Die Erfindung betrifft eine Sensoranordnung, umfassend mindestens ein elektrooptisches Sendeelement (3) und/oder mindestens ein elektrooptisches Empfangselement (4), welche auf einer Leiterplatte (2) positioniert sind, wobei die Leiterplatte (2) in einem Gehäuse (2, 7) angeordnet ist und eine dem Sende- und/oder dem Empfangselement (3, 4) gegenüberliegende Gehäuseabdeckung (7) mindestens eine Linse (9, 10) aufweist. Bei einer Sensoranordnung, bei welcher die Leistungsfähigkeit der Sensoranordnung verbessert wird, ist ein die Gehäuseabdeckung (7) tragender Gehäuseboden durch eine Leiterplatte (2) gebildet.
DE102014201550A1 | N/A | 2015-07-30 | ||
DE10302007A1 | N/A | 2004-08-05 | ||
DE10308085A1 | N/A | 2003-10-02 |
20060016994 | 2006-01-26 | |||
20110133941 | 2011-06-09 | |||
20120160994 | 2012-06-28 | |||
20120223233 | 2012-09-06 | |||
20130010310 | 2013-01-10 | |||
20160187530 | 2016-06-30 |
Die Erfindung betrifft eine Sensoranordnung, umfassend mindestens ein elektrooptisches Sendeelement und/oder mindestens ein elektrooptisches Empfangselement, welche auf einer Leiterplatte positioniert sind, wobei die Leiterplatte in einem Gehäuse angeordnet ist und eine dem Sende- und/oder dem Empfangselement gegenüberliegende Gehäuseabdeckung mindestens eine Linse aufweist.
Es sind Sensoranordnungen, beispielsweise Lichtschranken-Bauformen, bekannt, die stark miniaturisierte optische Sensoren enthalten. Bei solchen Sensoranordnungen ist der zur Verfügung stehende Bauraum wesentlich für die Leistungsfähigkeit der Lichtschranken. In dem kleinsten Baugrößenbereich ist häufig die zulässige Gesamtbauhöhe auf Zehntel Millimeter genau vorgegeben. Eine solche Sensoranordnung ist in
Der Erfindung liegt die Aufgabe zugrunde, eine Sensoranordnung anzugeben, bei welcher zur Verfügung stehender Bauraum in dem Gehäuse optimal genutzt wird.
Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass ein die Gehäuseabdeckung tragender Gehäuseboden durch die Leiterplatte gebildet ist. Durch den Verzicht auf einen separaten Gehäuseboden können Anordnungen bzw. Bauelemente mit einer erhöhten Leistungsfähigkeit verwendet werden, da bei vorgegebener Gehäusehöhe größere Schnittweiten, d.h. ein größerer Abstand zwischen optoelektronischem Element und Linse eingestellt wird. Darüber hinaus vereinfacht sich der Montageprozess und der Bedarf für aufwändige Justierungsprozesse wird durch die längeren Schnittweiten reduziert. Durch die reduzierte Teileanzahl der Sensoranordnung wird darüber hinaus eine bessere Wärmeabfuhr der Elektronik nach außen gewährleistet, da die Leiterplatte selbst die äußere Begrenzung des Gehäuses bildet und die wärmeabgebenden Komponenten direkt darauf angeordnet sind.
Vorteilhafterweise ist die Leiterplatte mehrlagig ausgebildet, wobei eine eine Außenseite der Leiterplatte bildende Metalllage nutzsignalfrei ausgebildet ist. Durch diese nutzsignalfreie Beschaltung der äußersten Metalllage, die den Abschluss der Leiterplatte nach außen bildet, wird eine Beschädigung oder Beeinflussung der Elektronik durch eine direkte Berührung der Oberfläche des Gehäusebodens unterbunden.
In einer Ausgestaltung ist die die Außenseite der Leiterplatte bildende Metalllage als Abschirmelement ausgebildet. Da die äußerste Metalllage eine Abschirmung gegenüber Störstrahlungen bildet, wird die elektromagnetische Verträglichkeit der Sensoranordnung verbessert, ohne dass zusätzliche Schirmelemente an anderen Stellen des Gehäuses verwendet werden müssen. Dies führt zu einer Platzeinsparung im Gehäuse und zu einer Reduzierung der Teileanzahl.
In einer Variante ist die Leiterplatte um ihre Kanten herum metallisiert. Dadurch wird eine sehr gute Beständigkeit gegen chemische Einflüsse erzielt.
In einer Ausführungsform sind mindestens die Kanten der Leiterplatte mit einer Goldschicht überzogen. Diese Goldschicht trägt nicht nur zur Abwehr der äußeren chemischen Einflüsse bei, sondern bietet auch ein verbessertes Erscheinungsbild der Sensoranordnung.
In einer Weiterbildung ist die schalenförmige Gehäuseabdeckung auf die Leiterplatte aufgesetzt. Damit werden die auf der Leiterplatte befindlichen elektrischen und elektrooptischen Bauelemente zuverlässig geschützt und die Justierung der Gehäuseabdeckung zur Leiterplatte vereinfacht.
In einer Ausgestaltung sind die Außenseiten der Leiterplatte und/oder die Seitenwandungen der Gehäuseabdeckung mit einer Lackierung überzogen. Diese Lackierung bildet einen weiteren Schutz gegen äußere Einflüsse.
In einer weiteren Variante besteht die Gehäuseabdeckung aus einem Kunststoff, wobei die dem Gehäuseinneren zugewandten Flächen der Gehäuseabdeckung mit einer Metallisierungsschicht überzogen und geeignet mit einem Bezugspunkt, beispielsweise einem Bezugspotential, beispielsweise einem Erdungspotential der Elektronik verbunden sind. Durch diese Metallisierung wird die Schirmwirkung des Gehäuses verbessert.
In einer Ausführungsform ist die Metallisierungsschicht mit der Kantenmetallisierung der Leiterplatte verbunden, wodurch sowohl der Gehäuseboden als auch die Gehäuseabdeckung umfassend gegen elektromagnetische Strahlung von außen abgeschirmt sind.
Vorteilhafterweise ist die schalenförmige Gehäuseabdeckung mit der Leiterplatte stoff- und/oder kraftschlüssig verbunden. Dies kann beispielsweise durch Verlöten oder Verkleben erfolgen. Die Verlötung kann ökonomisch beispielsweise in einem SMD Reflow-Prozess durchgeführt werden.
In einer besonders einfachen Ausführungsform besteht die Leiterplatte aus einem glasfaserverstärkten Epoxidmaterial. Aufgrund der Verwendung dieses robusten Materials kann die Leiterplatte selbst und somit die gesamte Sensoranordnung an einem vorgegebenen Gegenstand direkt angeschraubt werden.
Die Erfindung lässt zahlreiche Ausführungsformen zu. Mehrere davon sollen anhand der in der Zeichnung dargestellten Figuren näher erläutert werden. Es zeigen:
In
In
Um den Schutz gegen äußere Einflüsse weiter zu verbessern, sind, wie in
In
Die Leiterplatte
Die Gehäuseabdeckung
Als Alternative dazu ist auch ein Verkleben der schalenförmigen Gehäuseabdeckung
Durch die vorliegende Lösung wird die Leistungsfähigkeit bei gleicher äußerer Baugröße optimiert und unter Umständen der Montageprozess vereinfacht.