Title:
Ice-making unit for flow-down type ice maker
Kind Code:
A1


Abstract:
Disclosed is an ice-making unit for a flow-down type ice maker which improves a deicing efficiency by coupling ice cubes in the widthwise direction by a slight thickness. A cooling pipe 34 is disposed zigzagged between the opposing surfaces of a pair of ice-making plates 32, 32, with straight portions 34a vertically separated from one another by predetermined intervals to allow the cooling pipe to contact with the ice-making plate 32, 32. Vertical ribs 38 vertically extending to define ice-making areas 40 are protrusively provided on the front side of the ice-making plate 32, apart from one another at predetermined intervals in the widthwise direction. The height h2 of the vertical ribs 38 is set smaller than the height h1 of ice cubes 36 in the protruding direction of the vertical ribs 38. A refrigerant is supplied in circulation to the cooling pipe 34 and ice-making water is supplied to the ice-making areas 40 in an ice-making operation, thus forming ice cubes 36 on the front side of the ice-making plate 32 where the straight portions 34a contact. When the ice-making operation progresses, the ice cubes 36 become larger and rise over the right and left vertical ribs 38, 38 so that the ice cubes 36, 36 adjoining in the widthwise direction are coupled together by a light thickness.



Inventors:
Maruyama, Shinichirou (Toyoake, JP)
Wakatsuki, Yuji (Toyoake, JP)
Application Number:
12/005189
Publication Date:
07/02/2009
Filing Date:
12/26/2007
Assignee:
Hoshizaki Denki Kabushiki Kaisha
Primary Class:
International Classes:
F25C1/12
View Patent Images:



Primary Examiner:
BAUER, CASSEY D
Attorney, Agent or Firm:
DLA PIPER LLP US (550 South Hope Street Suite 2300, LOS ANGELES, CA, 90071-2678, US)
Claims:
What is claimed is:

1. A ice-making unit for a flow-down type ice maker comprising: a cooling pipe arranged zigzagged at a back side of an ice-making member disposed vertically so that straight portions extending in a widthwise direction are vertically separated at predetermined intervals; a plurality of vertical partition members protrusively provided at the back side of the ice-making member, apart from one another at predetermined intervals in the widthwise direction and vertically extending to define ice-making areas, whereby an ice-making operation of supplying a refrigerant in circulation to the cooling pipe and causing ice-making water to flow down to the ice-making areas, allowing ice cubes with a predetermined height to be formed in a protrusion direction of the vertical partition members, a height of the vertical partition members being set lower than the height of the ice cubes so that ice cubes adjoining in the widthwise direction rise over the vertical partition members to be coupled together.

2. The ice-making unit according to claim 1, wherein a ratio of the height of vertical partition members to the height of the ice cubes is set to approximately 0.7 to 0.9.

3. The ice-making unit according to claim 1, wherein a vertical separation distance between the straight portions of the cooling pipe is set to such a value that upper and lower ice cubes are not coupled together.

4. The ice-making unit according to claim 1, wherein shield members extending in a vertical direction of the ice-making member and having a height set greater than the height of the ice cubes are provided at the ice-making member water, apart from one another in the widthwise direction, in such a way as to sandwich a predetermined number of the vertical partition members.

Description:

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an ice-making unit for a flow-down type ice maker, and, more specifically, to an ice-making unit for a flow-down type ice maker which produces ice cubes by letting ice-making water flow down to a front side of an ice-making member having a cooling pipe 34 disposed at the back side thereof.

2. Description of the Related Art

A flow-down type ice maker which supplies ice-making water to the front side of an ice-making member disposed vertically to form ice cubes is known as an automatic ice maker which continuously produces ice cubes (see, for example, Japanese Utility Model Publication No. 1-24538). As shown in FIGS. 5 and 6, an ice-making unit 10 of this flow-down type ice maker comprises a pair of ice-making plates 12, 12 perpendicularly opposed. A cooling pipe 22 in which a refrigerant is supplied in circulation is disposed zigzagged between both ice-making plates 12 and 12, with straight portions 34a extending in the widthwise direction of the cooling pipe 22 to contact the back sides of the ice-making plates 12, 12.

Each ice-making plate 12 is a metal plate of stainless steel or the like with a low thermal conductance, which has a plurality of vertical ribs 14 protruding outward and extending vertically. The vertical ribs 14 are bent in the widthwise direction at predetermined intervals to define an ice-making area 18 between adjoining two vertical ribs 14, 14. A height h2 of the vertical rib 14 protruding from an ice-making surface (ice-making plate surface between a pair of vertical ribs 14, 14) in contact with the cooling pipe 22 is set greater than a height h1 of ice cubes 16 when the ice-making operation ends, as shown in FIG. 6. A plurality of projections 20 are formed on the ice-making surface of the ice-making plate 12 at a portion where the projections 20 do not contact the cooling pipe 22, so that the upper ice cubes 16 rise over the projections 20 at the time of deicing to thereby be separated from the ice-making plate 12.

In performing an ice-making operation, ice-making water is supplied to each ice-making area 18 from ice-making water supply means (not shown) provided above the ice-making unit 10 while supplying a refrigerant in circulation in the cooling pipe 22. As a result, ice cubes 16 are independently formed at front side portions of the ice-making plate 12 where the cooling pipe 22 contacts. When the ice-making operation ends, the ice cubes 16 with the predetermined height h1 are formed in a grid pattern on the front side of the ice-making plate 12. In a deicing operation, a hot gas is supplied to the cooling pipe 22 and deicing water is let to flow down to the back sides of the ice-making plates 12, 12 from deicing water supply means (not shown) provided above the ice-making unit 10 to cause melt separation of the ice cubes 16 from the ice-making plate 12. Accordingly, the individual ice cubes 16 drop from the ice-making plate 12 due to the dead weights to be stored in an ice storage tank provided under.

BRIEF SUMMARY OF THE INVENTION

As described above, in the ice-making unit 10 in the conventional flow-down type ice maker, the height h2 of the vertical ribs 14 is set greater than the height h1 of ice cubes 16 when the ice-making operation ends. This prevents the ice cubes 16 from growing large in the ice-making operation, and rising over the vertical ribs 14, so that right and left ice cubes 16, 16 adjoining in the widthwise direction are not coupled together and the individual ice cubes 16 are formed independently in the ice-making area 1. Because each ice cube 16 is light, however, unlike in a case where multiple ice cubes are coupled together, the ice cubes 16 cannot be dropped from the ice-making plate 12 until the frozen state of the ice cubes 16 on the ice-making plate 12 is completely melted at the time of deicing operation. Therefore, the deicing operation takes times, increasing the power consumption, lowering the ice-making performance and increasing the running cost. Because the time for the ice cubes 16 to remain on the ice-making plate 12 becomes longer, melting of the ice cubes 16 progresses during that time so that the individual ice cubes 16 become smaller.

Further, in the ice-making unit 10 of such a flow-down type ice maker, ice-making water is cooled excessively while circulating, producing a collection of minute ice cores or flock ice, which clogs the sprinkler holes of the ice-making water supply means, reducing the supply of ice-making water to the associated ice-making area 18. In such a case, deformed ice cubes smaller than the ice cubes 16 of the normal size are formed at the ice-making area 18. However, the ice-making unit 10 of the conventional flow-down type ice maker has no measures taken to suppress the occurrence of such deformed ice cubes.

Accordingly, the present invention has been proposed to adequately overcome the inherent problem of the ice-making unit of the conventional flow-down type ice maker, and it is an object of the invention to provide an ice-making unit for a flow-down type ice maker with an improved deicing efficiency achieved by coupling ice cubes in the widthwise direction to increase the total weight thereof, thus making it easier to drop ice cubes from the ice-making unit in a deicing operation.

The ice-making unit for an flow-down type ice maker according to the present invention forms ice cubes coupled by a slight thickness in the widthwise direction, thus making ice cubes easier to drop from the ice-making unit in a deicing operation and improving the deicing efficiency.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

FIG. 1 is a lateral cross-sectional view showing an ice-making unit of a flow-down type ice maker;

FIG. 2 is a front view showing the ice-making unit of the flow-down type ice maker;

FIG. 3 is a longitudinal cross-sectional view showing the ice-making unit of the flow-down type ice maker;

FIG. 4 is a lateral cross-sectional view showing an ice-making unit of a flow-down type ice maker according to a modification;

FIG. 5 is a front view showing an ice-making unit of a conventional flow-down type ice maker; and

FIG. 6 is a lateral cross-sectional view showing the ice-making unit of the flow-down type ice maker.

DETAILED DESCRIPTION OF THE INVENTION

An ice-making unit for a flow-down type ice maker according to the present invention will be described below by way of a preferred embodiment by referring to the accompanying drawings.

Embodiment

As shown in FIGS. 1 to 3, like the conventional ice-making unit 10, an ice-making unit 30 for a flow-down type ice maker according to an embodiment includes a pair of ice-making plates (ice-making members) 32, 32 arranged substantially perpendicularly (vertically). A cooling pipe 34 is disposed between the opposing sides of both ice-making plates 32, 32, and is repetitively zigzagged in such a way that straight portions 34a of the cooling pipe 34 extend in the widthwise direction of the ice-making unit 30 to contact the back sides of both ice-making plates 32, 32. Disposed above the ice-making unit 30 are ice-making water supply means (not shown) which supplies ice-making water to the front side of each ice-making plate 32 in an ice-making operation and deicing water supply means (not shown) which supplies deicing water to the back side of each ice-making plate 32 in a deicing operation. In the ice-making operation, a refrigerant is supplied to the cooling pipe 34 from a freezing system and ice-making water is supplied to the ice-making plates 32, 32 from the ice-making water supply means, forming ice cubes 36 with a predetermined height h1 (about 13 mm in the embodiment) on the front sides of the ice-making plates 32, 32 where the straight portions 34a contact. In the deicing operation, a hot gas is supplied to the cooling pipe 34 by valve switching of the freezing system.

As shown in FIG. 1, the ice-making plate 32 is a thin plate of stainless steel or the like bent in a pulse wave pattern, so that a plurality of vertical ribs (vertical partition members) 38 protruding frontward of the ice-making unit 30 and extending vertically are provided in parallel and apart from each other in the widthwise direction at predetermined intervals. An ice-making area 40 extending vertically is defined between a pair of vertical ribs 38, 38 adjoining in the widthwise direction.

As shown in FIG. 3, the straight portions 34a of the cooling pipe 34 are disposed at the back side of the ice-making plate 32, apart from one another in the vertical direction at predetermined intervals. Projections 42 projecting lightly outward are formed on the ice-making surface of the ice-making plate 32 each at a portion located approximately in a middle between the upper and lower straight portions 34a, 34a of the cooling pipe 34. The projections 42 allow ice cubes 36 slipping on the ice-making plate 32 in the deicing operation too rise over the projections 42, thereby encouraging separation of the ice cubes 36 from the ice-making plate 32. A distance h3 between the upper and lower straight portions 34a of the cooling pipe 34 is set to a predetermined value so that the upper and lower ice cubes 36 are not coupled together. That is, as the distance h3 between the straight portions 34a is set to such a value as to prevent the upper and lower ice cubes 36, 36 from being coupled together, the ice cubes 36 are permitted to be coupled only in the widthwise direction.

As shown in FIG. 1, a protrusion height h2 of the vertical ribs 38 from the ice-making surface is set lower than a height h1 of ice cubes to be formed. That is, the height h2 of the vertical ribs 38 is set to such a value that in the ice-making operation, the ice cubes 36 gradually grow and rise over the right and left vertical ribs 38, 38 so that the ice cubes 36, 36 adjoining in the widthwise direction can be coupled together by a slight thickness (about 2 mm to 3 mm).

In this case, it is preferable that the ratio of the height h2 of the vertical ribs 38 to the height h1 of the ice cubes 36 should be about 0.7 to 0.9. In the embodiment, the height h2 of the vertical ribs 38 is set to 11 mm while the height h1 of the ice cubes 36 is set to 13 mm. This allows the ice cubes 36, 36 adjoining in the widthwise direction to be coupled by a thickness of about 2 mm.

It is to be noted that the ratio of the height h2 of the vertical ribs 38 to the height h1 of the ice cubes 36 can be changed adequately within the aforementioned range. That is, if the difference between the height h2 of the vertical ribs 38 and the height h1 of the ice cubes 36 is set large (if the ratio is set small), coupling of the ice cubes 36, 36 becomes easier and the coupled portion of the ice cubes 36, 36 can be made thicker. If the difference between the height h2 of the vertical ribs 38 and the height h1 of the ice cubes 36 is set small (if the ratio is set large), on the other hand, the coupled portion of the ice cubes 36, 36 becomes thinner. That is, the height h2 of the vertical ribs 38 has only to be set in such a way that the ice cubes 36, 36 in the widthwise direction are coupled together by a thickness of about 2 mm to 3 mm.

The height h1 of ice cubes 36 indicates the maximum protrusion height of the ice cubes 36 from the ice-making surface when the ice-making operation ends, and is determined by the ice-making performance of the ice maker, the ice-making time, etc. In the embodiment, the height h1 is set in such a way that the ice cubes 36 of about 13 mm in height are formed when the ice-making operation end. When the ratio becomes greater than 0.9 (when the height h2 of the vertical ribs 38 approaches the height h1 of the ice cubes 36), the coupled portion of the ice cubes 36, 36 becomes very thin. Then, the coupled portion of the ice cubes 36, 36 is melted at the initial stage of the deicing operation, making it difficult for the ice cubes 36 coupled in the widthwise direction to drop from the ice-making unit 30. When the ratio is smaller than 0.7 (when the height h2 of the vertical ribs 38 is too small), the coupled portion of the ice cubes 36, 36 becomes too thick. Then, even the impact of the ice cubes 36, 36 dropped into the ice storage tank or the like from the ice-making unit 30 may not completely break the coupled portion of the ice cubes 36, 36, so that the ice cubes 36, 36 are partially coupled together.

As shown in FIG. 1, side plates 48, 48 are provided on the respective sides of the ice-making unit 30, the height of the side plates 48, 48 protruding from the ice-making surface of the ice-making plate 32 is set greater than the height h1 of the ice cubes 36. This prevents the ice cubes 36 from being formed outside the ice-making unit 30 over the side plates 48, 48 in the ice-making operation.

Operation of Embodiment

The operation of the ice-making unit of the flow-down type ice maker according to the embodiment will be explained below.

In the ice-making operation, ice-making water is supplied to each ice-making area 40 of each ice-making plate 32 from the ice-making water supply means, and a refrigerant is supplied in circulation in the cooling pipe 34. If the ice-making operation progresses and the height h1 of the ice cubes 36 exceeds the height h2 of the vertical ribs 38, each ice cube 36 starts rising over the vertical ribs 38, and the ice cubes 36, 36 adjoining in the widthwise direction are coupled together. Then, as indicated by arrows in FIG. 2, the ice-making water are supplied to all the ice-making areas 40 through the coupled portions of the ice cubes 36. This allows sufficient ice-making water to be supplied to even an ice-making area 40 where the sprinkler holes of the ice-making water supply means is clogged by flock ice or the like and the amount of ice-making water supplied becomes smaller, thus suppressing production of deformed ice cubes.

When the ice-making operation ends, the ice cubes 36 are formed coupled in the widthwise direction over all the ice-making areas 40 (hereinafter called coupled ice cubes 44) as shown in FIG. 2. As the straight portions 34a of the cooling pipe 34 are set apart vertically at predetermined intervals, however, the upper and lower ice cubes 36, 36 are not coupled together, so that the coupled ice cubes 44 extend only in the widthwise direction as shown in FIG. 3.

When the coupled ice cubes 44 are formed, the ice-making operation ends followed by the deicing operation. Then, the deicing water is supplied from the deicing water supply means and a hot gas is supplied to the cooling pipe 34. As a result, the frozen portions of the coupled ice cubes 44 and the ice-making plate 32 start melting so that the coupled ice cubes 44 eventually drop from the ice-making plate 32. At this time, the weight of the coupled ice cubes 44 becomes large due to a plurality of ice cubes 36 coupled, the coupled ice cubes 44 promptly drop from the ice-making plate 32. That is, since the coupled ice cubes 44 drop from the ice-making plate 32 in a short time after the deicing operation starts, it is possible to suppress the running cost and improve the ice-making performance.

The coupled ice cubes 44 which slip over the ice-making plate 32 rise over the projections 42 provided at the ice-making surface and are separated therefrom, and freely drop into the underlying ice storage tank or the like. At the time the coupled ice cubes 44 are stored in the ice storage tank, the coupled ice cubes 44 are broken into separate ice cubes 36 by the falling impact.

Because the ice cubes 36 are coupled only in the widthwise direction and are not coupled in the vertical direction, the coupled ice cubes 44 are likely to be broken apart by the falling impact, so that the ice cubes 36 provided are easy to use. As the ratio of the height h2 of the vertical ribs 38 to the height h1 of the ice cubes is set to 0.7 to 0.9, the thickness of the coupled portion of the ice cubes 36, 36 can be set to about 2 mm to 3 mm. That is, as the height h2 of the vertical ribs 38 to the height h1 of the ice cubes 36 is set to the aforementioned relationship, the ice cubes 36, 36 are coupled together with adequate coupling force and are broken into individual ice cubes 36 when dropped from the ice-making unit 30. This provides ice cubes 36 which are easy to use.

Although the foregoing description of the embodiment has been given of a case where the ice-making unit 30 comprises a pair of ice-making plates 32, 32, the ice-making unit 30 may be constituted by a single ice-making plate 32. Although the ice-making plates 32, 32 are provided perpendicularly in the embodiment, the present invention can be adapted to a tilted ice-making unit.

Although the vertical ribs 38 are bent integrally with the ice-making plate 32 in the embodiment, the vertical ribs 38 may be provided separately at the ice-making plate 32. Further, the present invention can of course be adapted to an ice-making unit 30 in which the ice-making plate 32 is constituted by coupling a plurality of members, formed to have a cross section of an approximately square bracket shape and vertically extending so as to define the ice-making areas 40, in the widthwise direction.

Modification of the Embodiment

FIG. 4 is a lateral cross-sectional view showing an ice-making unit 30 of a flow-down type ice maker according to a modification of the embodiment, and with same reference numerals given to like or same portions, only those portions different from the embodiment will be described. In the ice-making plates 32, 32 of the modification, shield members 46 with a height h4 set large are provided apart in the widthwise direction in such a way as to sandwich a predetermined number of vertical ribs 38 (while the number is two in the modification, it may be one or three or more). The shield members 46, like the vertical ribs 38, are formed by bending the ice-making plate 32, and the height h4 from the ice-making surface is set greater than the height h1 of the ice cubes 36. That is, with the shield members 46 provided at the ice-making plate 32, even if the ice cubes 36 grow to rise over the vertical ribs 38, the ice cubes 36 cannot go over the shield members 46, thus inhibiting further coupling of the ice cubes 36. Therefore, the number of ice cubes 36 to be coupled in the widthwise direction can be adjusted by the positions where the shield members 46 are disposed.

In the modification, the shield members 46, 46 are provided to sandwich two vertical ribs 38, 38, so that three ice cubes 36, 36, 36 are coupled in the widthwise direction. That is, the layout pattern of the shield members 46 should be changed adequately according to the number of ice cubes 36 to be coupled. Also, in the modification, the right and left side plates 48, 48 protrude over the ice cubes 36, so that both side plates 48, 48 achieve a function similar to that of the shield members 46.