Title:
Verfahren zur Ermittlung einer Genauigkeitsinformation eines Positionsvektors
Kind Code:
B3


Abstract:

Verfahren zur Ermittlung einer Genauigkeitsinformation, die die Genauigkeit eines eine Position eines Empfängers (3) eines satellitenbasierten Positionsbestimmungssystems (2) beschreibenden Positionsvektors betrifft, wobei der Positionsvektor durch ein Bayessches Filter als gewichtete Summe von Verarbeitungsvektoren berechnet wird, die in Abhängigkeit von Empfangssignalen mehrerer Satelliten und von mehreren Prädiktionsvektoren berechnet werden, wobei die Prädiktionsvektoren durch Anwenden eines Prädiktionsmodells aus einem jeweiligen Testvektor ermittelt werden, wobei die Testvektoren und jeweilige Gewichtungsfaktoren derart vorgegeben werden, dass ihre Verteilung einer vorgegebenen Wahrscheinlichkeitsverteilung entspricht, wobei für jede Koordinate der Verarbeitungsvektoren wenigstens das dritte und/oder das vierte zentrale, insbesondere marginale, Moment der Verteilung dieser Koordinate ermittelt wird, wonach die Genauigkeitsinformation in Abhängigkeit der ermittelten Momente bestimmt wird. embedded image




Inventors:
Thielecke, Jörn, Prof. (91056, Erlangen, DE)
Tollkühn, Andreas (85049, Ingolstadt, DE)
Patino-Studencki, Lucila, Dr. (90491, Nürnberg, DE)
Application Number:
DE102017201886A
Publication Date:
05/24/2018
Filing Date:
02/07/2017
Assignee:
AUDI AG, 85057 (DE)
Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 (DE)
International Classes:



Foreign References:
EP14036542010-03-17
EP20681652012-06-27
Other References:
KAPLAN, Elliott D.; HEGARTY, Christopher J.: Understanding GPS principles and applications. 2. Auflage. Boston, Mass. USA: ARTECH HOUSE, 2006. - ISBN 1-58053-894-0. - Deckblatt und Inhaltsverzeichnis
PONOMAREVA, Ksenia; DATE, Paresh; WANG, Zidong: A new unscented kalman filter with higher order moment-matching. In: Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems – MTNS 2010, 5–9 July 2010, Budapest, Hungary. 2010, S. 1609-1613. ISBN 978-963-311-370-7. URL: www.conferences.hu/mtns2010/proceedings/Papers/281_036.pdf [abgerufen am 05.07.2017].
TENNE, Dirk; SINGH, Tarunraj: The higher order unscented filter. In: Proceedings of the American Control Conference, 4-6 June 2003, Denver, CO, USA. 2003, S. 2441-2446. ISBN 0-7803-7896-2. DOI: 10.1109/ACC.2003.1243441. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1243441 [abgerufen am 04.07.2017].
TOLLKÜHN, Andreas [u.a.]: Stochastic GNSS multipath estimation using a particle filter. In: Institute of Navigation International Technical Meeting 2016 (ITM), 25-28 January 2016, Monterey, California, USA. Bd. 2, 2016, S. 858-864. ISBN 978-1-5108-2161-3.
Claims:
Verfahren zur Ermittlung einer Genauigkeitsinformation, die die Genauigkeit eines eine Position eines Empfängers (3) eines satellitenbasierten Positionsbestimmungssystems (2) beschreibenden Positionsvektors betrifft, wobei der Positionsvektor durch ein Bayessches Filter als gewichtete Summe von Verarbeitungsvektoren berechnet wird, die in Abhängigkeit von Empfangssignalen mehrerer Satelliten und von mehreren Prädiktionsvektoren berechnet werden, wobei die Prädiktionsvektoren durch Anwenden eines Prädiktionsmodells aus einem jeweiligen Testvektor ermittelt werden, wobei die Testvektoren und jeweilige Gewichtungsfaktoren derart vorgegeben werden, dass ihre Verteilung einer vorgegebenen Wahrscheinlichkeitsverteilung entspricht, dadurch gekennzeichnet, dass für jede Koordinate der Verarbeitungsvektoren wenigstens das dritte und/oder das vierte zentrale, insbesondere marginale, Moment der Verteilung dieser Koordinate ermittelt wird, wonach die Genauigkeitsinformation in Abhängigkeit der ermittelten Momente bestimmt wird.

Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Genauigkeitsinformation ein Quantil oder eine näherungsweise Rekonstruktion einer kontinuierlichen Verteilungsfunktion für die jeweilige Koordinate ermittelt wird.

Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass im Rahmen der Ermittlung des dritten und/oder des vierten zentralen Moments aus den Verarbeitungsvektoren Entkopplungsvektoren berechnet werden, wobei die Kovarianz der Verteilung verschiedener Koordinaten der Entkopplungsvektoren Null ist.

Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Varianz der Verteilung der Koordinaten der Entkopplungsvektoren Eins ist.

Verfahren nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass eine Kovarianzmatrix für die Koordinaten der Verarbeitungsvektoren berechnet wird, wobei die Entkopplungsvektoren in Abhängigkeit der Kovarianzmatrix berechnet werden.

Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass eine Transformationsmatrix berechnet wird, die den Zusammenhang zwischen einem Differenzvektor, der die Differenz aus dem jeweiligen Verarbeitungsvektor und einer durch die Gewichtungsfaktoren gewichteten Summe der Verarbeitungsvektoren angibt, und dem zugeordneten Entkopplungsvektor beschreibt, wobei das Produkt der Transformationsmatrix mit der transponierten Transformationsmatrix gleich der Kovarianzmatrix ist.

Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Prädiktionsvektoren und/oder die Verarbeitungsvektoren jeweils in Abhängigkeit eines Zufallsvektors mit einer vorgegebenen Wahrscheinlichkeitsverteilung ermittelt werden.

Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Wahrscheinlichkeitsverteilung des Zufallsvektors ein drittes und/oder viertes zentrales Moment aufweist, das ungleich Null ist.

Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Ermittlung des Positionsvektors wiederholt durchgeführt wird, wobei bei wenigstens einer Durchführung die Testvektoren in Abhängigkeit der bei einer vorangehenden Durchführung für wenigstens eine Koordinate der Verarbeitungsvektoren berechneten dritten und/oder vierten zentralen Momente erfolgt.

Positionsbestimmungseinrichtung zur Bestimmung einer Ist-Position der Positionsbestimmungseinrichtung (2), umfassend eine Empfangseinrichtung (3) zum Empfang von Empfangssignalen mehrerer Satelliten und eine Verarbeitungseinrichtung (4) zur Verarbeitung der Empfangssignale, dadurch gekennzeichnet, dass die Verarbeitungseinrichtung (4) zur Durchführung des Verfahrens nach einem der vorangehenden Ansprüche ausgebildet ist.

Kraftfahrzeug, dadurch gekennzeichnet, dass es eine Positionsbestimmungseinrichtung (2) nach Anspruch 10 umfasst.

Kraftfahrzeug nach Anspruch 11dadurch gekennzeichnet, dass es wenigstens ein Fahrerassistenzsystem (5) umfasst, durch das der Positionsvektor und/oder eine von dem Positionsvektor abhängende Ausgabeinformation an einen Fahrer des Kraftfahrzeugs ausgebbar ist und/oder durch das in Abhängigkeit des Positionsvektors wenigstens einen Aktor (6) des Kraftfahrzeugs (1) ansteuerbar ist, insbesondere um in den Fahrbetrieb des Kraftfahrzeugs (1) einzugreifen, wobei die Ausgabe des Positionsvektors und/oder der Ausgabeinformation und/oder die Ansteuerung des Aktors (6) zusätzlich in Abhängigkeit der Genauigkeitsinformation erfolgt.

Description:

Die Erfindung betrifft ein Verfahren zur Ermittlung einer Genauigkeitsinformation, die die Genauigkeit eines eine Position eines Empfängers eines satellitenbasierten Positionsbestimmungssystems beschreibenden Positionsvektors betrifft, wobei der Positionsvektor durch ein Bayessches Filter, insbesondere ein Kalman-Filter, als gewichtete Summe von Verarbeitungsvektoren berechnet wird, die in Abhängigkeit von Empfangssignalen mehrerer Satelliten und von mehreren Prädiktionsvektoren berechnet werden, wobei die Prädiktionsvektoren durch Anwenden eines Prädiktionsmodells aus einem jeweiligen Testvektor ermittelt werden, wobei die Testvektoren und jeweilige Gewichtungsfaktoren derart vorgegeben werden, dass ihre Verteilung einer vorgegebenen Wahrscheinlichkeitsverteilung entspricht. Daneben betrifft die Erfindung eine Positionsbestimmungseinrichtung und ein Kraftfahrzeug.

Satellitenbasierte Positionsbestimmungssysteme, beispielsweise GPS-Empfänger, werden mittlerweile in einer Vielzahl von Einrichtungen, beispielsweise in Smartphones und Navigationsgeräten, insbesondere in Kraftfahrzeugen, genutzt. Insbesondere bei einer Nutzung in sicherheitskritischen Systemen, beispielsweise wenn ermittelte Positionen von Fahrerassistenzsystemen genutzt werden, die in den Fahrbetrieb eines Kraftfahrzeugs eingreifen, ist es hochrelevant, nicht nur eine Positionsinformation zu ermitteln, sondern auch eine Information, wie genau die ermittelte Position ist, also eine Genauigkeitsinformation bzw. einen Konfidenzwert.

Empfänger eines satellitenbasierten Positionsbestimmungssystems liefern entweder direkt berechnete Positionen oder Laufzeit- und Trägerphasenmessungen, aus denen anschließend Positionen berechnet werden. Die Bestimmung dieser Messgrößen ist in zahlreichen Standardwerken beschrieben, beispielsweise in E. Kaplan et al., „Understanding GPS: Principles and aplications“, Artech House Mobile Communications Series, Artech House, 2005. Als Qualitätsangaben für die Messung dienen Größen wie ein Störabstand, ein Loss-of-Lock Indikator sowie weitere Informationen zum Zustand der Satelliten. Zusätzlich werden Fehlerbudgets für verschiedene Störungen wie atmosphärische Effekte, Satellitenabweichungen und Mehrwegausbreitungen ermittelt und genutzt. Üblicherweise werden entsprechende Fehlerbudgets, die im Rahmen einer Kalman-Filterung berücksichtigt werden, lediglich durch ihre Varianzen beschrieben und als mittelwertfreie Normalverteilungen angenommen.

Die Nutzung eines Kalman-Filters zur Bestimmung von Positionen und Geschwindigkeiten in einem satellitenbasierten Navigationssystem ist beispielsweise der Druckschrift EP 1 403 654 B1 zu entnehmen. Eine Ermittlung von Genauigkeitsfehlern eines solchen Kalman-Filters wird beispielsweise in der Druckschrift EP 2 068 165 B1 diskutiert. In dieser Druckschrift werden Positionsfehler bzw. Konfidenzintervalle aus einzelnen Einträgen einer Kovarianzmatrix berechnet.

Problematisch ist hierbei, dass bei einer entsprechenden Fehlerabschätzung ein Fehler insbesondere in urbanen Gebieten, in denen verstärkt Fehler durch Mehrfachreflexionen der Satellitensignale auftreten, typischerweise unterschätzt wird. Es sind zahlreiche Ansätze bekannt, Messfehler in solchen Nutzungssituationen zu reduzieren. Beispielsweise ist es aus dem Konferenzbeitrag D. Tenne et al., „The Higher Order Unscented Filter“, Proceedings of the American Control Conference 2003, Juni 2003, bekannt, ein sogenanntes unscented Kalman-Filter zu nutzen, wobei ein Ansatz erläutert wird, ein Sigmaset für das unscented Kalman-Filter zu generieren, dessen Verteilung nach der Transformation im Rahmen der Prädiktion durch das Kalman-Filter auch bezüglich höherer Ordnungen mit der Statistik der tatsächlichen Zustandsvariablen übereinstimmt. Auch der Konferenzbeitrag K. Ponomareva et al. „A new unscented Kalman filter with higher order moment-matching“, Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems - MTNS 2010, Juli 2010, betrifft einen Ansatz, die Sigmapunkte für ein unscented Kalman-Filter derart zu wählen, dass höhere Momente von Wahrscheinlichkeitsverteilungen berücksichtigt werden.

Während es diese Ansätze ermöglichen, die Genauigkeit der Positionsbestimmung insgesamt zu verbessern, ist diesen Veröffentlichungen kein Ansatz zu entnehmen, wie eine Abschätzung von Konfidenzintervallen im Rahmen der Ermittlung einer Positionsinformation verbessert werden kann.

Der Erfindung liegt somit die Aufgabe zugrunde, die Ermittlung einer Genauigkeitsinformation, die die Genauigkeit eines Positionsvektors betrifft, demgegenüber, insbesondere bei einer Nutzung zur Positionsbestimmung in einem urbanen Umfeld, zu verbessern.

Die Aufgabe wird erfindungsgemäß durch ein Verfahren der eingangs genannten Art gelöst, wobei für jede Koordinate der Verarbeitungsvektoren wenigstens das dritte und/oder das vierte zentrale, insbesondere marginale, Moment der Verteilung dieser Koordinate ermittelt wird, wonach die Genauigkeitsinformation in Abhängigkeit der ermittelten Momente bestimmt wird.

Das erfindungsgemäße Verfahren nutzt ein insbesondere parametrisches Bayessches Filter, in dessen Prädiktionsschritt Testvektoren genutzt werden, um mittels eines Prädiktionsmodells eine Vielzahl von Prädiktionsvektoren zu berechnen, wobei für die Testvektoren eine bestimmte Verteilung vorgegeben wird. Als Bayessches Filter kann insbesondere ein Kalman-Filter verwendet werden, prinzipiell sind jedoch auch andere Filter nutzbar. Unter Berücksichtigung der Empfangssignale, also in Abhängigkeit von realen Messwerten, erfolgt eine Aktualisierung der Prädiktionsvektoren, woraus die Verarbeitungsvektoren resultieren. Dies entspricht soweit der Nutzung eines aus dem Stand der Technik bekannten unscented Kalman-Filters, wobei die Testvektoren mit den zugeordneten Gewichtungsfaktoren in diesem Zusammenhang auch als Sigmapunkte bezeichnet werden. Es ist hierbei bekannt, dass die resultierende Verteilung der Verarbeitungsvektoren eine Verteilung aufweisen kann, die höhere Momente aufweist, selbst wenn die Testvektoren normalverteilt sind. Dies kann beispielsweise der Fall sein, wenn das Prädiktionsmodell Nichtlinearitäten aufweist oder wenn im Rahmen des Prädiktionsmodells oder der Aktualisierung, wie später noch detailliert erläutert werden wird, Rausch- bzw. Störgrößen berücksichtigt werden, die nicht normalverteilt sind. Entsprechende Störungen, die nicht normalverteilt sind, sind beispielsweise Mehrwegefehler, die durch Mehrfachreflexionen der Empfangssignale, insbesondere in urbanen Gebieten, verursacht werden. Erfindungsgemäß wird vorgeschlagen, zumindest das dritte und/oder das vierte zentrale Moment der Verteilung der Koordinaten zu ermitteln und im Rahmen der Ermittlung der Genauigkeitsinformation zu berücksichtigen. Es werden vorzugsweise marginale Momente für die einzelnen Koordinaten ermittelt und berücksichtigt. Alternativ oder ergänzend könnten jedoch auch Verbundmomente berücksichtigt werden. Beispielsweise hat eine Änderung einer Krümmung der Verteilung einen starken Einfluss darauf, welcher Anteil der Verteilung in den Randbereichen der Verteilung liegt. Werden entsprechende höhere Momente beispielsweise bei der Berechnung eines Quantils berücksichtigt, was später noch detailliert erläutert werden wird, so kann dieses Quantil weit genauer berechnet werden, womit eine robuste Angabe eines Konfidenzintervalls ermöglicht wird.

Durch die erfindungsgemäße Berücksichtigung höherer Momente im Rahmen der Ermittlung einer Genauigkeitsinformation kann somit insbesondere die Robustheit von Verfahren verbessert werden, die einen ermittelten Positionsvektor auswerten, da eine Voraussage, wie große Fehler zu erwarten sind bzw. wie zuverlässig eine erhaltene Information ist, deutlich verbessert werden kann. Wird ein resultierender Positionsvektor beispielsweise im Rahmen von assistierten oder automatisierten Fahrfunktionen eines Kraftfahrzeugs genutzt, können z. B. entsprechende Sicherheitsabstände oder andere Sicherheitsintervalle in Abhängigkeit der Genauigkeitsinformation angepasst werden oder ein automatischer Fahrbetrieb kann bei einer nicht ausreichenden Genauigkeit der Positionsermittlung abgebrochen werden.

Die Funktionsweise von Kalman-Filtern und insbesondere von sogenannten unscented Kalman-Filtern ist aus dem Stand der Technik bekannt und wird beispielsweise in den eingangs zitierten Konferenzbeiträgen und Patentschriften erläutert. Im Folgenden soll daher nur eine grobe Erläuterung des Vorgehens erfolgen, soweit es für das erfindungsgemäße Verfahren relevant ist. Ein klassischer linearer Kalman-Filter nutzt zunächst einen Anfangszustand, wobei für diesen Anfangszustand ein Erwartungswert und eine Kovarianzmatrix für den Zustandsvektor bekannt sind. In einem Voraussageschritt erfolgt anschließend eine Zeitentwicklung sowohl des Erwartungswertes als auch der Kovarianzmatrix. Der Voraussageschritt kann beispielsweise auf einem physikalischen Modell basieren, wobei beispielsweise bei einer Nutzung einer Positionsbestimmungseinrichtung in einem Kraftfahrzeug bekannte Parameter, die die Position beeinflussen, beispielsweise eine Geschwindigkeit des Kraftfahrzeugs und/oder ein Lenkwinkel, berücksichtigt werden können. Es werden zudem Messgrößen erfasst und resultierende Größen für den Erwartungswert und die Kovarianzmatrix für den nächsten Zeitschritt werden in Abhängigkeit der prädizierten Werte und der gemessenen Werte ermittelt. Hierbei erfolgt eine Gewichtung, die die prädizierte Kovarianzmatrix berücksichtigt. Die Gewichtung der Messwerte hängt somit davon ab, wie große Fehler im Rahmen der Prädiktion erwartet werden.

Sogenannte unscented Kalman-Filter bilden diesen Ansatz derart weiter, dass insbesondere auch nicht lineare Modelle zur Prädiktion genutzt werden können. Um dies zu erreichen, werden vor der Prädiktion in einem Zwischenschritt sogenannte Sigmapunkte bzw. Testvektoren mit zugeordneten Gewichten ermittelt, deren Verteilung der durch die Kovarianzmatrix und den Erwartungswert für den Zustandsvektor beschriebenen Wahrscheinlichkeitsverteilung entspricht. Für diese Sigmapunkte bzw. Testvektoren erfolgt jeweils separat eine Prädiktion von Prädiktionsvektoren. Diese werden in einem Aktualisierungsschritt in Abhängigkeit von Messwerten aktualisiert. Aus den resultierenden Verarbeitungsvektoren können im Anschluss ein aktualisierter Erwartungswert und eine aktualisierte Kovarianzmatrix für den Zustandsvektor berechnet werden. Wie in den eingangs zitierten Konferenzbeiträgen dargestellt wird, kann die Generierung der Sigmapunkte bzw. Testvektoren so angepasst werden, dass optional auch höhere Momente der prädizierten bzw. im Aktualisierungsschritt angepassten Wahrscheinlichkeitsverteilung berücksichtigt werden.

Erfindungsgemäß wird zumindest das dritte und/oder das vierte zentrale Moment der Verteilung der einzelnen Koordinaten nach der Aktualisierung ermittelt und ausgewertet, um die Genauigkeit des im Bayesschen Filter ermittelten Positionsvektors zu spezifizieren. Das dritte zentrale Moment einer Verteilung wird in der Statistik auch Schiefe der Verteilung genannt und das vierte zentrale Moment Kurtosis oder Wölbung. Die Schiefe beschreibt insbesondere die Asymmetrie der Verteilung der Werte um einen Erwartungswert und die Kurtosis die Schärfe eines Maximums um den Erwartungswert. Die zentralen Momente für einzelne Koordinaten werden auch als marginale Momente bezeichnet. Im erfindungsgemäßen Verfahren ist es insbesondere möglich, die dritten und vierten zentralen Momente nur in Richtung der einzelnen Koordinate zu betrachten, wobei vorangehend, wie später noch detailliert erläutert wird, eine Dekorrelation bzw. Entkopplung der einzelnen Koordinaten erfolgen kann.

Für jede Koordinate kann ein Erwartungswert als durch die Gewichtungsfaktoren gewichtete Summe über die einzelnen Verarbeitungsvektoren berechnet werden. Zur Berechnung des n-ten Moments wird als Summand der entsprechenden gewichteten Summe jeweils die n-te Potenz der Differenz zwischen dem Wert der jeweiligen Koordinate und ihrem Erwartungswert verwendet.

Als Genauigkeitsinformation kann ein Quantil oder eine näherungsweise Rekonstruktion einer kontinuierlichen Verteilungsfunktion der jeweiligen Koordinate ermittelt werden. Ein Quantil gibt an, für welchen Schwellwert ein bestimmter vorgegebener Anteil der Werte kleiner als dieser Schwellwert ist. Im Falle einer Normalverteilung mit dem Erwartungswert E(X) und der Standardabweichung σ (X) kann das Quantil wie folgt berechnet werden: Qα(X)=E(X)+qα*σ(X)embedded image

Hierbei ist qα die invertierte Verteilungsfunktion der Standardnormalverteilung an der Stelle α, die beispielsweise einer Wertetabelle der Standardliteratur für das entsprechende Quantil entnommen werden kann. Durch die sogenannte Cornish-Fisher-Methode kann ein entsprechendes Quantil auch für andere Verteilungsfunktionen zumindest näherungsweise berechnet werden, wenn die Schiefe γ und Wölbung δ dieser Verteilung bekannt sind. Hierzu ist in der oben genannten Formel statt dem Faktor qα der Faktor zα zu nutzen, der wie folgt berechnet wird: zα=qα+16(qα21)*γ+124(qα33qα)*(δ3)136(2qα35qα)*γ2embedded image

Das erfindungsgemäße Verfahren ermöglicht somit die Berechnung von Quantillen mit erheblich erhöhter Genauigkeit gegenüber dem üblichen Vorgehen, bei dem ausschließlich die Varianz berücksichtigt wird.

In einigen Anwendungsfällen kann es vorteilhaft sein, aus dem dritten und/oder dem vierten zentralen Moment die Verteilungsfunktion für die jeweilige Koordinate zu ermitteln. Hierzu kann beispielsweise die prinzipiell aus dem Stand der Technik bekannte Edgeworth-Approximation genutzt werden, im Rahmen derer eine Verteilungsfunktion als Reihentwicklung dargestellt wird, deren Koeffizienten von den Momenten der Verteilung abhängen. Diese Reinentwicklung kann nach der Berücksichtigung der jeweils ermittelten Momente abgebrochen werden.

Die Test- bzw. Prädiktionsvektoren können im erfindungsgemäßen Verfahren bereits Positionsvektoren entsprechen. Ergänzend oder alternativ können als Koordinaten des Vektorraums dieser Vektoren jedoch weitere Parameter genutzt werden, die im Rahmen der Positionsbestimmung relevant sind. Beispielsweise können als Koordinaten auch Laufzeiten und/oder Phasenlagen einzelner Empfangssignale bestimmter Satelliten berücksichtigt werden.

Die einzelnen Koordinaten von Verarbeitungs-, Prädiktions- bzw. Testvektoren, die im Rahmen eines Kalman-Filters eines satellitenbasierten Positionsbestimmungssystems genutzt werden, sind häufig nicht statistisch unabhängig voneinander. Dies führt dazu, dass die Kovarianzmatrix für die Prädiktionsvektoren nicht ausschließlich auf ihrer Diagonalen Einträge aufweist, die von Null verschieden sind. Es kann daher vorteilhaft sein, eine Koordinatentransformation durchzuführen, um die einzelnen Komponenten der Verarbeitungsvektoren zu dekorrelieren. Es ist daher möglich, im Rahmen der Ermittlung des dritten und/oder des vierten zentralen Moments aus den Verarbeitungsvektoren Entkopplungsvektoren zu berechnen, wobei die Kovarianz der Verteilung verschiedener Komponenten der Entkopplungsvektoren Null ist. Insbesondere kann die Ermittlung derart erfolgen, dass auch der Mittelwert der Entkopplungsvektoren Null ist. Zudem ist es möglich, dass die Varianz der Verteilung der Koordinaten der Entkopplungsvektoren 1 ist. Dies bedeutet, dass die Verteilung der einzelnen Koordinaten der Entkopplungsvektoren abgesehen von den höheren statistischen Momenten, die im Folgenden ausgewertet werden sollen, der Standardnormalverteilung entspricht. Durch diese Vorverarbeitung können die marginalen höheren Momente, also insbesondere das dritte und/oder das vierte zentrale Moment der Verteilung, besonders leicht ermittelt werden. Dies kann erfolgen, indem eine Symmetrie der Verteilung untersucht wird, um das dritte zentrale Moment zu ermitteln und/oder indem ermittelt wird, wie rasch die Wahrscheinlichkeit mit zunehmendem Abstand vom Mittelwert abnimmt, um das vierte zentrale Moment zu bestimmen. Ein Einfluss hierauf durch die Varianz der einzelnen Verteilungen wurde durch die vorangehende Transformation bereits herausgerechnet.

Um die oben beschriebene Entkopplung zu erreichen, kann eine Kovarianzmatrix für die Koordinaten der Verarbeitungsvektoren berechnet werden, wobei die Entkopplungsvektoren in Abhängigkeit der Kovarianzmatrix berechnet werden. Insbesondere kann eine Transformationsmatrix berechnet werden, die den Zusammenhang zwischen einem Differenzvektor, der die Differenz aus dem jeweiligen Verarbeitungsvektor und einer durch die Gewichtungsfaktoren gewichteten Summe der Verarbeitungsvektoren angibt, und dem zugeordneten Entkopplungsvektor beschreibt, wobei das Produkt der Transformationsmatrix mit der transponierten Transformationsmatrix gleich der Kovarianzmatrix ist. Die Transformationsmatrix kann beispielsweise durch die Cholesky-Zerlegung ermittelt werden. Das Ergebnis einer solchen Zerlegung, also die Transformationsmatrix, wird auch als Wurzel der Kovarianzmatrix bezeichnet.

Es ist bekannt, dass sich Zufallsvektoren X mit einer gegebenen Kovarianzmatrix und einem gegebenen Erwartungsvektor e gemäß der folgenden Formel berechnen lassen: x=Tn+eembedded image

Hierbei ist die Matrix T die Transformationsmatrix, die durch eine Cholesky-Zerlegung der Kovarianzmatrix gewonnen werden kann. In der obig erläuterten Ausführungsvariante des erfindungsgemäßen Verfahrens wird der gleiche Zusammenhang angewandt. Hierbei wird die Berechnung jedoch umgekehrt durchgeführt, das heißt, es werden keine Vektoren x mit einer vorgegebenen Verteilung aus standardnormalverteilten Vektoren n gewonnen, sondern die Verarbeitungsvektoren werden als Vektor x in die Formel eingesetzt und die Entkopplungsvektoren werden als Vektoren n gewonnen. Würde die Verteilung der Verarbeitungsvektoren keine höheren zentralen Momente aufweisen, das heißt, wären sie durch den Mittelwert und die Kovarianzmatrix vollständig beschrieben, so würden die Entkopplungsvektoren bzw. ihre Komponenten der Standardnormalverteilung genügen. Jegliche Abweichung der Entkopplungsvektoren bzw. ihrer Komponenten von der Standardnormalverteilung resultiert somit aus höheren statistischen Momenten der Verteilung der Verarbeitungsvektoren, womit diese durch Auswertung der Entkopplungsvektoren besonders einfach gewonnen werden können.

Die erfindungsgemäße Ermittlung einer Genauigkeitsinformation ist besonders relevant, wenn das dritte und/oder das vierte zentrale Moment der Verteilung der Prädiktionsvektoren deutlich von einer Normalverteilung abweichen. Dies kann einerseits daraus resultieren, dass das Prädiktionsmodell nicht linear ist. Entsprechende höhere Momente der Wahrscheinlichkeitsverteilung können jedoch auch aus der Berücksichtigung von Störungen bzw. von einem Rauschen im Rahmen des Kalman-Filters resultieren. Es ist im erfindungsgemäßen Verfahren daher möglich, dass die Prädiktionsvektoren und/oder die Verarbeitungsvektoren jeweils in Abhängigkeit eines Zufallsvektors mit einer vorgegebenen Wahrscheinlichkeitsverteilung ermittelt werden. Insbesondere kann die Wahrscheinlichkeitsverteilung des Zufallsvektors ein drittes und/oder viertes zentrales Moment aufweisen, das ungleich Null ist. Ein derart modelliertes Rauschen kann in üblichen Kalman-filterbasierten Verfahren zur Positionsbestimmung zu einer starken Fehlschätzung der Genauigkeit der Position des Empfängers führen. Daher wird ein entsprechend modelliertes Rauschen, das beispielsweise zur Modellierung von Mehrfachreflexionen in urbanen Umgebungen genutzt werden kann, typischerweise nur im Rahmen von anderen Berechnungsverfahren, beispielsweise relativ aufwändig zu berechnenden Partikelfiltern, genutzt. Durch die erfindungsgemäß verbesserte Ermittlung der Genauigkeitsinformation kann eine entsprechende Modellierung des Rauschens nun jedoch auch für Bayessche bzw. Kalman-Filter genutzt werden.

Weitere Informationen zur Modellierung eines Rauschens sind beispielsweise dem Artikel von A. Tollkühn et al., „Stochastic gnss multipath estimation using a particle filter“, Proceedings of the 2016 International Technical Meeting of The Institute of Navigation, Januar 2016, Seite 858 - 864, zu entnehmen. Dieser Artikel beschreibt eine sogenannte Ko-Verteilung, die zur Modellierung des Rauschens in satellitenbasierten Positionsbestimmungssystemen besonders geeignet ist. Allgemein können auch andere K-Verteilungen genutzt werden. Eine K-Verteilung basiert auf einer Γ-Verteilung, wobei angenommen wird, dass der Mittelwert ebenfalls durch eine Γ-Verteilung mit unterschiedlichem Formungsparameter verschmiert ist. Die genannten Verteilungsfunktionen für den Zufallsvektor sind rein beispielhaft und es können letztlich beliebig komplexe Modelle zur Modellierung des Rauschens genutzt werden.

In dem erfindungsgemäßen Verfahren wird die Ermittlung des Positionsvektors vorteilhaft wiederholt durchgeführt. In diesem Fall ist es auch möglich, dass bei wenigstens einer Durchführung die Testvektoren in Abhängigkeit der bei einer vorangehenden Durchführung für wenigstens eine Koordinate der Verarbeitungsvektoren berechneten dritten und/oder vierten zentralen Momente erfolgt. Hierbei kann, wie in dem eingangs diskutierten Konferenzbeitrag „A new unscented Kalman filter with higher order moment-matching“, ein durchschnittliches marginales Moment berechnet werden und die einzelnen Testvektoren können wie dort erläutert berechnet werden. Besonders vorteilhaft kann jedoch zunächst von standardnormalverteilten Vektoren ausgegangen werden, deren Verteilung zunächst so angepasst wird, dass das dritte und/oder das vierte zentrale Moment berücksichtigt wird. Es kann also beispielsweise die Symmetrie der Ausgansvektoren angepasst werden, um eine entsprechende Schiefe einzustellen und/oder die relativen Gewichte und/oder Koordinatenpositionen können angepasst werden, um eine entsprechende Kurtosis einzustellen. Auf diese modifizierten Ausgangsvektoren kann eine Transformationsmatrix angewandt werden, die wie vorangehend erläutert aus der Kovarianzmatrix berechnet werden kann. Anschließend kann ein Erwartungsvektor addiert werden. Somit kann eine Verteilung der Testvektoren erreicht werden, die sowohl die höheren Momente der einzelnen Koordinaten berücksichtigt als auch die Varianzen und Kovarianzen und den Erwartungswert.

Neben dem erfindungsgemäßen Verfahren betrifft die Erfindung eine Positionsbestimmungseinrichtung zur Bestimmung einer Ist-Position der Positionsbestimmungseinrichtung, umfassend eine Empfangseinrichtung zum Empfang von Empfangssignalen mehrerer Satelliten und eine Verarbeitungseinrichtung zur Verarbeitung der Empfangssignale, wobei die Verarbeitungseinrichtung zur Durchführung des erfindungsgemäßen Verfahrens ausgebildet ist.

Zudem betrifft die Erfindung ein Kraftfahrzeug, das eine erfindungsgemäße Positionsbestimmungseinrichtung umfasst.

Das Kraftfahrzeug kann zudem wenigstens ein Fahrerassistenzsystem umfassen, durch das der Positionsvektor und/oder eine von dem Positionsvektor abhängende Ausgabeinformation an einen Fahrer des Kraftfahrzeugs ausgebbar ist und/oder durch das in Abhängigkeit des Positionsvektors wenigstens einen Aktor des Kraftfahrzeugs ansteuerbar ist, insbesondere um in den Fahrbetrieb des Kraftfahrzeugs einzugreifen, wobei die Ausgabe des Positionsvektors und/oder der Ausgabeinformation und/oder die Ansteuerung des Aktors zusätzlich in Abhängigkeit der Genauigkeitsinformation erfolgt. Beispielsweise kann ein Fahrerassistenzsystem in Abhängigkeit der Genauigkeitsinformation aktiviert und/oder deaktiviert werden. Es ist auch möglich, zwischen verschiedenen Betriebsmodi des Fahrerassistenzsystems umzuschalten. Beispielsweise kann bei einer hohen Genauigkeit eine vollautomatisierte Führung des Fahrzeugs erfolgen, bei der keine Überwachung durch einen Fahrer notwendig ist. Beschreibt die Genauigkeitsinformation eine geringere Genauigkeit des Positionsvektors kann beispielsweise in einen Modus gewechselt werden, in dem eine ständige Überwachung durch einen Fahrer erforderlich ist. Alternativ oder ergänzend können weitere Parameter eines Fahrerassistenzsystems angepasst werden. Beispielsweise kann ein Sicherheitsabstand zu anderen Objekten im Rahmen einer automatisierten oder assistierten Führung des Kraftfahrzeugs in Abhängigkeit der Genauigkeitsinformation angepasst werden.

Weitere Vorteile und Einzelheiten der Erfindung ergeben sich aus den folgenden Ausführungsbeispielen sowie den zugehörigen Zeichnungen. Dabei zeigen schematisch:

  • 1 ein Ausführungsbeispiel eines erfindungsgemäßen Kraftfahrzeugs, das ein Ausführungsbeispiel einer erfindungsgemäßen Positionsbestimmungseinrichtung umfasst, und
  • 2 ein Ablaufdiagramm eines Ausführungsbeispiels des erfindungsgemäßen Verfahrens.

1 zeigt ein Kraftfahrzeug 1, das eine Positionsbestimmungseinrichtung 2 zur Bestimmung einer Ist-Position der Positionsbestimmungseinrichtung 2 bzw. des Kraftfahrzeugs 1 umfasst. Die Positionsbestimmungseinrichtung 2 dient zur Positionsbestimmung anhand von Empfangssignalen, die von mehreren Satelliten empfangen werden. Hierzu umfasst sie eine Empfangseinrichtung 3, um diese Signale zu empfangen. Die Signalverarbeitung erfolgt durch eine Verarbeitungseinrichtung 4.

Wie später noch detailliert mit Bezug auf 2 beschrieben werden wird, nutzt die Verarbeitungseinrichtung 4 ein sogenanntes unscented Kalman-Filter, bei dem ausgehend von einem Ausgangszustand ein voraussichtlicher Endzustand prädiziert wird, dieser mit Messdaten, also insbesondere der Laufzeit bzw. der Phasenlage der Empfangssignale, abgeglichen wird und ein neuer aktueller Zustand durch eine Gewichtung der Messsignale und des prädizierten Zustands bestimmt wird. Um nicht lineare Zustandsänderungen und/oder Einflüsse durch nicht standardverteilte Störgrößen berücksichtigen zu können werden bei einem unscented Kalman-Filter für eine Vielzahl von sogenannten Sigmapunkten bzw. Testvektoren mit zugeordneten Gewichtungsvektoren Prädiktionsvektoren berechnet. Diese werden in Abhängigkeit der Messwerte aktualisiert. Aus den resultierenden Verarbeitungsvektoren werden ein Erwartungswert für die Prädiktion, also für den aktuellen Zustand, und eine Information über die Wahrscheinlichkeitsverteilung, insbesondere eine Kovarianzmatrix, ermittelt. Wesentlich ist hierbei, dass auch höhere Momente, insbesondere ein drittes und/oder ein viertes zentrales Moment, der Verteilung der Koordinaten der Verarbeitungsvektoren ermittelt werden. Dies dient dazu, exaktere Informationen über die Genauigkeit des Positionsvektors zu gewinnen, als dies ohne die Auswertung dieser Momente möglich wäre. Ergänzend ist es möglich, diese Momente auch im Rahmen der Ermittlung neuer Testvektoren bzw. Sigmapunkte auszuwerten.

Der Positionsvektor und die ermittelte Genauigkeitsinformation werden an ein Fahrerassistenzsystem 5 bereitgestellt, das dazu dient, eine Vielzahl von Aktoren, von denen beispielhaft ein der Bremse des Kraftfahrzeugs ein zugeordneter Aktor 6 dargestellt ist, anzusteuern, um einen assistierten oder automatisierten Fahrbetrieb zu ermöglichen. Hierbei werden in Abhängigkeit der Genauigkeitsinformation Sicherheitsabstände zu Objekten im Umfeld des Kraftfahrzeugs 1 angepasst. Wird der Positionsvektor somit mit hoher Genauigkeit ermittelt, können kleinere Sicherheitsabstände genutzt werden, als wenn die Genauigkeit des Positionsvektors relativ gering ist. Unterschreitet die Genauigkeit einen vorgegebenen Grenzwert, wird die automatische Führung des Kraftfahrzeugs 1 abgebrochen und es wird in einen zweiten Betriebsmodus des Fahrerassistenzsystems 5 gewechselt, in dem der Fahrbetrieb manuell erfolgt.

Das Fahrerassistenzsystem 5 kann zudem eine aus dem Positionsvektor abgeleitete Information darstellen. Beispielsweise kann auf der Anzeigeeinrichtung 7 eine Karte der Umgebung des Kraftfahrzeugs 1 dargestellt werden, in der die Position des Kraftfahrzeugs 1 markiert wird. Diese Darstellung kann zusätzlich von der Genauigkeitsinformation abhängen. Beispielsweise kann eine Größe, eine Farbe oder eine Form einer genutzten Markierung von der Genauigkeitsinformation abhängen, um den Fahrer darauf hinzuweisen, wie starke Abweichungen von der angezeigten Position zu erwarten sind.

2 zeigt ein Ablaufdiagramm des durch die Positionsbestimmungseinrichtung 2 durchgeführten Verfahrens, durch das der Positionsvektor und die Genauigkeitsinformation ermittelt werden. Das gezeigte Verfahren wird während des Fahrbetriebs des Kraftfahrzeugs wiederholt durchgeführt.

In Schritt S1 werden zunächst Empfangssignale mehrerer Satelliten empfangen und aus den Empfangssignalen werden die Positionen der einzelnen Satelliten sowie Signallaufzeiten bzw. Phasenlagen der Empfangssignale als Messdaten ermittelt. Anhand dieser Informationen kann eine Triangulation der Fahrzeugposition durchgeführt werden. Verfahren zur Positionsbestimmung aus Signallaufzeit von Satellitensignalen sind im Stand der Technik grundsätzlich bekannt und sollen daher nicht detailliert erläutert werden.

In Schritt S2 werden diverse Betriebsparameter des Kraftfahrzeugs 1 erfasst, die einen Einfluss auf die Position des Kraftfahrzeugs haben. Beispielsweise kann die aktuelle Fahrgeschwindigkeit des Kraftfahrzeugs 1 durch ein Odometer erfasst werden, ein Lenkwinkel kann über einen Lenkwinkelsensor erfasst werden und/oder es kann eine Beschleunigung des Kraftfahrzeugs 1 durch einen Beschleunigungssensor erfasst werden.

In Schritt S3 werden mehrere Testvektoren vorgegeben, deren Verteilung einer vorgegebenen Wahrscheinlichkeitsverteilung entspricht. Zur klaren Darstellung des Verfahrens wird im Folgenden davon ausgegangen, dass die Testvektoren die gleichen Koordinaten aufweisen wie der Positionsvektor, also insbesondere eine Position in geodätischen Koordinaten beschreiben. Es ist in Weiterbildungen des Verfahrens selbstverständlich möglich, dass der Testvektor beliebige andere Informationen beschreibt, die für die Positionsermittlung relevant sind, beispielsweise Signallaufzeiten einzelner Signale oder Ähnliches. Ist bereits eine Position des Kraftfahrzeugs zu einem vorangehenden Zeitpunkt sowie eine Verteilung eines angenommenen Fehlers dieser Position bekannt, so können die Testvektoren derart verteilt vorgegeben werden, dass ihr Erwartungswert der Position zu diesem Zeitpunkt entspricht und ihre Verteilung den angenommenen Fehler dieser Position beschreibt. Ein entsprechender Fehler kann beispielsweise durch eine Kovarianzmatrix vorgegeben werden, wobei vorzugsweise zusätzlich zumindest das dritte und/oder das vierte zentrale Moment einer angegebenen oder in einem vorangehenden Durchgang des Verfahrens berechneten Fehlerverteilung berücksichtigt werden.

In Schritt S4 wird ein Prädiktions- und Aktualisierungsschritt des Kalman-Filters durchgeführt. Dieser Schritt kann in vielen Fällen als geschlossene Formel angegeben werden, die von den in Schritt S1 ermittelten Messergebnissen, den in Schritt S2 ermittelten Parametern und den in Schritt S3 vorgegebenen Testvektoren abhängt und letztlich die Verarbeitungsvektoren und deren Kovarianzmatrix ausgibt. Zum besseren Verständnis sollen jedoch mehrere Einzelvorgänge hervorgehoben werden.

Zunächst wird ein Prädiktionsmodell parametrisiert. Das Prädiktionsmodell dient dazu, die voraussichtliche Zeitentwicklung der Testvektoren zu ermitteln, um Prädiktionsvektoren zu berechnen. Die zeitliche Entwicklung der Testvektoren hängt selbstverständlich von den in Schritt S2 erfassten Parametern, also von der Eigenbewegung des Kraftfahrzeugs, ab.

Da die Testvektoren, wie zu Schritt S3 erläutert, einen vorangehenden Zustand mit einer voraussichtlichen Fehlerverteilung abbilden, resultieren aus der Anwendung des Prädiktionsmodells Prädiktionsvektoren, deren Verteilung einem voraussichtlichen Ist-Zustand mit einem angenommenen Fehler entspricht. Diese Prädiktionsvektoren können in Abhängigkeit der in Schritt S1 ermittelten Messwerte korrigiert werden. Diese Aktualisierung erfolgt gemäß dem aus dem Stand der Technik für unscented Kalman-Filter bekannten Vorgehen, das nicht detailliert erläutert werden soll.

Im Rahmen der Aktualisierung werden Störeinflüsse auf die Messung modelliert, also beispielsweise die Auswirkungen eines Störabstands, eines Elevationswinkels, eines möglichen Loss-of-Lock bestimmter Satelliten und Ähnliches. Die Berücksichtigung nicht deterministischer Einflüsse im Rahmen der Aktualisierung ist ebenfalls aus dem Stand der Technik grundsätzlich bekannt. Sollen Mehrwegfehler, die insbesondere in einem urbanen oder anderweitig eng bebauten Umfeld auftreten können, modelliert werden, resultieren hieraus Störungen, die selbst nicht normalverteilt sind. Diese Störungen können dazu führen, dass selbst bei im Wesentlichen normalverteilten Testvektoren eine Wahrscheinlichkeitsverteilung der Verarbeitungsvektoren resultieren kann, die stark von der Standardverteilung abweicht und beispielsweise relativ große dritte und/oder vierte zentrale Momente aufweisen kann.

Da in dem einfach erläuterten Beispiel die Komponenten der Verarbeitungs-, Test- bzw. Prädiktionsvektoren den Komponenten des Positionsvektors entsprechen, kann ein Positionsvektor schlicht als Erwartungswert der Verarbeitungsvektoren berechnet werden. Zudem wird die Kovarianzmatrix der Verarbeitungsvektoren berechnet. In einer Weiterbildung des Verfahrens wäre es möglich, zwischen beobachtbaren und nicht beobachtbaren Zustandsvariablen zu unterscheiden und entsprechende Beobachtungs- bzw. Rückkoppelfunktionen zu implementieren.

Informationen über die Statistik der Verarbeitungsvektoren können in anschließenden Verfahrenswiederholungen im Schritt S3 genutzt werden, um die Verteilung der Testvektoren anzupassen.

Die Ermittlung der höheren Momente der Verteilung der einzelnen Koordinaten der Verarbeitungsvektoren ist aus Übersichtlichkeitsgründen als separater Schritt S5 dargestellt. Im Rahmen dieses Verfahrensschritts können zunächst aus den Verarbeitungsvektoren Entkopplungsvektoren berechnet werden, um statistisch nicht voneinander unabhängige Koordinaten der Verarbeitungsvektoren zu dekorrelieren. Bei einer Korrelation verschiedener Koordinaten, also beispielsweise bei einer Korrelation verschiedener Koordinaten der Verarbeitungsvektoren kann insbesondere die Kovarianz der Verteilung der verschiedenen Koordinaten ungleich Null sein. Eine Entkopplung kann dadurch erreicht werden, dass eine Transformationsmatrix genutzt wird, die als Wurzel einer vorangehend berechneten Kovarianzmatrix der Verarbeitungsvektoren, beispielsweise durch eine Cholesky-Zerlegung, berechnet wird.

Wie bereits zuvor erläutert, ermöglicht es eine derartige Transformationsmatrix gemeinsam mit dem Erwartungsvektor der Verarbeitungsvektoren ein Gleichungssystem aufzustellen, das den Zusammenhang zwischen standardnormalverteilten Vektoren und Vektoren, deren Verteilung durch die Kovarianzmatrix und den Erwartungsvektor beschrieben ist, darstellt. Werden nun die Verarbeitungsvektoren, deren Verteilung höhere zentrale Momente aufweist, in diese Gleichung eingesetzt, so stehen anstelle der standardnormalverteilten Vektoren Vektoren, die durch eine Verteilungsfunktion beschrieben sind, die die zu ermittelnden höheren zentralen Momente aufweist, und die vorliegend als Entkopplungsvektoren bezeichnet werden. Da die Entkopplungsvektoren dekorreliert sind, ist die Kovarianz ihrer Komponenten, abgesehen von möglichen Fehlern im Rahmen der Berechnung, gleich Null. Zugleich ist die Varianz der Verteilung der einzelnen Komponenten gleich 1 und der Erwartungsvektor entspricht dem Null-Vektor.

Hierdurch ist es mit geringem Aufwand möglich, das dritte und/oder das vierte zentrale Moment der einzelnen Koordinaten zu bestimmen, da das dritte zentrale Moment, also die Schiefe, rein aus der Asymmetrie dieser Verteilung bestimmbar ist, und das vierte zentrale Moment in Abhängigkeit davon bestimmbar ist, wie schnell die Wahrscheinlichkeit mit dem Abstand der Koordinate von ihrem Null-Wert abnimmt.

Die derart berechneten dritten und/oder vierten zentralen Momente für die einzelnen Koordinaten können genutzt werden, um in Schritt S3 eines folgenden Durchlaufs die Verteilung der Testvektoren anzupassen. Zudem kann aus diesen Momenten sowie der zuvor im Rahmen der Kovarianzmatrix berechneten Varianz der einzelnen Koordinaten in Schritt S6 eine Genauigkeitsinformation berechnet werden. Beispielhaft soll ein Quantil berechnet werden, nämlich ein Quantil, das angibt, innerhalb welches Teils des Wertebereichs 95 % der Koordinatenwerte der Verteilung liegen. Dies ist möglich, indem die zuvor berechneten Werte für die Varianz, bzw. für deren Wurzel, also die Standardabweichung, die Schiefe, also das dritte zentrale Moment, und die Wölbung, also das vierte zentrale Moment, in die bereits vorangehend angegebene Formel für die Cornish-Fisher-Methode eingesetzt werden. Alternativ oder ergänzend könnte beispielsweise eine näherungsweise Verteilungsfunktion durch eine Edgeworth-Approximation ermittelt werden oder Ähnliches.

Durch das beschriebene Verfahren können beispielsweise beliebige Quantillen oder andere Genauigkeitsinformationen mit hoher Genauigkeit berechnet werden. Dies ist besonders vorteilhaft, wenn die ermittelten Positionsvektoren im Rahmen einer sicherheitsrelevanten Anwendung, beispielsweise im Rahmen einer automatisierten oder assistierten Fahrzeugführung, wie zu 1 erläutert, genutzt werden.