Vorrichtung (1) gemäß
– eine Spritzlackierkabine (2);
– eine Vorrichtung (3) zur Wiedergewinnung von Spritzlack (2.4.3) aus Spritznebeln (3.2) aus (2) mit
– einer Spritznebellenkung (3.1) unterhalb (2),
– in (3.1) nach unten strömenden (3.2) und
– einem Siebboden (3.3),
– einem Verwirbelungsreaktor (3.4) unterhalb von (3.3) zur Erzeugung von Graupel- und Grieselpartikel (3.6) aus (3.2),
– einer parallel zur Längsachse von (3.4) rotierbaren Kältemittelzuleitung (3.5) mit
– Sprüharmen (3.5.3) mit Kältemitteldüsen (3.5.2) für Kältemittel (3.5.1),
– verwirbelten (3.6) mit derselben Zusammensetzung wie (3.2) und
– ein Auslassrohr (3.7) für einen Gasstrom (3.7.1) und Graupel- und/oder Grieselpartikel (3.6.1),
– einer an (3.7) angeschlossenen Vorrichtung (3.8) zur Abscheidung von (3.6.1) aus (3.7.1) und
– einem Auslassrohr (3.8.1) für abgeschiedene Graupel- und Grieselpartikel (3.6.2), verbunden mit einem Auffangbehälter (3.15) für (3.6.2) und den wiedergewonnenen Spritzlack (3.15.1), sowie
– einem Abluftkanal (3.18) mit einem Polizeifilter (3.17);
und Verfahren zur Wiedergewinnung von (2.4.3) aus (3.2) von (2).
DE102015000585A1 | N/A | 2016-07-21 |
Die vorliegende Erfindung betrifft ein Verfahren zur Wiedergewinnung von Spritzlacken aus Spritznebeln oder Overspray von Spritzlackierkabinen.
Außerdem betrifft die vorliegende Erfindung eine Vorrichtung zur Wiedergewinnung von Spritzlacken aus Spritznebeln oder Overspray von Spritzlackierkabinen.
Nicht zuletzt betrifft die vorliegende Erfindung die Verwendung der wiedergewonnenen Spritzlacke.
Der in der vorliegenden Anmeldung zitierte Stand der Technik wird durch Bezugnahme Bestandteil der Anmeldung.
Spezifisch für die indirekte Lackverarbeitung durch Zerstäuben oder Spritzen sind die Spritznebel. Damit verbunden sind eine Abgabe von Lösemitteln an die Umgebung und der Overspray. Aus Arbeits- und Umweltschutzgründen sind deshalb Maßnahmen zu ergreifen, die nicht unbeträchtlichen Lösemittel- und Lacknebelmengen, die das Lackierobjekt nicht treffen, abzuführen, eventuell zurückzugewinnen oder zu entsorgen. Die entstehenden Spritznebel haben auch in prozesstechnischer Hinsicht unerwünschte Nebeneffekte. Durch vagabundierende Nebel können bereits lackierte Objekte kontaminiert werden, wenn sie sich auf der frischen, noch viskosen Lackierung niederschlagen. Filmfehler in Form von Kratern sind häufig die Folge.
Es ist deshalb notwendig, die Spritznebel und verdunstende Lösemittel unter Kontrolle zu halten. Dazu gibt es in handwerklichen Betrieben Spritzstände, die durch Absaugen und Filtern Lösemittel und Spritznebel mithilfe der Luftführung durch Wasservorhänge hinter dem Spritzstand diese Aufgabe erledigen können. Indes ist dieses Verfahren nicht dazu geeignet, den Spritzlack quantitativ oder nahezu quantitativ wiederzugewinnen.
Bei der industriellen Verarbeitung werden die Spritzeinrichtungen in geschlossene Kabinen gebracht. In diesen werden die verdunstenden Lösemittel und der Sprühnebel durch Zufuhr von Frischluft entfernt. Letzteres sorgt in der Kabine für eine möglichst laminare Strömung von oben nach unten. Für Luftsinkgeschwindigkeiten von 0,2–0,5 m/Sekunde müssen deshalb permanent pro Quadratmeter Kabinenfläche 0,2–0,5 m3/Sekunde oder 720 bis 1800 m3/Stunde konditionierter Luftmengen zugeführt werden. Bei Kabinengrundflächen von 200 m2 ist das stündlich bis zu 400.000 m3 gereinigte und konditionierte Frischluft. So können Lackierfehler vermieden und die MAK-Werte der Arbeitsstoffe eingehalten werden.
Zur schnellen und vollständigen Spritznebelaufnahme werden die Spritznebel durch Verengungen in den Absaugvorrichtungen stark beschleunigt, um anschließend mit hoher Relativgeschwindigkeit in eine wässrige Phase aufgenommen zu werden. Das gelingt in den nach dem Venturi-Prinzip arbeitenden Diffusoren besonders gut. Nach der Beschleunigung der Spritznebel beladenen Abluft werden durch die Erweiterung des Öffnungsquerschnitts der Venturi-Düsen starke Wirbel gebildet. Der dabei entstehende Unterdruck zieht die Waschflüssigkeit in den Luftstrom, wodurch die Lacknebel eingefangen werden.
Die in dieser Weise gewonnene Flüssigkeit wird einem Systemtank zugeführt, worin sich Lackschlamm absetzt, der in ein Lackschlammabsetzbecken überführt wird. Eine direkte Wiedergewinnung der ursprünglich verwendeten überschüssigen Spritzlacke ist mithilfe dieser Technologie nicht möglich.
(Vgl. Arthur Goldschmidt, Hans-Joachim Streitberger, BASF-Handbuch Lackiertechnik, Vincentz Verlag, Hannover, 2002, Seiten 583–588, »4.2.1.5 Kabinenkonditionierung und Spritznebelbeseitigung«)
Im Falle der Spritzlackierung von Pulverlacken wird der Overspray durch die Schwerkraft und die vertikal nach unten gerichtete Luftströmung aus den Kabinen geführt. Zur Rückgewinnung dienen Zyklone oder Fliehkraftabscheider, worin der mit Pulverlack beladene Luftstrom durch tangentiale Zufuhr in Rotation versetzt wird. Die Zentrifugalkräfte treiben die Pulverpartikel zur Zyklonwand, wo sie aufgrund der Schwerkraft nach unten fallen, um dadurch in einem Auffangbehälter gesammelt zu werden.
(Vgl. Arthur Goldschmidt, Hans-Joachim Streitberger, BASF-Handbuch Lackiertechnik, Vincentz Verlag, Hannover, 2002, Seiten 605–588, »Rückgewinnung«)
Weitere Verfahren, die die Wiederverwendung von Overspray zum Ziel haben, sind ebenfalls bekannt.
So geht aus der deutschen Patentanmeldung
Aus der internationalen Patentanmeldung
Des Weiteren ist aus der japanischen Offenlegungsschrift
Außerdem ist aus der deutschen Gebrauchsmusterschrift
Graupel ist eine Form von Niederschlag bei dem Schneekristalle durch angefrorene Wassertröpfchen zu kleinen, bis zu 5 mm großen Kügelchen verklumpt werden. Bei Korngrößen von unter 1 mm Durchmesser spricht man auch von Griesel. Die Partikel sind im Vergleich zu Hagel deutlich kleiner und weisen lediglich einen maximalen Durchmesser bis zu 5 mm auf. Ihre Dichte ist geringer als die von Hagelkörnern und sie haben eine rauere Struktur. Dadurch fallen sie langsamer und können kaum Schaden anrichten. Im Gegensatz zum Hagel fallen Graupel und Griesel hauptsächlich im Winter bei Temperaturen um 0°C an.
Aus der deutschen Patentanmeldung
Als Filterhilfsmaterial können verflüssigbare Gase, insbesondere Kohlendioxid, Stickstoff, Luft, Sauerstoff, Wasserstoff, Edelgase sowie Kohlenwasserstoffe; Verbindungen die bei Normalbedingungen einen erhöhten Sättigungsdampfdruck haben, insbesondere Alkohol, Treibmittel oder Kältemittel; oder Verbindungen, die bei Temperaturen bis 150° einen hohen Sättigungsdampfdruck haben, insbesondere Wasser oder Glykole, verwendet werden.
Der vorliegenden Erfindung lag demnach die Aufgabe zu Grunde eine Vorrichtung und ein Verfahren zur Wiedergewinnung von Spritzlacken aus Spritznebeln von Spritzlackierkabinen zu finden, mit deren Hilfe die Spritzlacke quantitativ oder nahezu quantitativ mit denselben oder nahezu denselben Eigenschaften wie die ursprünglich eingesetzten Spritzlacke wiedergewonnen und für denselben Verwendungszweck wieder angewandt werden können.
Diese und weitere Aufgaben werden nach dem Vorschlag der Erfindung durch die Vorrichtung und das Verfahren zur Wiedergewinnung von Spritzlacken aus Spritznebeln von Spritzlackierkabinen mit den Merkmalen der unabhängigen Patentansprüche gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind durch die Merkmale der Unteransprüche gegeben.
Die vorliegende Erfindung betrifft eine Vorrichtung zur Wiedergewinnung von Spritzlacken aus Spritznebeln von Spritzlackierkabinen.
Spritzlackierkabinen sind üblich und bekannt und können je nach Verwendungszweck unterschiedliche Dimensionen haben. So gibt es Spritzlackierkabinen, die vor allem in Handwerksbetrieben eingesetzt werden, oder industriellen Anlagen, die kontinuierlich oder diskontinuierlich betrieben werden. Ein Haupteinsatzgebiet für solche industriellen Spritzlackierkabinen ist die Automobilserienlackierung (OEM, Original Equipment Manufacturing) sowie die Automobilzuliefererindustrie.
Im Allgemeinen haben die Spritzlackierkabinen eine vertikale Außenwand, eine horizontale Decke und einen horizontalen Boden, die einen geschlossenen, gasdichten und flüssigkeitsdichten Raum bilden. Je nach Größe können sie mehrere Stockwerke hoch und von innen und außen begehbar sein.
Sie weisen mindestens eine, insbesondere eine, für den jeweiligen Verwendungszweck geeignet dimensionierte Spritzlackierkabine mit mindestens einer, insbesondere einer Luftzuleitung auf, über die gereinigte Frischluft in mindestens einen, insbesondere einen Verteilerraum eingeleitet wird. Von da aus strömt die Luft durch eine horizontal angeordnete, luftdurchlässige Filterdecke vorzugsweise als laminare oder nahezu laminare Luftströmung in den Spritzkabinenraum.
In dem Spritzkabinenraum ist mindestens ein mit einem Spritzlack zu lackierendes Objekt, beispielsweise Holzteile, Möbel, weiße Ware, Flugzeugteile oder Kraftfahrzeugkarosserien vorzugsweise an Transportvorrichtungen hängend oder vorzugsweise auf Transportvorrichtungen stehend platziert. Mithilfe der Transportvorrichtungen können beispielsweise Kraftfahrzeugkarosserien aus der Spritzkabine zu weiteren Vorrichtungen in den Lackierstraßen wie Trockenöfen oder Bestrahlungsvorrichtungen weitergeführt werden. Vergleichbares gilt für die hängend fixierten Objekte.
Auf die Oberfläche des mindestens einen zu lackierenden Objekts wird mithilfe mindestens einer Spritzlackiervorrichtung mit mindestens einer Sprühdüse, der Spritzlack appliziert.
Als Spritzlackiervorrichtung werden vorzugsweise manuell geführte Spritzlackierpistolen oder computergesteuerte Spritzlackierroboter verwendet.
Bei dem Spritzlack selbst kann es sich um einen wässrigen oder lösemittelhaltigen, physikalisch trocknenden Lack, oxidativ härtenden Lack, Zweikomponentenlack, Einbrennlack oder strahlenhärtbaren Lack, der insbesondere mit IR-Strahlung, sichtbarem Licht, UV-Strahlung und/oder Elektronenstrahlung gehärtet werden kann, handeln. Die unterschiedlichen Härtungsmechanismen können in ein und demselben Spritzlack angewandt werden. Man spricht dann auch von »Dual-Cure-Lacken«.
Der Spritzlack kann in unterschiedlichen Anwendungsbereichen als Schiffslack, Bautenlack, Möbellack oder Kraftfahrzeuglack angewandt werden. Beispielsweise wird er bei der Kraftfahrzeuglackierung in der Form von Klarlack, Unidecklack, Basislack, Füller, Steinschlagschutzlack, Unterbodenschutzlack und Reparaturlack verwendet.
Spritzlacke dieser Art sind üblich und bekannt und am Markt erhältlich. Beispiele geeigneter Rezepturen finden sich in dem Lehrbuch von Bodo Müller und Ulrich Poth, »Lackformulierungen und Lackrezeptur«, Vincentz Verlag, Hannover, 2003, Seiten 73 bis 222.
Im Allgemeinen verlässt der Spritzlack die Sprühdüsen der Spritzlackiervorrichtungen in der Form eines Lackspritzkegels und trifft auf die Oberfläche des zu lackierenden Objekts auf. Dabei treffen bekanntermaßen erhebliche Mengen an Spritzlack nicht auf der Oberfläche auf, sondern bilden Spritznebel oder Overspray.
Die Spritznebel werden durch den laminaren Luftstrom durch mindestens einen, insbesondere einen, horizontalen, luft- und spritznebeldurchlässigen Siebboden entfernt. Sie gelangen in eine unterhalb des mindestens einen Siebbodens angeordnete mindestens eine, insbesondere eine, Spritznebellenkung und treten durch mindestens einen, insbesondere einen, weiteren horizontalen, für Luft und Spritznebel durchlässigen Siebboden in einen darunter angeordneten mindestens einen, insbesondere einen, Verwirbelungsreaktor ein.
Der mindestens eine Verwirbelungsreaktor kann horizontal, schräg nach unten geneigt oder vertikal unter der mindestens einen Spritzlackierkabine angeordnet sein und hat einen runden Querschnitt.
Der mindestens eine, insbesondere eine, für Luft und Spritznebel durchlässige Siebboden kann in dem runden Umfang des mindestens einen, insbesondere einen, horizontal oder schräg nach unten geneigten Verwirbelungsreaktors im Bereich der Reaktorwand, durch die die unten beschriebene mindestens eine, insbesondere eine, Kältemittelleitung führt, mittig angeordnet sein, so dass für die Luft und die mitgeführten Spritznebel eine möglichst lange Kühlstrecke zur Verfügung steht.
Handelt es sich um mindestens einen, insbesondere einen, vertikalen Verwirbelungsreaktor, ist der mindestens eine, insbesondere eine, für Luft und Spritznebel durchlässige Siebboden vorzugsweise mittig in der horizontalen oberen Reaktorwand angeordnet, so dass die Luft und die mitgeführten Spritznebel der unten beschriebenen mindestens einen, insbesondere einen, Kältemittelzuleitung entgegen strömen.
Die Abmessungen des mindestens einen Verwirbelungsreaktors richten sich im Wesentlichen nach der zugeführten Luftmenge und der Menge der mitgeführten Spritznebel sowie der erforderlichen Kühlkapazität, um die Graupel- und/oder Grieselpartikel zu erzeugen. Der Fachmann kann daher die Abmessungen, ohne erfinderisch tätig zu werden, aufgrund seiner Erfahrung rechnerisch ermitteln.
Die Wandstärke des mindestens einen Verwirbelungsreaktors richtet sich im Wesentlichen nach den Abmessungen, dem Material, aus dem er aufgebaut ist, und den Kräften, die aufgrund des Gewichts, der unten beschriebenen rotierenden Kältemittelzuleitungen mit den Sprüharmen und der Drehgeschwindigkeit auf den mindestens einen Verwirbelungsreaktor einwirken. Dabei ist die Wandstärke so zu wählen, dass im laufenden Betrieb der mindestens eine Verwirbelungsreaktor und die Verbindungen zu den angeschlossenen Aggregaten sich nicht verwinden. Der Fachmann kann daher die Wandstärke, ohne erfinderisch tätig zu werden, aufgrund seiner Erfahrung rechnerisch ermitteln. Vorzugsweise liegt die Wandstärke der Reaktorwand bei 0,5 cm bis 2 cm.
Die Reaktorwand ist aus mindestens einem Material aufgebaut, das korrosionsstabil, kältestabil, stabil gegenüber Versprödung und bei starken thermischen Schwankungen stabil ist. Beispiele geeigneter Materialien sind V2A-Stahl, V4A-Stahl oder glasfaserverstärkte oder kohlefaserverstärkte Kunststoffe.
Vorzugsweise ist die Oberfläche der Reaktorwand hydrophob oder ultrahydrophob. Dies kann durch die Verwendung fluorierter Kunststoffe wie Teflon, Nanostrukturen, die einen Lotuseffekt hervorrufen, oder hierarchische Strukturen, bei denen Nanostrukturen auf Mikrostrukturen angeordnet sind, erzielt werden. Hierdurch wird in vorteilhafter Weise erreicht, dass sich kein Eis und/oder Graupel- und Grieselpartikel auf der Reaktorwand festsetzen.
Vorzugsweise ist der mindestens eine Verwirbelungsreaktor mit einer üblichen und bekannten Isolierungsschicht versehen oder er wird von außen aktiv gekühlt.
Der mindestens eine, insbesondere eine, Verwirbelungsreaktor ist mit mindestens einer, insbesondere einer, längs oder parallel, insbesondere längs, zur Längsachse angeordneten, in einer vorbestimmten Drehrichtung um die Längsachse rotierenden Kältemittelzuleitung ausgerüstet. Vorzugsweise ist die mindestens eine, insbesondere eine rotierende Kältemittelzuleitung zweifach gelagert. Wenn mehr als eine Kältemittelzuleitung verwendet wird, können die einzelnen Kältemittelzuleitungen dieselbe Drehrichtung oder unterschiedliche Drehrichtungen haben.
Vorzugsweise ist die mindestens eine, insbesondere eine, Kältemittelzuleitung aus den gleichen Materialien wie die Reaktorwand aufgebaut. Bevorzugt hat sie einen runden Querschnitt, dessen lichte Weite sich nach der zuzuführenden Menge an Kältemittel richtet, die notwendig ist, um in dem mindestens einen Verwirbelungsreaktor die Bedingungen nachzustellen, unter denen sich in der Natur Graupel- und/oder Grieselpartikel in Wolken bilden.
Vorzugsweise weist das mindestens eine Kältemittel eine Temperatur von –190°C bis 0°C, bevorzugt –100°C bis –4°C und insbesondere –50°C bis –10°C auf. Vorzugsweise ist das Kältemittel bei Raumtemperatur und Atmosphärendruck ein Gas. Besonders bevorzugt werden ökologisch unbedenkliche, nicht toxische, Gase verwendet. Beispiele geeigneter Gase sind Luft, Stickstoff, Kohlendioxid und Helium. Insbesondere wird Luft verwendet. Die Gase können getrocknet sein oder Spuren von Wasser enthalten, die sich als Eis auf den sich bildenden Graupel- und/oder Grieselpartikel niederschlagen.
Die mindestens eine, insbesondere eine, rotierende Kältemittelzuleitung weist mindestens zwei und insbesondere mindestens drei Sprüharme mit jeweils mindestens zwei und insbesondere jeweils mindestens drei Kältemitteldüsen zur Zuleitung und Eindüsung des mindestens einen, insbesondere einen, Kältemittels in den mindestens einen Verwirbelungsreaktor auf.
Die Eindüsung des mindestens einen, insbesondere einen, Kältemittels kann in Drehrichtung und/oder entgegen der Drehrichtung der mindestens einen, insbesondere einen, Kältemittelzuleitung erfolgen. Erfolgt die Eindüsung ausschließlich entgegen der Drehrichtung kann die dadurch resultierende Kraft zur Drehung der mindestens einen Kältemittelzuleitung verwendet werden.
Die Längsachsen der mindestens zwei, vorzugsweise mindestens drei Sprüharme bilden mit der Längsachse der mindestens einen Kältemittelzuleitung vorzugsweise jeweils einen Winkel von 90°.
Die mindestens zwei, vorzugsweise mindestens drei Sprüharme können an mindestens zwei, vorzugsweise mindestens drei Stellen hintereinander mit der mindestens einen Kältemittelzuleitung verbunden sein. Dabei können sie in einer Fluchtlinie und/oder in einem bestimmten Winkel zueinander versetzt gewissermaßen auf Lücke angeordnet sein.
In einer weiteren Ausführungsform können zwei Sprüharme an einem Ort der mindestens einen Kältemittelzuleitung angeordnet sein, so dass sie eine gemeinsame Längsachse haben. Mindestens zwei solcher Konfigurationen können ebenfalls in einer Fluchtlinie und/oder in einem bestimmten Winkel zueinander versetzt gewissermaßen auf Lücke angeordnet sein.
In noch einer weiteren, bevorzugten Ausführungsform können mindestens drei, insbesondere drei Sprüharme an einer Stelle sternförmig mit der mindestens einen Kältemittelzuleitung verbunden sein. Dabei können mindestens zwei dieser Konfigurationen hintereinander auf der mindestens einen Kältemittelzuleitung angeordnet sein, wobei sie auf Lücke und/oder deckungsgleich stehen können.
In speziellen Fällen können auch in Drehrichtung und/oder entgegen der Drehrichtung gebogene Sprüharme und/oder oder schlangenförmige Sprüharme verwendet werden. All diese Formen können gleichzeitig in dem mindestens einen Verwirbelungsreaktor angewandt werden.
Die Gesamtzahl der Sprüharme an der mindestens einen, insbesondere einen, rotierenden Kältemittelzuleitung richtet sich nach den vorstehend beschriebenen Parametern. Vorzugsweise sind 2 bis 20 der beschriebenen Konfigurationen hintereinander angeordnet. Dabei können an der mindestens einen, insbesondere einen, rotierenden Kältemittelzuleitung mindestens zwei unterschiedliche Konfigurationen angeordnet sein.
Vorzugsweise sind die Sprüharme aus denselben Materialien wie die Kältemittelzuleitungen aufgebaut. Ihre Abmessungen, lichte Weite und Wandstärke richten sich hauptsächlich nach der lichten Weite des Verwirbelungsreaktors und der für die Erzeugung der Graupel- und/oder Grieselpartikel notwendigen, zu versprühenden Menge an Kältemittel.
Es ist von Vorteil, wenn an ihren Enden mindestens eine Kältemitteldüse das mindestens eine Kältemittel in Richtung der Reaktorwand sprüht. Es ist aber auch möglich, dass an ihren Enden ein flexibles Kunststoffteil oder Metallteil in der Form eines Längsstreifens oder einer Bürste angebracht ist, der oder die über die Reaktorwand geführt wird, um gegebenenfalls anhaftende Graupel- und/oder Grieselpartikel abzustreifen. Es können aber auch beide Arten von Sprüharmen zugleich in dem mindestens einen Verwirbelungsreaktor verwendet werden.
Die Sprüharme können unterschiedliche Konturen aufweisen. So kann die Kontur kreisrund, oval, elliptisch oder flügelförmig sein.
Vorzugsweise wird die mindestens eine, insbesondere eine, Kältemittelzuleitung durch einen Motor, vorzugsweise einen gegen Explosion gesicherten Elektromotor oder einen Druckluftmotor angetrieben. Dabei wird im Falle des mindestens einen horizontalen oder schräg nach unten geneigten Verwirbelungsreaktors die mindestens eine, insbesondere eine, Kältemittelzuleitung durch mindestens eine vorzugsweise mit einer Gleitringdichtung abgedichtete Durchführung in der vertikalen Reaktorwand in den Innenraum des mindestens einen Verwirbelungsreaktors geführt. An ihrem anderen Ende wird sie durch mindestens eine vorzugsweise mit einer Gleitringdichtung abgedichtete Durchführung durch die gegenüberliegende vertikale Reaktorwand geführt und mit mindestens einem, insbesondere einem, Kältemittelvorrat, der vorzugsweise unter einem Überdruck steht, verbunden.
Die Verbindung ist vorzugsweise eine Vorrichtung, die eine Gleitringdichtung für die mindestens eine rotierende Kältemittelzuleitung und das offene Ende der mindestens einen Kältemittelzuleitung als Kältemitteleinlass sowie das offene Ende der mindestens einen stationären Zuleitung für das mindestens eine Kältemittel, die sich in einer gasdichten, druckfesten und mit der Gleitringdichtung fest verbundenen Ummantelung befinden, umfasst.
Im Falle des mindestens einen vertikalen Verwirbelungsreaktors wird die mindestens eine Kältemittelzuleitung in gleicher Weise angetrieben und durch die horizontale Reaktorwand in den Innenraum des mindestens einen Verwirbelungsreaktors geführt. Das obere offene Ende der mindestens einen Kältemittelzuleitung ist in mindestens einer Vorrichtung der vorstehend beschriebenen Art im Innenraum gelagert, wobei diese mindestens eine Vorrichtung durch Halterungen fest mit der Reaktorwand verbunden ist, so dass sie nicht im Innenraum bewegt werden kann. Das mindestens eine Kältemittel kann dann über mindestens eine stationäre Kältemittelzuleitung durch eine abgedichtete Durchführung in die Vorrichtung und von da aus in das offene Ende der mindestens einen Kältemittelzuleitung geleitet werden.
In dem mindestens einen, insbesondere einen, Verwirbelungsreaktor bilden sich verwirbelte Graupel- und/oder Grieselpartikel mit insgesamt derselben stofflichen Zusammensetzung wie die Spritznebel. Dies ist ein besonderer Vorteil der erfindungsgemäßen Vorrichtung, der dadurch erzielt wird, dass keine zusätzlichen Materialien hinzugefügt werden, die sich ebenfalls verfestigen wie etwa Eis oder Wasser und so die stoffliche Zusammensetzung der Spritznebel und der Graupel- und/oder Grieselpartikel verfälschen.
Bei dem mindestens einen, insbesondere einen, horizontalen oder schräg nach unten geneigten Verwirbelungsreaktor werden die verwirbelten Graupel- und/oder Grieselpartikel in Richtung der vertikalen Reaktorwand, die der vertikalen Reaktorwand auf der Seite der Einleitung der Luft und der mitgeführten Spritznebel gegenüberliegt, transportiert. Dies erfolgt durch die dem mindestens einen Verwirbelungsreaktor zuströmenden Luft und durch das Absaugen der Luft und der Graupel- und/oder Grieselpartikel mithilfe mindestens eines an der Unterseite des mindestens einen Verwirbelungsreaktors angeordneten Auslassrohrs.
Bei dem mindestens einen, insbesondere einen, vertikalen Verwirbelungsreaktor werden die verwirbelten Graupel- und/oder Grieselpartikel zusätzlich unter Einwirkung der Schwerkraft zur dem mindestens einen, an der unteren horizontalen Reaktorwand angeordneten Auslassrohr transportiert.
Durch das mindestens eine Auslassrohr werden die Graupel- und/oder Grieselpartikel und der mindestens eine abgesaugte Gasstrom in mindestens eine, insbesondere eine, Vorrichtung zur Abscheidung der Graupel und/oder Grieselpartikel aus dem mindestens einen abgesaugten Gasstrom geleitet.
An und für sich können alle üblichen und bekannten Vorrichtungen zur Abscheidung von festen Partikeln aus der Gasphase verwendet werden. Erfindungsgemäß ist es indes von Vorteil, wenn man hierfür eine Mehrstufenzentrifuge, insbesondere Zweistufenzentrifuge, und/oder ein Zyklon bzw. einen Zyklonabscheider oder Fliehkraftabscheider verwendet.
Zweistufenzentrifugen sind seit langem bekannt und werden im Einzelnen in der deutschen Offenlegungsschrift
Zyklone oder Zyklonabscheider sind ebenfalls seit langem bekannt. Sie dienen der Abscheidung von feinen Partikeln aus Luft/Feststoffgemischen mithilfe von Fliehkraft und Schwerkraft. Multi-, Mehrfach- oder Monozyklone sind heute auf dem Markt gängige Zyklonabscheider. Das zu trennende Gemisch wird einem zylindrischen Behälter mit meist konischem Unterteil tangential oder axial zugeführt. Die Strömung wird dabei entweder durch den tangentialen Eintritt des Gemisches erzeugt oder durch am Umfang des Zyklongehäuses angebrachte Leitschaufeln. Durch die sich im Abscheidungsraum ausbildenden Rotationsströmungen wirken auf die abzutrennenden Partikel Fliehkräfte, die sie nach außen schleudern. Von der Wand des Zyklons sinken die Partikel unter Schwerkraftwirkung nach unten in einen Sammelbehälter.
(Römpp Lexikon Lacke und Druckfarben, Georg Thieme Verlag, Stuttgart, 1998, »Zyklonabscheider«).
Die in dieser Weise abgetrennten Graupel- und/oder Grieselpartikel fallen durch mindestens ein Auslassrohr für die Partikel in mindestens einen, insbesondere einen, darunter angeordneten Auffangbehälter, worin sie aufschmelzen und wieder einen flüssigen Spritzlack bilden, der dieselben oder im Wesentlichen dieselben Eigenschaften wie der ursprüngliche Spritzlack hat und daher demselben Verwendungszweck zugeführt werden kann.
Das Aufschmelzen kann mithilfe von Heizungsvorrichtungen, beispielsweise Induktionsheizungen, die sich im Boden und/oder in und/oder auf den Wandungen des mindestens einen Auffangbehälters befinden, beschleunigt werden. Außerdem können Tauchheizungen zusätzlich oder alleine verwendet werden.
Zur Verbesserung der Homogenität und die Vermeidung der Bildung von Lackschlämmen kann der Inhalt des mindestens einen Auffangbehälters gerührt werden.
Das Gemisch aus zugeführter Luft und gasförmigem Kältemittel wird über mindestens einen Abluftkanal, der im unteren Bereich der Vorrichtung zur Wiedergewinnung von Spritzlack aus Spritznebeln von Spritzlackierkabinen angeordnet ist, entfernt.
Die erfindungsgemäße Vorrichtung zur Wiedergewinnung von Spritzlack aus Spritznebeln von Spritzlackierkabinen ist vorzugsweise in einem Gebäude untergebracht, das aus korrosionsfesten, gegenüber Lösemitteln und Wasser resistenten und gegenüber Kälte und Hitze und raschen Temperaturwechseln stabilen Materialien aufgebaut ist. Beispiele geeigneter Materialien sind gegenüber Säuren und Basen stabile Klinker für die Außenwände, spezielle Kartonagen für die Filterdecke, gegenüber Kälte und Hitze stabile Kunststoffe, die in der Kälte nicht verspröden und in der Hitze unter Belastung nicht kriechen, sowie V2A-Stahl oder V4A-Stahl. Die Teile der erfindungsgemäßen Vorrichtung, in denen die Graupel- und/oder Grieselpartikel erzeugt werden und/oder gehandhabt werden, sind thermisch isoliert und/oder werden aktiv von außen gekühlt.
Die erfindungsgemäße Vorrichtung zur Wiedergewinnung von Spritzlack aus Spritznebeln von Spritzlackierkabinen weist des Weiteren eine übliche und bekannte Mess- und Regelperipherie zur elektronischen, hydraulischen, pneumatischen und/oder mechanischen Steuerung der Materialströme mit den entsprechenden Sensoren auf.
Das erfindungsgemäße Verfahren dient der Wiedergewinnung von Spritzlack aus Spritznebeln von Spritzlackierkabinen. Es ist dadurch gekennzeichnet, dass man
Der mindestens eine mit dem wiedergewonnenen Spritzlack gefüllte Auffangbehälter wird ausgetragen und durch mindestens einen neuen, leeren Auffangbehälter ersetzt.
Es versteht sich, dass die vorstehend genannten und nachstehend näher erläuterten Merkmale nicht nur in den angegebenen Kombinationen und Konfigurationen, sondern auch in anderen Kombinationen und Konfigurationen oder in Alleinstellung einsetzbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
Die Erfindung wird nun anhand von Ausführungsbeispielen näher erläutert, wobei Bezug auf die beigefügten Prinzipskizzen der
In den
Die
Die Vorrichtung
Über eine Luftzuleitung
Im Spritzkabinenraum
Die Automobilkarosserie
Die Spritznebel
In dem Innenraum des Verwirbelungsreaktors
Die Graupel- und/oder Grieselpartikel
Die
In der
Der horizontal gelagerte Verwirbelungsreaktor
Die erzeugten Graupel- und/oder Grieselpartikel
Die Abluft der Vorrichtung
Die
In der
Bei dieser Ausführungsform war der isolierte Verwirbelungsreaktor
Die erzeugten Graupel- und/oder Grieselpartikel
Die Abluft der Vorrichtung
Die Vorrichtung zur Erzeugung des Kältemittels
Der gerade Sprüharm
Der in seinem Endbereich parallel zur Innenwand
Die Ausführungsform des Sprüharms
Die Ausführungsform des Sprüharms
Die Ausführungsform des Sprüharms
Die Ausführungsform des Sprüharms