not cause any noticeable symptoms. Some possible warning signals, however, are an enlarged abdomen due to an accumulation of fluid or vague digestive disturbances (discomfort, gas or distention) in women over 40; rarely there will be abnormal vaginal bleeding. Periodic, complete pelvic examinations are important; a Pap test does not detect ovarian cancer. Annual pelvic exams are recommended for women over 40.

Also common in women is endometrial cancer or carcinoma of the lining of the uterus. According to the Women's Cancer Center endometrial cancer accounts for approximately 13% of all malignancies in women. There are about 34,000 cases of endometrial cancer diagnosed in the United States each year.

Uterine sarcoma is another type of uterine malignancy much more rare as compared to other gynecologic cancers. In uterine sarcoma, malignant cells start growing in the muscles or other supporting tissues of the uterus. Sarcoma of the uterus is different from cancer of the endometrium, a disease in which cancer cells start growing in the lining of the uterus. This uterine cancer usually begins after menopause. Women who have received therapy with high-dose X-rays (external beam radiation therapy) to their pelvis are at a higher risk to develop sarcoma of the uterus. These X-rays are sometimes given to women to stop bleeding from the uterus. Lung cancer is the second most prevalent type of cancer for both men and women in the United States and is the most common cause of cancer death in both sexes. Lung cancer can result from a primary tumor originating in the lung or a secondary tumor which has spread from another organ such as the bowel or breast. Primary lung cancer is divided into three main types; small cell lung cancer; non-small cell lung cancer; and mesothelioma. Small cell lung cancer is also called “Oat Cell” lung cancer because the cancer cells are a distinctive oat shape. There are three types of non-small cell lung cancer. These are grouped together because they behave in a similar way and respond to treatment differently to small cell lung cancer. The three types are squamous cell carcinoma, adenocarcinoma, and large cell carcinoma. Squamous cell cancer is the most common type of lung cancer. It develops from the cells that line the airways. Adenocarcinoma also develops from the cells that line the airways. However, adenocarcinoma develops from a particular type of cell that produces mucus (phlegm). Large cell lung cancer has been thus named because the cells look large and rounded when they are viewed under a microscope. Mesothelioma is a rare type of cancer which affects the covering of the lung called the pleura. Mesothelioma is often caused by exposure to asbestos.

Procedures used for detecting, diagnosing, monitoring, staging, and prognosticating each of these types of cancer are of critical importance to the outcome of the patient. In all cases, patients diagnosed early in development of the cancer generally have a much greater five-year survival rate as compared to the survival rate for patients diagnosed with a cancer which has metastasized. New diagnostic methods which are more sensitive and specific for early detection of various types of cancer are clearly needed.

In the present invention methods are provided for detecting, diagnosing, monitoring, staging, prognosticating, in vivo imaging and treating selected cancers including, but not limited to, gynecologic cancers such as ovarian, breast endometrial and/or uterine cancer, and lung cancer via detection of a Cancer Specific Genes (CSGs). Nine CGSs have been identified and refer, among other things, to native proteins expressed by the genes comprising the polynucleotide sequences of any of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8 or 9. In the alternative, what is meant by the nine CSGs as used herein, means the native mRNAs encoded by the genes comprising any of the polynucleotide sequences of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8 or 9 or it can refer to the actual genes comprising any of the polynucleotide sequences of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8 or 9. Fragments of the CSGs such as those depicted in SEQ ID NO:10, 11, 12, 13 or 14 can also be detected.

Other objects, features, advantages and aspects of the present invention will become apparent to those of skill in the art from the following description. It should be understood, however, that the following description and the specific examples, while indicating preferred embodiments of the invention are given by way of illustration only. Various changes and modifications within the spirit and scope of the disclosed invention will become readily apparent to those skilled in the art from reading the following description and from reading the other parts of the present disclosure.

SUMMARY OF THE INVENTION

Toward these ends, and others, it is an object of the present invention to provide a method for diagnosing the presence of selected cancers by analyzing for changes in levels of CSG in cells, tissues or bodily fluids compared with levels of CSG in preferably the same cells, tissues, or bodily fluid type of a normal human control, wherein a change in levels of CSG in the patient versus the normal human control is associated with the selected cancer. For the purposes of this invention, by “selected cancer” it is meant to include gynecologic cancers such as ovarian, breast, endometrial and uterine cancer, and lung cancer.

Further provided is a method of diagnosing metastatic cancer in a patient having a selected cancer which is not known to have metastasized by identifying a human patient suspected of having a selected cancer that has metastasized; analyzing a sample of cells, tissues, or bodily fluid from such patient for CSG; comparing the CSG levels in such cells, tissues, or bodily fluid with levels of CSG in preferably the same cells, tissues, or bodily fluid type of a normal human control, wherein an increase in CSG levels in the patient versus the normal human control is associated with a cancer which has metastasized.

Also provided by the invention is a method of staging selected cancers in a human patient by identifying a human patient having such cancer; analyzing a sample of cells, tissues, or bodily fluid from such patient for CSG; comparing CSG levels in such cells, tissues, or bodily fluid with levels of CSG in preferably the same cells, tissues, or bodily fluid type of a normal human control sample, wherein an increase in CSG levels in the patient versus the normal human control is associated with a cancer which is progressing and a decrease in the levels of CSG is associated with a cancer which is regressing or in remission.

Further provided is a method of monitoring selected cancers in patients for the onset of metastasis. The method comprises identifying a human patient having a selected cancer that is not known to have metastasized; periodically analyzing a sample of cells, tissues, or bodily fluid from such patient for CSG; comparing the CSG levels in such cells, tissues, or bodily fluid with levels of CSG in preferably the same cells, tissues, or bodily fluid type of a normal human control sample, wherein an increase in CSG levels in the patient versus the normal human control is associated with a cancer which has metastasized.

Further provided is a method of monitoring the change in stage of selected cancers in humans having such cancer by looking at levels of CSG. The method comprises identifying a human patient having a selected cancer; periodically analyzing a sample of cells, tissues, or bodily fluid from such patient for CSG; comparing the CSG levels in such cells, tissue, or bodily fluid with levels of CSG in preferably the same cells, tissues, or bodily fluid type of a normal human control sample, wherein an increase in CSG levels in the patient versus the normal human control is associated with a cancer which is progressing and a decrease in the levels of CSG is associated with a cancer which is regressing or in remission.

Further provided are antibodies against CSG or fragments of such antibodies which can be used to detect or image localization of CSG in a patient for the purpose of detecting or diagnosing selected cancers. Such antibodies can be polyclonal or monoclonal, or prepared by molecular biology techniques. The term “antibody”, as used herein and throughout the instant specification is also meant to include aptamers and single-stranded oligonucleotides such as those derived from an in vitro evolution protocol referred to as SELEX and well known to those skilled in the art. Antibodies can be labeled with a variety of detectable labels including, but not limited to, radioisotopes and paramagnetic metals. These antibodies or fragments thereof can also be used as therapeutic agents in the treatment of diseases characterized by expression of a CSG. In therapeutic applications, the antibody can be used without or with derivatization to a cytotoxic agent such as a radioisotope, enzyme, toxin, drug or a prodrug.

Other objects, features, advantages and aspects of the present invention will become apparent to those of skill in the art from the following description. It should be understood, however, that the following description and the specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only. Various changes and modifications within the spirit and scope of the disclosed invention will become readily apparent to those skilled in the art from reading the following description and from reading the other parts of the present disclosure.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to diagnostic assays and methods, both quantitative and qualitative for detecting, diagnosing, monitoring, staging and prognosticating selected cancers by comparing levels of CSG with those of CSG in a normal human control. What is meant by levels of CSG as used herein is levels of the native protein expressed by the gene comprising the polynucleotide sequence of any of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8 or 9. In the alternative, what is meant by levels of CSG as used herein is levels of the native mRNA encoded by the gene comprising any of the polynucleotide sequence of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8 or 9 or levels of the gene comprising any of the polynucleotide sequences of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8 or 9. Fragments of CSGs such as those depicted in SEQ ID NO: 10, 11, 12, 13 and 14 can also be detected. Such levels are preferably measured in at least one of cells, tissues and/or bodily fluids, including determination of normal and abnormal levels. Thus, for instance, a diagnostic assay in accordance with the invention for diagnosing over-expression of CSG protein compared to normal control bodily fluids, cells, or tissue samples may be used to diagnose the presence of selected cancers. What is meant by “selected cancers” as used herein is a gynecologic cancer such as ovarian, breast, endometrial or uterine cancer, or lung case.

Any of the 9 CSGs can be measured alone in the methods of the invention, or all together or any combination thereof. However, for methods relating to gynecologic cancers including ovarian, breast, endometrial and uterine cancer, it is preferred that levels of CSG comprising SEQ ID NO:1 or a fragment thereof be determined. Exemplary fragments of this CSG which can be detected are depicted in SEQ ID NO: 10, 11, 12, and 13. For methods relating to lung cancer and gynecologic cancers including ovarian, endometrial and uterine, it is preferred that levels of CSG comprising SEQ ID NO:2 or 9 be determined. Fragments of this CSG such as that depicted in SEQ ID NO:14 can also be detected. For methods relating to ovarian cancer, determination of levels of CSG comprising SEQ ID NO:3 is also preferred.

All the methods of the present invention may optionally include measuring the levels of other cancer markers as well as CSG. Other cancer markers, in addition to CSG, useful in the present invention will depend on the cancer being tested and are known to those of skill in the art.

Diagnostic Assays

The present invention provides methods for diagnosing the presence of selected cancers by analyzing for changes in levels of CSG in cells, tissues or bodily fluids compared with levels of CSG in cells, tissues or bodily fluids of preferably the same type from a normal human control, wherein a change in levels of CSG in the patient versus the normal human control is associated with the presence of a selected cancer.

Without limiting the instant invention, typically, for a quantitative diagnostic assay a positive result indicating the patient being tested has cancer is one in which cells, tissues or bodily fluid levels of the cancer marker, such as CSG, are at least two times higher, and most preferably are at least five times higher, than in preferably the same cells, tissues or bodily fluid of a normal human control.

The present invention also provides a method of diagnosing metastases of selected cancers in a patient having a selected cancer which has not yet metastasized for the onset of metastasis. In the method of the present invention, a human cancer patient suspected of having a selected cancer which may have metastasized (but which was not previously known to have metastasized) is identified. This is accomplished by a variety of means known to those of skill in the art. For example, in the case of ovarian cancer, patients are typically diagnosed with ovarian cancer following surgical staging and monitoring of CAl25 levels. Traditional detection methods are also available and well known for other selected cancers which can be diagnosed by determination of CSG levels in a patient.

In the present invention, determining the presence of CSG levels in cells, tissues or bodily fluid, is particularly useful for discriminating between a selected cancer which has not metastasized and a selected cancer which has metastasized. Existing techniques have difficulty discriminating between cancers which have metastasized and cancers which have not metastasized and proper treatment selection is often dependent upon such knowledge.

In the present invention, the cancer marker levels measured in such cells, tissues or bodily fluid is CSG, and are compared with levels of CSG in preferably the same cells, tissue or bodily fluid type of a normal human control. That is, if the cancer marker being observed is CSG in serum, this level is preferably compared with the level of CSG in serum of a normal human patient. An increase in the CSG in the patient versus the normal human control is associated with a cancer which has metastasized.

Without limiting the instant invention, typically, for a quantitative diagnostic assay a positive result indicating the cancer in the patient being tested or monitored has metastasized is one in which cells, tissues or bodily fluid levels of the cancer marker, such as CSG, are at least two times higher, and most preferably are at least five times higher, than in preferably the same cells, tissues or bodily fluid of a normal patient.

Normal human control as used herein includes a human patient without cancer and/or non cancerous samples from the patient; in the methods for diagnosing or monitoring for metastasis, normal human control may also include samples from a human patient that is determined by reliable methods to have a selected cancer which has not metastasized.

Staging

The invention also provides a method of staging selected cancers in human patients. The method comprises identifying a human patient having a selected cancer and analyzing a sample of cells, tissues or bodily fluid from such human patient for CSG. Then, the method compares CSG levels in such cells, tissues or bodily fluid with levels of CSG in preferably the same cells, tissues or bodily fluid type of a normal human control sample, wherein an increase in CSG levels in the human patient versus the normal human control is associated with a cancer which is progressing and a decrease in the levels of CSG is associated with a cancer which is regressing or in remission.

Monitoring

Further provided is a method of monitoring selected cancers in humans for the onset of metastasis. The method comprises identifying a human patient having a selected cancer that is not known to have metastasized; periodically analyzing a sample of cells, tissues or bodily fluid from such human patient for CSG; comparing the CSG levels in such cells, tissues or bodily fluid with levels of CSG in preferably the same cells, tissues or bodily fluid type of a normal human control sample, wherein an increase in CSG levels in the human patient versus the normal human control is associated with a cancer which has metastasized.

Further provided by this invention is a method of monitoring the change in stage of selected cancers in humans having such cancers. The method comprises identifying a human patient having a selected cancer; periodically analyzing a sample of cells, tissues or bodily fluid from such human patient for CSG; comparing the CSG levels in such cells, tissues or bodily fluid with levels of CSG in preferably the same cells, tissues or bodily fluid type of a normal human control sample, wherein an increase in CSG levels in the human patient versus the normal human control is associated with a cancer which is progressing in stage and a decrease in the levels of CSG is associated with a cancer which is regressing in stage or in remission.

Monitoring such patient for onset of metastasis is periodic and preferably done on a quarterly basis. However, this may be more or less frequent depending on the cancer, the particular patient, and the stage of the cancer.

Assay Techniques

Assay techniques that can be used to determine levels of gene expression, such as CSG of the present invention, in a sample derived from a patient are well known to those of skill in the art. Such assay methods include radioimmunoassays, reverse transcriptase PCR (RT-PCR) assays, immunohistochemistry assays, in situ hybridization assays, competitive-binding assays, Western Blot analyses, ELISA assays and proteomic approaches. Among these, ELISAs are frequently preferred to diagnose a gene's expressed protein in biological fluids.

An ELISA assay initially comprises preparing an antibody, if not readily available from a commercial source, specific to CSG, preferably a monoclonal antibody. In addition a reporter antibody generally is prepared which binds specifically to CSG. The reporter antibody is attached to a detectable reagent such as radioactive, fluorescent or enzymatic reagent, for example horseradish peroxidase enzyme or alkaline phosphatase.

To carry out the ELISA, antibody specific to CSG is incubated on a solid support, e.g. a polystyrene dish, that binds the antibody. Any free protein binding sites on the dish are then covered by incubating with a non-specific protein such as bovine serum albumin. Next, the sample to be analyzed is incubated in the dish, during which time CSG binds to the specific antibody attached to the polystyrene dish. Unbound sample is washed out with buffer. A reporter antibody specifically directed to CSG and linked to horseradish peroxidase is placed in the dish resulting in binding of the reporter antibody to any monoclonal antibody bound to CSG. Unattached reporter antibody is then washed out. Reagents for peroxidase activity, including a colorimetric substrate are then added to the dish. Immobilized peroxidase, linked to CSG antibodies, produces a colored reaction product. The amount of color developed in a given time period is proportional to the amount of CSG protein present in the sample. Quantitative results typically are obtained by reference to a standard curve.

A competition assay may be employed wherein antibodies specific to CSG attached to a solid support and labeled CSG and a sample derived from the host are passed over the solid support and the amount of label detected attached to the solid support can be correlated to a quantity of CSG in the sample.

Nucleic acid methods may be used to detect CSG mRNA as a marker for selected cancers. Polymerase chain reaction (PCR) and other nucleic acid methods, such as ligase chain reaction (LCR) and nucleic acid sequence based amplification (NASABA), can be used to detect malignant cells for diagnosis and monitoring of the various selected malignancies. For example, reverse-transcriptase PCR (RT-PCR) is a powerful technique which can be used to detect the presence of a specific mRNA population in a complex mixture of thousands of other mRNA species. In RT-PCR, an mRNA species is first reverse transcribed to complementary DNA (cDNA) with use of the enzyme reverse transcriptase; the cDNA is then amplified as in a standard PCR reaction. RT-PCR can thus reveal by amplification the presence of a single species of mRNA. Accordingly, if the mRNA is highly specific for the cell that produces it, RT-PCR can be used to identify the presence of a specific type of cell.

Hybridization to clones or oligonucleotides arrayed on a solid support (i.e. gridding) can be used to both detect the expression of and quantitate the level of expression of that gene. In this approach, a cDNA encoding the CSG gene is fixed to a substrate. The substrate may be of any suitable type including but not limited to glass, nitrocellulose, nylon or plastic. At least a portion of the DNA encoding the CSG gene is attached to the substrate and then incubated with the analyte, which may be RNA or a complementary DNA (cDNA) copy of the RNA, isolated from the tissue of interest. Hybridization between the substrate bound DNA and the analyte can be detected and quantitated by several means including but not limited to radioactive labeling or fluorescence labeling of the analyte or a secondary molecule designed to detect the hybrid. Quantitation of the level of gene expression can be done by comparison of the intensity of the signal from the analyte compared with that determined from known standards. The standards can be obtained by in vitro transcription of the target gene, quantitating the yield, and then using that material to generate a standard curve.

Of the proteomic approaches, 2D electrophoresis is a technique well known to those in the art. Isolation of individual proteins from a sample such as serum is accomplished using sequential separation of proteins by different characteristics usually on polyacrylamide gels. First, proteins are separated by size using an electric current. The current acts uniformly on all proteins, so smaller proteins move farther on the gel than larger proteins. The second dimension applies a current perpendicular to the first and separates proteins not on the basis of size but on the specific electric charge carried by each protein. Since no two proteins with different sequences are identical on the basis of both size and charge, the result of a 2D separation is a square gel in which each protein occupies a unique spot. Analysis of the spots with chemical or antibody probes, or subsequent protein microsequencing can reveal the relative abundance of a given protein and the identity of the proteins in the sample.

The above tests can be carried out on samples derived from a variety of patients' cells, bodily fluids and/or tissue extracts (homogenates or solubilized tissue) such as from tissue biopsy and autopsy material. Bodily fluids useful in the present invention include blood, urine, saliva or any other bodily secretion or derivative thereof. Blood can include whole blood, plasma, serum or any derivative of blood.

In Vivo Antibody Use

Antibodies against CSG can also be used in vivo in patients suspected of suffering from a selected cancer including lung cancer or gynecologic cancers such as ovarian, breast, endometrial or uterine cancer. Specifically, antibodies against a CSG can be injected into a patient suspected of having a selected cancer for diagnostic and/or therapeutic purposes. The use of antibodies for in vivo diagnosis is well known in the art. For example, antibody-chelators labeled with Indium-111 have been described for use in the radioimmunoscintographic imaging of carcinoembryonic antigen expressing tumors (Sumerdon et al. Nucl. Med. Biol. 1990 17:247-254). In particular, these antibody-chelators have been used in detecting tumors in patients suspected of having recurrent colorectal cancer (Griffin et al. J. Clin. Onc. 1991 9:631-640). Antibodies with paramagnetic ions as labels for use in magnetic resonance imaging have also been described (Lauffer, R. B. Magnetic Resonance in Medicine 1991 22:339-342). Antibodies directed against CSGs can be used in a similar manner. Labeled antibodies against a CSG can be injected into patients suspected of having a selected cancer for the purpose of diagnosing or staging of the disease status of the patient. The label used will be selected in accordance with the imaging modality to be used. For example, radioactive labels such as Indium-111, Technetium-99m or Iodine-131 can be used for planar scans or single photon emission computed tomography (SPECT). Positron emitting labels such as Fluorine-19 can be used in positron emission tomography. Paramagnetic ions such as Gadlinium (III) or Manganese (II) can used in magnetic resonance imaging (MRI). Localization of the label permits determination of the spread of the cancer. The amount of label within an organ or tissue also allows determination of the presence or absence of cancer in that organ or tissue.

For patients diagnosed with a selected cancer, injection of an antibody against a CSG can also have a therapeutic benefit. The antibody may exert its therapeutic effect alone. Alternatively, the antibody is conjugated to a cytotoxic agent such as a drug, toxin or radionuclide to enhance its therapeutic effect. Drug monoclonal antibodies have been described in the art for example by Garnett and Baldwin, Cancer Research 1986 46:2407-2412. The use of toxins conjugated to monoclonal antibodies for the therapy of various cancers has also been described by Pastan et al. Cell 1986 47:641-648. Yttrium-labeled monoclonal antibodies have been described for maximization of dose delivered to the tumor while limiting toxicity to normal tissues (Goodwin and Meares Cancer Supplement 1997 80:2675-2680). Other cytotoxic radionuclides including, but not limited to Copper-67, Iodine-131 and Rhenium-186 can also be used for labeling of antibodies against CSGs.

Antibodies which can be used in these in vivo methods include both polyclonal and monoclonal antibodies and antibodies prepared via molecular biology techniques. Antibody fragments and aptamers and single-stranded oligonucleotides such as those derived from an in vitro evolution protocol referred to as SELEX and well known to those skilled in the art can also be used.

The present invention is further described by the following examples. These examples are provided solely to illustrate the invention by reference to specific embodiments. The exemplifications, while illustrating certain aspects of the invention, do not portray the limitations or circumscribe the scope of the disclosed invention.

EXAMPLES

Example 1

Identification of CSGs were carried out by a systematic analysis of data in the LIFESEQ database available from Incyte Pharmaceuticals, Palo Alto, Calif., using the data mining Cancer Leads Automatic Search Package (CLASP) developed by diaDexus LLC, Santa Clara, Calif.

The CLASP performs the following steps: selection of highly expressed organ specific genes based on the abundance level of the corresponding EST in the targeted organ versus all the other organs; analysis of the expression level of each highly expressed organ specific genes in normal, tumor tissue, disease tissue and tissue libraries associated with tumor or disease. Selection of the candidates demonstrating component ESTs were exclusively or more frequently found in tumor libraries. The CLASP allows the identification of highly expressed organ and cancer specific genes. A final manual in depth evaluation is then performed to finalize the CSGs selection.

TABLE 1
CSG Sequences
SEQ ID NO:Clone IDGene ID
116656542234617
21283171332459
31649377481154
4236044H1none assigned
5none assigned255687
6none assigned251313
7none assigned 12029
8none assigned251804

The following examples are carried out using standard techniques, which are well known and routine to those of skill in the art, except where otherwise described in detail. Routine molecular biology techniques of the following example can be carried out as described in standard laboratory manuals, such as Sambrook et al., MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed.; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989).

Example 2

Relative Quantitation of Gene Expression

Real-Time quantitative PCR with fluorescent Taqman probes is a quantitation detection system utilizing the 5′-3′ nuclease activity of Taq DNA polymerase. The method uses an internal fluorescent oligonucleotide probe (Taqman) labeled with a 5′ reporter dye and a downstream, 3′ quencher dye. During PCR, the 5′-3′ nuclease activity of Taq DNA polymerase releases the reporter, whose fluorescence can then be detected by the laser detector of the Model 7700 Sequence Detection System (PE Applied Biosystems, Foster City, Calif., USA).

Amplification of an endogenous control is used to standardize the amount of sample RNA added to the reaction and normalize for Reverse Transcriptase (RT) efficiency. Either cyclophilin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) or 18S ribosomal RNA (rRNA) is used as this endogenous control. To calculate relative quantitation between all the samples studied, the target RNA levels for one sample were used as the basis for comparative results (calibrator). Quantitation relative to the “calibrator” can be obtained using the standard curve method or the comparative method (User Bulletin #2: ABI PRISM 7700 Sequence Detection System).

The tissue distribution and the level of the target gene for every example in normal and cancer tissue were evaluated. Total RNA was extracted from normal tissues, cancer tissues, and from cancers and the corresponding matched adjacent tissues. Subsequently, first strand cDNA was prepared with reverse transcriptase and the polymerase chain reaction was done using primers and Taqman probe specific to each target gene. The results are analyzed using the ABI PRISM 7700 Sequence Detector. The absolute numbers are relative levels of expression of the target gene in a particular tissue compared to the calibrator tissue.

Measurement of Ovr110; Clone ID16656542; Gene ID 234617 (SEQ ID NO:1, 10, 11, 12 or 13)

The absolute numbers depicted in Table 2 are relative levels of expression of Ovr110 (SEQ ID NO:1 or a fragment thereof as depicted in SEQ ID NO:10, 11, 12, or 13) in 12 normal different tissues. All the values are compared to normal stomach (calibrator). These RNA samples are commercially available pools, originated by pooling samples of a particular tissue from different individuals.

TABLE 2
Relative Levels of Ovr110 Expression in Pooled Samples
TissueNORMAL
colon0.00
endometrium8.82
kidney7.19
liver0.36
ovary1.19
pancreas21.41
prostate2.79
small intestine0.03
spleen0.00
00000000000000stomach1.00
testis8.72
uterus0.93

The relative levels of expression in Table 2 show that Ovr110 is expressed at comparable levels in most of the normal tissues analyzed. Pancreas, with a relative expression level of 21.41, endometrium (8.82), testis (8.72), and kidney (7.19) are the only tissues expressing high levels of Ovr110 mRNA.

The absolute numbers in Table 2 were obtained analyzing pools of samples of a particular tissue from different individuals. They can not be compared to the absolute numbers originated from RNA obtained from tissue samples of a single individual in Table 3.

The absolute numbers depicted in Table 3 are relative levels of expression of Ovr110 in 73 pairs of matching samples. All the values are compared to normal stomach (calibrator). A matching pair is formed by mRNA from the cancer sample for a particular tissue and mRNA from the normal adjacent sample for that same tissue from the same individual. In addition, 15 unmatched cancer samples (from ovary and mammary gland) and 14 unmatched normal samples (from ovary and mammary gland) were also tested.

TABLE 3
Relative Levels of Ovr110 Expression in Individual Samples
Matching
Normal
Sample IDTissueCancerAdjacentNormal
Ovr103XOvary 186.220.53
Ovr1040OOvary 2168.31
Ovr1157Ovary 3528.22
Ovr63AOvary 41.71
Ovr773OOvary 5464.65
Ovr1005OOvary 618.32
Ovr1028Ovary 77.78
Ovr1118Ovary 80.00
Ovr130XOvary 9149.09
Ovr638AOvary 103.14
OvrA1BOvary 1121.26
OvrA1COvary 121.83
OvrC360Ovary 130.52
Ovr18GAOvary 141.07
Ovr20GAOvary 151.88
Ovr25GAOvary 162.52
Ovr206IOvary 172.51
Ovr32RAOvary 183.01
Ovr35GAOvary 195.17
Ovr40GOvary 200.45
Ovr50GBOvary 212.69
OvrC087Ovary 220.47
OvrC179Ovary 231.46
OvrC004Ovary 244.99
OvrC007Ovary 2513.36
OvrC109Ovary 266.61
MamS516Mammary16.3913.74
Gland 1
MamS621Mammary826.704.60
Gland 2
MamS854Mammary34.6018.30
Gland 3
Mam59XMammary721.5727.00
Gland 4
MamS079Mammary80.735.10
Gland 5
MamS967Mammary6746.9072.80
Gland 6
MamS127Mammary7.0020.00
Gland 7
MamB011XMammary1042.0029.00
Gland 8
Mam12BMammary1342.00
Gland 9
Mam82XIMammary507.00
Gland 10
MamS123Mammary24.854.24
Gland 11
MamS699Mammary84.745.54
Gland 12
MamS997Mammary482.7111.84
Gland 13
Mam162XMammary15.7310.59
Gland 14
MamA06XMammary1418.358.20
Gland 15
Mam603XMammary294.00
Gland 16
Mam699FMammary567.4086.60
Gland 17
Mam12XMammary425.0031.00
Gland 18
MamA04Mammary2.00
Gland 19
Mam42DNMammary46.0531.02
Gland 20
Utr23XUUterus 1600.4927.95
Utr85XUUterus 273.5218.83
Utr135XOUterus 3178.00274.00
Utr141XOUterus 4289.0026.00
CvxNKS54Cervix 12.470.61
CvxKS83Cervix 21.002.00
CvxNKS18Cervix 31.000.00
CvxNK23Cervix 45.8414.47
CvxNK24Cervix 520.3233.13
End68XEndometrium 1167.73544.96
End8963Endometrium 2340.1420.89
End8XAEndometrium 31.68224.41
End65RAEndometrium 4303.005.00
End8911Endometrium 51038.0074.00
End3AXEndometrium 66.591.69
End4XAEndometrium 70.4315.45
End5XAEndometrium 817.81388.02
End10479Endometrium 91251.6031.10
End12XAEndometrium312.8033.80
10
Kid107XDKidney 12.6829.65
Kid109XDKidney 281.01228.33
Kid10XDKidney 30.0015.30
Kid6XDKidney 418.329.06
Kid11XDKidney 51.3820.75
Kid5XDKidney 630.270.19
Liv15XALiver 10.000.45
Liv42XLiver 20.810.40
Liv94XALiver 312.002.16
Lng LC71Lung 15.453.31
LngAC39Lung 21.110.00
LngBR94Lung 34.500.00
LngSQ45Lung 415.030.76
LngC20XLung 50.001.65
LngSQ56Lung 691.778.03
ClnAS89Colon 10.797.65
ClnC9XRColon 20.030.00
ClnRC67Colon 30.000.00
ClnSG36Colon 40.810.35
ClnTX89Colon 50.000.00
ClnSG45Colon 60.000.06
ClnTX01Colon 70.000.00
Pan77XPancreas 10.892.62
Pan71XLPancreas 23.990.12
Pan82XPPancreas 359.9228.44
Pan92XPancreas 417.210.00
StoAC93Stomach 17.546.43
StoAC99Stomach 219.493.19
StoAC44Stomach 33.620.37
SmI21XASmall0.000.00
Intestine 1
SmIH89Small0.000.00
Intestine 2
Bld32XKBladder 10.000.21
Bld46XKBladder 20.360.32
BldTR17Bladder 30.280.00
Tst39XTestis11.242.24
Pro84XBProstate 12.6024.30
Pro90XBProstate 21.402.00
0.00 = Negative

Table 2 and Table 3 represent a combined total of 187 samples in 16 different tissue types. In the analysis of matching samples, the higher levels of expression were in mammary gland, uterus, endometrium and ovary, showing a high degree of tissue specificity for the gynecologic tissues. Of all the samples different than those mentioned before analyzed, only a few samples (Kid109XD, LngSQ56, and Pan82XP) showed high levels of expression of Ovr110.

Furthermore, the level of mRNA expression was compared in cancer samples and the isogenic normal adjacent tissue from the same individual. This comparison provides an indication of specificity for the cancer stage (e.g. higher levels of mRNA expression in the cancer sample compared to the normal adjacent). Table 3 shows overexpression of Ovr110 in 15 of 16 mammary gland cancer tissues compared with their respective normal adjacent (mammary gland samples MamS516, MamS621, MamS854, Mam59X, MamS079, MamS967, MamB011X, MamS123, MamS699, MamS997, Mam162X, MamA06X, Mam699F, Mam12X, and Mam42DN). There was overexpression in the cancer tissue for 94% of the mammary gland matching samples tested.

For uterus, Ovr110 is overexpressed in 3 of 4 matching samples (uterus samples Utr23XU, Utr85XU, and Utr141XO). There was overexpression in the cancer tissue for 75% of the uterus matching samples analyzed.

For endometrium, Ovr110 is overexpressed in 6 of 10 matching samples (endometrium samples End8963, End65RA, End8911, End3AX, End10479, and End12XA). There was overexpression in the cancer tissue for 60% of the endometrium matching samples.

For ovary, Ovr110 shows overexpression in 1 of 1 matching sample. For the unmatched ovarian samples, 8 of 12 cancer samples show expression values of Ovr110 higher than the median (2.52) for the normal unmatched ovarian samples. There was overexpression in the cancer tissue for 67% of the unmatched ovarian samples.

Altogether, the level of tissue specificity, plus the mRNA overexpression in most of the matching samples tested are indicative of Ovr110 (including SEQ ID NO:1, 10, 11, 12 or 13) being a diagnostic marker for gynecologic cancers, specifically, mammary gland or breast, uterine, ovarian and endometrial cancer.

Measurement of Ovr114; Clone ID1649377; Gene ID 481154 (SEQ ID NO:3)

The numbers depicted in Table 4 are relative levels of expression in 12 normal tissues of Ovr114 compared to pancreas (calibrator). These RNA samples were obtained commercially and were generated by pooling samples from a particular tissue from different individuals.

TABLE 4
Relative Levels of Ovr114 Expression in Pooled Samples
TissueNormal
Colon2.3
Endometrium7.6
Kidney0.5
Liver0.6
Ovary5.2
Pancreas1.0
Prostate2.1
Small Intestine1.3
Spleen2.4
Stomach1.5
Testis15.8
Uterus8.8

The relative levels of expression in Table 4 show that Ovr114 mRNA expression is detected in all the pools of normal tissues analyzed.

The tissues shown in Table 4 are pooled samples from different individuals. The tissues shown in Table 5 were obtained from individuals and are not pooled. Hence the values for mRNA expression levels shown in Table 4 cannot be directly compared to the values shown in Table 5.

The numbers depicted in Table 5 are relative levels of expression of Ovr114 compared to pancreas (calibrator), in 46 pairs of matching samples and 27 unmatched tissue samples. Each matching pair contains the cancer sample for a particular tissue and the normal adjacent tissue sample for that same tissue from the same individual. In cancers (for example, ovary) where it was not possible to obtain normal adjacent samples from the same individual, samples from a different normal individual were analyzed.

TABLE 5
Relative Levels of Ovr114 Expression in Individual Samples
Normal &
Matching
BorderlineNormal
TissueSample IDCancer TypeCancerMalignantAdjacent
Ovary 1Ovr1037O/1038OPapillary serous17.043.93
adenocarcinoma, G3
Ovary 2OvrG021SPI/SN2Papillary serous1.624.34
adenocarcinoma
Ovary 3OvrG010SP/SNPapillary serous0.501.12
adenocarcinoma
Ovary 4OvrA081F/A082DMucinous tumor, low0.840.96
malignant potential
Ovary 5OvrA084/A086Mucinous tumor, grade5.246.00
G-B, borderline
Ovary 6Ovr14604A1CSerous5.33
cystadenofibroma, low
malignancy
Ovary 7Ovr14638A1CFollicular cysts, low8.11
malignant potential
Ovary 8Ovr1040OPapillary serous13.27
adenocarcinoma, G2
Ovary 9Ovr1157OPapillary serous106.08
adenocarcinoma
Ovary 10Ovr1005OPapillary serous77.04
endometricarcinoma
Ovary 11Ovr1028OOvarian carcinoma14.78
Ovary 12Ovr14603A1DAdenocarcinoma22.23
Ovary 13Ovr9410C360Endometrioid4.74
adenocarcinoma
Ovary 14Ovr1305XPapillary serous96.49
adenocarcinoma
Ovary 15Ovr773OPapillary serous8.40
adenocarcinoma
Ovary 16Ovr988ZPapillary serous6.40
adenocarcinoma
Ovary 17Ovr9702C018GANormal Cystic12.06
Ovary 18Ovr2061Normal left atrophic,10.11
small cystic
Ovary 19Ovr9702C020GANormal-multiple12.70
ovarian cysts
Ovary 20Ovr9702C025GANormal-hemorrhage CL22.09
cysts
Ovary 21Ovr9701C050GBNormal-multiple9.01
ovarian cysts
Ovary 22Ovr9701C087RANormal-small follicle1.86
cysts
Ovary 23Ovr9702C032RA7.81
Ovary 24Ovr9701C109RANormal1.50
Ovary 25Ovr9411C057RBenign large5.22
endometriotic cyst
Ovary 26Ovr9701C179aNormal3.09
Ovary 27Ovr1461OSerous3.53
cystadenofibroma, no
malignancy
Ovary 28Ovr9701C035GANormal6.32
Ovary 29Ovr9702C007RANormal0
Ovary 30Ovr9701C087RANormal-small follicle1.97
cysts
Ovary 31Ovr9411C109Normal9.49
Ovary 32Ovr9701C177aNormal-cystic3.85
follicles
Endometrium 1End14863A1A/A2AModerately differ.1.300.70
Endome. carcinoma/NAT
Endometrium 2End9709C056A/55AEndometrial1.8311.90
adenocarcinoma/NAT
Endometrium 3End9704C281A/2AEndometrial13.327.76
adenocarcinoma/NAT
Endometrium 4End9705A125A/6AEndometrial3.623.34
adenocarcinoma/NAT
MammaryMam00042D01/N013.130.76
Gland 1
MammaryMamS99-522A/B4.450.45
Gland 2
MammaryMam1620F/1621F0.741.91
Gland 3
MammaryMam4003259a/g3.482.00
Gland 4
Uterus 1Utr850U/851UStage 1 endometrial46.9611.96
cancer/NAT
Uterus 2Utr233U96/234U96Adenocarcinoma/NAT20.025.90
Uterus 3Utr1359O/1358OTumor/NAT10.237.74
Uterus 4Utr1417O/1418OMalignant tumor/NAT7.524.92
Cervix 1CvxVNM00083/83Keratinizing squamous5.4714.31
cell carcinoma
Cervix 2CvxIND00023D/NLarge cell4.993.99
nonkeratinizing
carcinoma
Cervix 3CvxIND00024D/NLarge cell10.1414.22
nonkeratinizing
carcinoma
Bladder 1Bld665T/664T1.434.03
Bladder 2Bld327K/328KPapillary transitional1.150.99
cell carcinoma/NAT
Kidney 1Kid4003710C/F0.030.35
Kidney 2Kid1242D/1243D1.610.14
Lung 1Lng750C/751CMetastatic osteogenic2.445.73
sarcoma/NAT
Lung 2Lng8890A/8890BCancer/NAT1.115.19
Lung 3Lng9502C109R/10R1.990.80
Liver 1Liv1747/1743Hepatocellular0.671.07
carcinoma/NAT
Liver 2LivVNM00175/175Cancer/NAT15.462.85
Skin 1Skn2S9821248A/BSecondary malignant2.830.70
melanoma
Skin 2Skn4005287A1/B20.914.02
Small Int. 1SmI9802H008/0090.870.82
Stomach 1Sto4004864A4/B4Adenocarcinoma/NAT0.811.22
Stomach 2StoS9822539A/BAdenocarcinoma/NAT1.221.39
Stomach 3StoS99728A/CMalignant0.470.35
gastrointestinal
stromal tumor
Prostate 1Pro1012B/1013BAdenocarcinoma/NAT2.392.61
Prostate 2Pro1094B/1095B0.100.38
Pancreas 1Pan776p/777pTumor/NAT2.390.52
Pancreas 2Pan824p/825pCystic adenoma1.661.22
Testis 1Tst239X/240XTumor/NAT1.241.72
Colon 1Cln9706c068ra/Adenocarcinoma/NAT0.380.65
69ra
Colon 2Cln4004732A7/B6Adenocarcinoma/NAT0.441.26
Colon 3Cln4004695A9/B81.941.53
Colon 4Cln9612B006/005Asc. Colon, Cecum,3.381.10
adenocarcinoma
Colon 5Cln9704C024R/25RAdenocarcinoma/NAT1.662.77

Table 4 and Table 5 represent a combined total of 129 samples in 17 human tissue types. Among 117 samples in Table 5 representing 16 different tissues high levels of expression are seen only in ovarian cancer samples. The median expression of Ovr114 is 14.03 (range: 0.5-106.08) in ovarian cancer and 4.34 (range: 0-22.09) in normal ovaries. In other words, the median expression levels of Ovr114 in cancer samples is increased 3.5 fold as compared with that of the normal ovarian samples. Five of 12 ovarian cancers (42%) showed increased expression relative to normal ovary (with 95% specificity). The median expression of Ovr114 in other gynecologic cancers is 4.99, and 2 out of 15 samples showed expression levels comparable with that in ovarian cancer. The median of the expression levels of Ovr114 in the rest of the cancer samples is 1.24, which is more than 11 fold less than that detected in ovarian cancer samples. No individual showed an expression level comparable to that of ovarian cancer samples (except Liver 2; LivVNM00175/175).

The 3.5 fold increase in expression in 42% of the individual ovarian cancer samples and no compatible expression in other non-gynecologic cancers is indicative of Ovr114 being a diagnostic marker for detection of ovarian cancer cells. It is believed that the Ovr114 marker may also be useful in detection of additional gynecologic cancers.

Measurement of Ovr115; Clone ID1283171; Gene ID 332459 (SEQ ID NO:2 or 14)

The numbers depicted in Table 6 are relative levels of expression Ovr115 compared to their respective calibrators. The numbers are relative levels of expression in 12 normal tissues of ovaries compared to Testis (calibrator). These RNA samples were obtained commercially and were generated by pooling samples from a particular tissue from different individuals.

TABLE 6
Relative Levels of Ovr115 Expression in Pooled Samples
TissueNormal
Colon858.10
Endometrium12.34
Kidney3.76
Liver0.00
Ovary0.43
Pancreas0.00
Prostate8.91
Small Intestine62.25
Spleen0.00
Stomach37.53
Testis1.00
Uterus47.67

The relative levels of expression in Table 6 show that Ovr115 mRNA expression is detected in all the 12 normal tissue pools analyzed.

The tissues shown in Table 6 are pooled samples from different individuals. The tissues shown in Table 7 were obtained from individuals and are not pooled. Hence the values for mRNA expression levels shown in Table 6 cannot be directly compared to the values shown in Table 7.

The numbers depicted in Table 7 are relative levels of expression of Ovr115 compared to testis (calibrator), in 46 pairs of matching samples and 27 unmatched tissue samples. Each matching pair contains the cancer sample for a particular tissue and the normal adjacent tissue sample for that same tissue from the same individual. In cancers (for example, ovary) where it was not possible to obtain normal adjacent samples from the same individual, samples from a different normal individual were analyzed.

TABLE 7
Relative Levels of Ovr115 Expression in Individual Samples
Normal &
Matching
BorderlineNormal
TissueSample IDCancer TypeCancerMalignantAdjacent
Ovary 1Ovr1037O/1038OPapillary serous193.340.24
adenocarcinoma, G3
Ovary 3OvrG021SPI/SN2Papillary serous0.380.31
adenocarcinoma
Ovary 4OvrG010SP/SNPapillary serous231.250.45
adenocarcinoma
Ovary 2OvrA084/A086Mucinous tumor,143.3416.65
grade G-B,
borderline
Ovary 5OvrA081F/A082DMucinous tumor, low314.130
malignant potential
Ovary 19Ovr14604A1CSerous299.87
cystadenofibroma,
low malignancy
Ovary 26Ovr14638A1CFollicular cysts,1278.32
low malignant
potential
Ovary 6Ovr1040OPapillary serous144.25
adenocarcinoma, G2
Ovary 22Ovr9410C360Endometrioid0.29
adenocarcinoma
Ovary 23Ovr1305XPapillary serous157.41
adenocarcinoma
Ovary 27Ovr773OPapillary serous340.04
adenocarcinoma
Ovary 28Ovr988ZPapillary serous464.75
adenocarcinoma
Ovary 7Ovr1157OPapillary serous432.07
adenocarcinoma
Ovary 8Ovr1005OPapillary serous74.23
endometricarcinoma
Ovary 9Ovr1028OOvarian carcinoma1408.79
Ovary 10Ovr14603A1DAdenocarcinoma0.00
Ovary 11Ovr9702C018GANormal Cystic0.16
Ovary 12Ovr2061Normal left0.00
atrophic, small
cystic
Ovary 13Ovr9702C020GANormal-multiple0.00
ovarian cysts
Ovary 14Ovr9702C025GANormal-hemorrhage CL0.00
cysts
Ovary 15Ovr9701C050GBNormal-multiple0.91
ovarian cysts
Ovary 16Ovr9701C087RANormal-small0.00
follicle cysts
Ovary 17Ovr9702C032RA0.28
Ovary 18Ovr9701C109RANormal0.00
Ovary 20Ovr9411C057RBenign large38.87
endometriotic cyst
Ovary 21Ovr9701C179aNormal0.08
Ovary 24Ovr1461OSerous0.00
cystadenofibroma, no
malignancy
Ovary 25Ovr9701C035GANormal0.00
Ovary 29Ovr9702C007RANormal0.00
Ovary 30Ovr9701C087RANormal-small0.00
follicle cysts
Ovary 31Ovr9411C109Normal0.00
Ovary 32Ovr9701C177aNormal-cystic0.00
follicles
Uterus 1Utr850U/851UStage 1 endometrial39.9513.60
cancer/NAT
Uterus 2Utr233U96/234U96Adenocarcinoma/NAT140.3722.67
Uterus 3Utr1359O/1358)Tumor/NAT16.4532.50
Uterus 4Utr1417O/1418OMalignant tumor/NAT288.525.29
Endometrium 1End14863A1A/A2AModerately differ.2.616.24
Endome.
carcinoma/NAT
Endometrium 2End9709C056A/55AEndometrial2.1049.40
adenocarcinoma/NAT
Endometrium 3End9704C281A/2AEndometrial480.7719.22
adenocarcinoma/NAT
Endometrium 4End9705A125A/6AEndometrial322.0731.08
adenocarcinoma/NAT
Lung 1Lng750C/751CMetastatic38.817.36
osteogenic
sarcoma/NAT
Lung 2Lng8890A/8890BCancer/NAT690.1214.71
Lung 3Lng9502C109R/10R1756.902.86
Skin 1Skn2S9821248A/BSecondary malignant10.560.00
melanoma
Skin 2Skn4005287A1/B2331.3047.23
Prostate 1Pro1012B/1013BAdenocarcinoma/NAT14.644.39
Prostate 2Pro1094B/1095B0.092.54
Bladder 1Bld665T/664T404.5690.20
Bladder 2Bld327K/328KPapillary77.35177.37
transitional cell
carcinoma/NAT
Kidney 1Kid4003710C/F0.1712.72
Kidney 2Kid1242D/1243D0.0013.74
MammaryMam1620F/1621F0.270.12
Gland 1
MammaryMam4003259a/g5.710.00
Gland 2
Liver 1Liv1747/1743Hepatocellular0.140.69
carcinoma/NAT
Liver 2LivVNM00175/175Cancer/NAT0.000.00
Small Int. 1SmI9802H008/009128.44151.38
Stomach 1Sto4004864A4/B4Adenocarcinoma/NAT303.01116.72
Stomach 2StoS9822539A/BAdenocarcinoma/NAT24.1217.76
Stomach 3StoS99728A/CMalignant0.009.10
gastrointestinal
stromal tumor
Pancreas 1Pan776p/777pTumor/NAT0.000.43
Pancreas 2Pan824p/825pCystic adenoma0.003.17
Testis 1Tst239X/240XTumor/NAT24.051.37
Colon 1Cln9706c068ra/69raAdenocarcinoma/NAT605.60169.77
Colon 2Cln4004732A7/B6Adenocarcinoma/NAT367.20281.32
Colon 3Cln4004695A9/B8316.15295.77
Colon 4Cln9612B006/005Asc. Colon. Cecum,820.89543.52
adenocarcinoma
Colon 5Cln9704C024R/25RAdenocarcinoma/NAT161.18150.07
Cervix 1CvxVNM00083/83Keratinizing738.171195.88
squamous cell
carcinoma
Cervix 2CvxIND00023D/NLarge cell1473.041229.80
nonkeratinizing
carcinoma
Cervix 3CvxIND00024D/NLarge cell2877.481275.02
nonkeratinizing
carcinoma

Table 6 and Table 7 represent a combined total of 129 samples in 17 human tissue types. Comparisons of the level of mRNA expression in ovarian cancer samples and the normal adjacent tissue from the same individuals or normal tissues from other individuals are shown in Table 7. Ovr115 was expressed at higher levels in 9 of 12 cancer tissues (75%), relative to the maximum level detected in all 21 normal or normal adjacent ovarian samples. All 4 of 4 (100%) ovarian tumors with borderline malignancy had elevated Ovr115 expression. The median expression in ovarian cancers (including the ones with borderline malignancy) was 212.30 while the median expression in normal ovaries was 0. When compared with their own normal adjacent tissue samples, expression levels of Ovr115 were also elevated in 3 of 3 (100%) lung cancers, 3 of 4 (75%) uterus cancers and 2 of 4 (50%) endometrial cancers.

The relatively high expression levels of Ovr115 in ovarian and other selected cancer samples is indicative of Ovr115 being a diagnostic marker for detection of ovarian, lung, uterine and endometrial cancer.

A homolog of Ovr115 has also been identified in public data base; g2597613 as gi|2507612|gb|U75329.1|HSU75329 Human serine protease mRNA, complete CDS. This homolog is depicted herein as SEQ ID NO:9. It is believed that SEQ ID NO:9 or the protein encoded thereby (SEQ ID NO:15) may also be useful as a diagnostic marker for detection of ovarian, lung, uterine and endometrial cancer in human patients.