Title:
Verbesserte Einteilung von Drüsengewebskrebs mittels detaillierter Bildanalyse von gefärbten Gewebsschnitten
Kind Code:
A1


Abstract:

Ein verbesserter histopathologischer Score wird erhalten durch Identifizieren von Objekten in Bildern von Drüsengewebe aus Krebspatienten. Die Objekte werden identifiziert, basierend auf Anfärbung mittels eines Biomarkers. Der Score sagt voraus, dass ein Krebspatient ein Krebsrezidiv des Drüsengewebes haben wird, basierend auf einer geometrischen Charakteristik von individuell identifizierten Objekten, jedoch nicht auf irgendwelchen Mustern, welche durch die identifizierten Objekte gebildet werden. Erste Objekte werden aus dem Bild von Drüsengewebe erzeugt, welches mit einem einzelnen Biomarker gefärbt wurde, welcher epitheliale Zellen anfärbt. Anschließend werden zweite Objekte unter Verwendung der ersten Objekte erzeugt. Ein geometrisches Merkmal jedes der zweiten Objekte wird gemessen. Dann wird ein Formindex für jedes der zweiten Objekte basierend auf dem geometrischen Merkmal berechnet und ein durchschnittlicher Formindex wird berechnet. Basierend auf dem durchschnittlichen Formindex wird ein Score bestimmt, welcher das Krebsmalignitätsniveau des Drüsenkrebses anzeigt.




Inventors:
Athelogou, Maria (80469, München, DE)
Harder, Nathalie (80634, München, DE)
Application Number:
DE102016217713A
Publication Date:
03/23/2017
Filing Date:
09/16/2016
Assignee:
Definiens AG, 80636 (DE)
International Classes:



Foreign References:
83197932012-11-27
Attorney, Agent or Firm:
Winter, Brandl, Fürniss, Hübner, Röss, Kaiser, Polte Partnerschaft mbB, Patentanwälte, 85354, Freising, DE
Claims:
1. Ein Verfahren umfassend:
Identifizierung von Objekten in einem Digitalbild von Drüsengewebe von einem Krebspatienten, wobei die Objekte identifiziert werden, basierend auf Färbung des Drüsengewebes mittels eines Biomarkers; und
Vorhersagen, dass der Krebspatient ein Krebsrezidiv des Drüsengewebes haben wird, basierend auf einer geometrischen Charakteristik von individuell identifizierten Objekten, jedoch nicht auf irgendwelchen Mustern, die durch eine Mehrzahl der identifizierten Objekte gebildet werden.

2. Verfahren nach Anspruch 1, wobei das Drüsengewebe entnommen wird aus der Gruppe bestehend aus: Prostatagewebe, Brustgewebe, Darmgewebe und Lungengewebe.

3. Verfahren nach Anspruch 1, wobei das Drüsengewebe Prostatagewebe ist und wobei das Vorhersagen des Krebsrezidivs durchgeführt wird durch Vorhersagen des Wiederauftretens von messbarem prostataspezifischen Antigen (PSA) in dem Blut des Krebspatienten.

4. Verfahren nach Anspruch 1, wobei der Biomarker Cytokeratin 18 (CK18) ist.

5. Verfahren nach Anspruch 1, wobei das Drüsengewebe Prostatagewebe ist, wobei der Biomarker luminale epitheliale Zellen färbt und wobei die identifizierten Objekte Lumen sind, welche von gefärbten luminalen epithelialen Zellen umgeben sind.

6. Verfahren nach Anspruch 1, wobei die geometrische Charakteristik gewählt wird aus der Gruppe bestehend aus: einer Länge eines jeden individuell identifizierten Objektes, einer Breite eines jeden individuell identifizierten Objektes, einer Grenzlänge eines jeden individuell identifizierten Objektes und einer Fläche eines jeden individuell identifizierten Objektes.

7. Ein Verfahren umfassend:
Erzeugen von ersten Objekten aus einem Digitalbild eines Gewebsschnittes von einem Krebspatienten, wobei der Gewebsschnitt mit einem Färbemittel gefärbt wird, welches luminale epitheliale Zellen anfärbt;
Erzeugen von zweiten Objekten, welche umgeben sind von den ersten Objekten;
Bestimmen eines Formindex für jedes der zweiten Objekte, wobei der Formindex berechnet wird, basierend auf einem gemessenen geometrischen Merkmal eines jeden der zweiten Objekte;
Bestimmen des durchschnittlichen Formindex der zweiten Objekte; und
Vorhersagen, dass der Krebspatient wahrscheinlich ein Krebsrezidiv haben wird, wenn der durchschnittliche Formindex kleiner ist als ein vorbestimmter Schwellwert.

8. Verfahren nach Anspruch 7, wobei das gemessene geometrische Merkmal einer Grenzlänge um jedes der beiden Objekte ist.

9. Das Verfahren nach Anspruch 7, wobei das geometrische Merkmal gewählt wird aus der Gruppe bestehend aus: eine Länge, eine Breite, eine Grenzlänge, eine Fläche, eine Asymmetrie, eine elliptische Anpassung, eine Rundheit und eine Anzahl von Verzweigungen.

10. Verfahren nach Anspruch 7, wobei der Formindex für jedes der zweiten Objekte nicht auf irgendeiner Charakteristik irgendeines weiteren zweiten Objektes basiert.

11. Verfahren nach Anspruch 7, wobei das Bestimmen des Formindex umfasst:
Bestimmen einer Grenzlänge um jedes der zweiten Objekte;
Bestimmen einer Länge, welche auf jedem der zweiten Objekte basiert; und
Bestimmen einer Breite, senkrecht zu der Länge, wobei die Breite auf jedem der zweiten Objekte basiert; und
Bestimmen des Formindex für jedes der zweiten Objekte durch Dividieren der Grenzlänge durch die zweifache Summe von Länge und Breite.

12. Verfahren nach Anspruch 7, wobei in den zweiten Objekten ungefärbte Flächen in dem Digitalbild sind, welche umgeben sind von gefärbten luminalen epithelialen Zellen.

13. Verfahren nach Anspruch 7, wobei das Gewebe mit einem einzigen Färbungsmittel gefärbt wird.

14. Verfahren nach Anspruch 7, wobei das Färbungsmittel Cytokeratin 18 (CK18) ist.

15. Verfahren nach Anspruch 7, wobei das Vorhersagen, dass der Krebspatient wahrscheinlich ein Krebsrezidiv aufweisen wird, vorhersagt, dass der Krebspatient ein Wiederauftreten von messbaren Mengen an prostataspezifischem Antigen im Blut des Krebspatienten aufweisen wird.

16. Verfahren nach Anspruch 7, ferner umfassend:
Bestimmen eines histopathologischen Scores, basierend auf dem durchschnittlichen Formindex, wobei der histopathologische Score ein Krebsmalignitätsniveau des Gewebes anzeigt.

17. Ein Verfahren umfassend:
Erzeugen von ersten Objekten aus einem Digitalbild von Drüsengewebe, welches mit einem Biomarker gefärbt wird, welcher epitheliale Zellen anfärbt;
Erzeugen von zweiten Objekten unter Verwendung der ersten Objekte;
Bestimmen eines geometrischen Merkmals jedes der zweiten Objekte;
Berechnen eines Formindexes für jedes der zweiten Objekte, basierend auf dem geometrischen Merkmal;
Bestimmen eines durchschnittlichen Formindex der zweiten Objekte; und
Bestimmen eines Scores, basierend auf dem Formindex, wobei der Score ein Krebsmalignitätsniveau des Drüsengewebes anzeigt.

18. Verfahren nach Anspruch 17, wobei das geometrische Merkmal gewählt wird aus der Gruppe bestehend aus: eine Länge, eine Breite, eine Grenzlänge, eine Fläche, eine Asymmetrie, eine elliptische Anpassung, eine Rundheit und eine Anzahl von Verzweigungen.

19. Verfahren nach Anspruch 17, wobei das Drüsengewebe ein Nadelprobengewebe ist, welches einem Krebspatienten entnommen wurde.

20. Verfahren nach Anspruch 17, wobei der Formindex für jedes der zweiten Objekte nicht auf irgendeiner Charakteristik irgendeines anderen zweiten Objektes basiert.

Description:
Technisches Gebiet

Die vorliegende Erfindung betrifft eine Verbesserung bei der Schweregradeinteilung von Prostatakrebs im Hinblick auf das konventionelle Gleason-Verfahren durch quantitatives Analysieren individueller Drüsen in Schnitten aus gefärbtem Gewebe.

Hintergrund

Prostatakrebs ist einer der häufigsten bei Männern diagnostizierten Krebsarten. Derzeit ist die genaueste Diagnose von Prostatakrebs bestimmt durch Verwendung des Gleasonschen Einteilungssystems beim Analysieren gefärbter Prostatabiopsien. Das Gleason-Einteilungssystem wurde in den 1960er Jahren durch Donald Gleason, einem Pathologen der Veterans Administration entwickelt und im Jahre 2005 modifiziert und verbessert durch die International Society of Urological Pathology. Das Gleason-Einteilungssystem zeigt den Schweregrad von Prostatakrebs durch eine Korrelation von Mustern in Prostatabiopsieproben mit Tumormortalitätsraten an. Das Gleason-Verfahren evaluiert die Drüsenarchitektur des Prostatagewebes, welches auf den relativen Größen getrennter Prostatadrüsen und der Regelmäßigkeit des Gesamtmusters der Drüsen basiert. Gewebe, in welchem einige Drüsen groß sind und benachbarte Drüsen klein sind, werden eingeteilt als stärker maligne und resultieren in einer schlechteren Prognose. Zusätzlich werden Drüsen, welche in einem desorganisierten, irregulären Muster angeordnet sind, mit lediglich kleinen Flächen von Stroma zwischen den Drüsen als stärker maligne eingeteilt.

Kanzeröses Prostatagewebe wird in fünf Einteilungen 1 bis 5 nach absteigender Regularität klassifiziert. Die Einteilungen der beiden Muster, welche die größten Flächen des Biopsiegewebes überdecken, werden hinzuaddiert, um den Gleason-Score zu erhalten. Der primäre Gleason-Grad muss größer als 50 % des Gesamtmusters des Krebsgewebes betragen. Der sekundäre Gleason-Grad muss weniger als 50 %, jedoch mindestens 5 % des Musters des gesamten beobachteten Krebses betragen. Falls das sekundäre Muster weniger als 5 % der Gesamtfläche des beobachteten Krebses abdeckt, wird dem sekundären Grad derselbe Grad zugeordnet wie dem primären Grad. Die Summe aus primären und sekundären Gleason-Graden ist der Gleason-Score. Wenn beispielsweise das vorherrschende Muster innerhalb des Grades 4 liegt und das zweithäufigste Muster innerhalb des Grades 3 liegt, dann beträgt der Gleason-Score 7.

Die Einteilung nach Gleason wird typischerweise durch einen Pathologen durchgeführt, der ein vergrößertes Bild einer gefärbten Gewebsprobe visuell bewertet. Der Pathologe inspiziert manuell jede kanzeröse Fläche eines gefärbten Gewebes auf einem Objektträger, klassifiziert das Muster der Drüsen in jedem Bereich, basierend auf der Regularität und der Anordnung der Drüsen und ordnet jeder Gewebsfläche, die in Grade eingeteilt wird, einen Gleason-Grad zu. Dann bestimmt der Pathologe den Gesamt-Gleason-Score für die Gewebsprobe, welcher darauf basiert, welcher Gleason-Grad der größten Fläche und der zweitgrößten Fläche des Gewebes zugeordnet wurde.

Das manuelle Einteilen von Prostatagewebe ist schwierig, weil der Pathologe eine große Zahl an kanzerösen Bereichen lückenlos über ein hochvergrößertes Bild des gefärbten Gewebes bewerten muss. Der Pathologe darf keine kanzerösen Bereiche übersehen. Vielmehr muss der Pathologe die Drüsenmuster in den unterschiedlichen Bereichen der Gewebsschnitte und anderer Gewebsschnitte lückenlos bewerten, um einen genauen Gleason-Score zu erhalten.

Ein Verfahren zum Verbessern der prognostischen Genauigkeit des Einteilens, durchgeführt an gefärbtem Prostatagewebe durch Vermindern von Inkonsistenzen und übersehenen Bereichen, welche im Allgemeinen vorkommen, wenn eine manuelle Gleason-Einteilung durchgeführt wird.

Zusammenfassung

Ein verbesserter histopathologischer Score wird erhalten durch Identifizieren von Objekten in Digitalbildern des Drüsengewebes von Krebspatienten. Die Objekte werden identifiziert, basierend auf Färbung mittels eines Biomarkers. Der Score sagt voraus, ob der Krebspatient ein Drüsengewebs-Krebsrezidiv haben wird, basierend auf einer geometrischen Charakteristik individueller identifizierter Objekte, jedoch nicht aufgrund irgendeines Musters, welches durch die identifizierten Objekte gebildet wird. Erste Objekte werden erzeugt aus einem Digitalbild des Drüsengewebes, welches mit einem einzelnen Biomarker gefärbt wird, der epitheliale Zellen färbt. Zweite Objekte werden dann unter Verwendung der ersten Objekte erzeugt. Ein geometrisches Merkmal jedes der zweiten Objekte wird gemessen. Dann wird ein Formindex für jedes der zweiten Objekte berechnet, welcher auf dem geometrischen Merkmal basiert. Ein durchschnittlicher Formindex der zweiten Objekte wird bestimmt. Ein Score wird bestimmt, der auf dem Formindex basiert, welcher ein Krebsmalignitizätsniveau des Drüsengewebes anzeigt. Der Score zeigt Krebsmalignität an und sagt ein Krebsrezidiv in Drüsengewebe wie beispielsweise Prostatagewebe, Brustgewebe, Darmgewebe und Lungengewebe voraus. In einer Ausführungsform ist das Drüsengewebe ein Prostatagewebe, erhalten aus einem Krebspatienten nach einer radikalen Prostatektomie, bei welcher die maligne Prostatadrüse des Patienten vollständig entfernt wurde. In einer anderen Ausführungsform ist das Drüsengewebe ein Gewebe aus einer Nadelprobe, welches aus der Prostatadrüse eines Krebspatienten entnommen wurde.

In einer anderen Ausführungsform basiert ein neues Verfahren zum Erzeugen eines histopathologischen Scores, welcher das Rezidiv des Drüsengewebskrebses vorhersagt auf geometrischen Merkmalen der individuellen Drüsen im Gegensatz zu der Gesamtarchitektur oder Muster des Drüsengewebes. Erste Objekte werden erzeugt unter Verwendung der Bildanalyse eines Digitalbildes eines mit einem Färbemittel, welches luminale epitheliale Zellen anfärbt, gefärbten Gewebsschnittes aus einem Krebspatienten. Zweite Objekte werden erzeugt, welche von den ersten Objekten umgeben sind. Ein Formindex wird bestimmt für jedes der zweiten Objekte. Der Formindex wird berechnet, basierend auf einem gemessenen geometrischen Merkmal jedes der zweiten Objekte. Der durchschnittliche Formindex der zweiten Objekte wird bestimmt. Das Verfahren sagt voraus, dass der Krebspatient wahrscheinlich ein Krebsrezidiv haben wird, wenn der durchschnittliche Formindex kleiner als ein vorbestimmter Schwellwert ist. Die Vorhersage, dass der Krebspatient wahrscheinlich ein Krebsrezidiv haben wird, sagt voraus, dass der Krebspatient ein wiederholtes Auftreten von messbaren Mengen des prostataspezifischen Antigens (PSA) in seinem Blut hat.

Der Formindex wird berechnet, basierend auf geometrischen Merkmalen der zweiten Objekte wie beispielsweise der Länge, Breite, Grenzlänge, Fläche, Asymmetrie, elliptische Anpassung, Rundheit und Zahl der Verzweigungen. Der Formindex für jedes der zweiten Objekte basiert nicht auf irgendeiner Charakteristik irgendeines anderen zweiten Objektes. In einem Aspekt sind die zweiten Objekte ungefärbte Bereiche auf dem Digitalbild, welche umgeben sind von luminalen epithelialen Zellen, gefärbt durch Cytokeratin 18 (CK18).

Andere Ausführungsformen und Vorteile werden in der detaillierten Beschreibung unten beschrieben. Diese Zusammenfassung dient nicht dazu, die Erfindung zu definieren. Die Erfindung ist durch die Ansprüche definiert.

Kurze Beschreibung der Zeichnungen

Die begleitenden Zeichnungen, worin gleiche Bezugszeichen gleiche Komponenten bezeichnen, illustrieren die Ausführungsformen der Erfindung.

1 ist ein Diagramm eines neuen Systems zum Erzeugen eines histopathologischen Scores durch Definieren von Bildobjekten in Digitalbildern von gefärbtem Drüsengewebe.

2 verdeutlicht das Verfahren zum Erhalten der Digitalbilder von gefärbtem Drüsengewebe, welches mittels einem Score mit dem System aus 1 bewertet wurde.

3 ist ein Flussdiagramm von Schritten zum Erhalten eines verbesserten histopathologischen Scores, welcher die Rezidivierung von Drüsengewebskrebs vorhersagt.

4 ist ein schematisches Diagramm einer individuellen Drüse aus Prostatagewebe, in welchem Cytokeratin 18 (CK18) die luminalen epithelialen Zellen gefärbt hat.

5 verdeutlicht ein Datennetzwerk, welches erzeugt wird durch das System gemäß 1, in welchem Bildobjekte des Datennetzwerkes mit ausgewählten Pixeln eines Bildes von gefärbtem Drüsengewebe verknüpft sind.

6 ist ein Digitalbild eines Gewebsschnittes, in welchem die luminalen epithelialen Zellen mit CK18 gefärbt wurden.

7 ist ein Diagramm von Probenmustern aus Prostatagewebe, welche in die fünf Gleason-Score-Einteilungsmuster für prostatische Adenokarzinoma fallen.

8 zeigt die graphische Benutzeroberfläche des Systems gemäß 1, in welchem ein Lumen, welches durch die umgebenden gefärbten luminalen epithelialen Zellen identifiziert wird, hervorgehoben ist.

9 ist eine detailliertere Ansicht des Lumens, welches in 8 identifiziert ist, und welches die Grenzlänge und die Fläche des Lumens zeigt.

10 verdeutlicht die kleinste Ellipse, welche das in 8 identifizierte Lumen umschließen kann.

11 verdeutlicht ein größeres Rechteck, welches die Ellipse gemäß 10 umschließt.

12 verdeutlicht ein kleineres Rechteck, welches in der Ellipse gemäß 10 zentriert ist, welches dieselbe relative Länge und Breite wie das größere Rechteck gemäß 11 hat.

13 verdeutlicht, dass das kleinere Rechteck gemäß 12 den in 8 identifizierten Lumen überlagert wird, wobei beide dieselbe Gesamtfläche aufweisen.

14 ist eine detailliertere Ansicht des in 8 identifizierten Lumens und verdeutlicht, wie ein Formindex bestimmt wird.

15 verdeutlicht, wie ein Lumenflächen-zu-Drüsen-Index für das in 8 identifizierte Lumen berechnet wird.

16 ist eine Tabelle, welche sowohl einen ersten Formindex als auch einen zweiten Formindex listet, bestimmt aus den Digitalbildern von gefärbtem Prostatagewebe von 21 Prostatakrebspatienten.

17 ist eine Tabelle, welche einen histopathologischen Score listet, der aus Bildern von jedem der 21 Prostatakrebspatienten erzeugt wurde.

18 ist eine Tabelle, welche einen weiteren histopathologischen Score listet, erzeugt aus Bildern der 21 Prostatakrebspatienten durch Multiplizieren eines Relativflächenindex mit einem gewichteten Grenzindex.

Detaillierte Beschreibung

Nun wird im Detail Bezug genommen auf manche Ausführungsformen der Erfindung, deren Beispiele in den begleitenden Zeichnungen verdeutlicht sind.

1 zeigt ein System 10 zur Gradeinteilung gefärbter Proben aus Drüsengewebe, wie beispielsweise humaner Prostata, Brust, Darm oder Lungengewebe. Um das neue Gradeinteilungsverfahren, welches hierin beschrieben wird, für Drüsengewebskrebs durchzuführen, werden immunhistochemische Proben mit einem einzigen Färbungsmittel, wie beispielsweise Cytokeratin 18 (CK18), Transkriptionsfaktor p63 oder Hematoxylin und Eosin (H&E) gefärbt. Das Färben mit mehreren Biomarkern ist nicht erforderlich für das neue Gradeinteilungsverfahren. Digitalbilder 11 der Gewebsschnitte werden dann bei hoher Vergrößerung erhalten. Die Input-Daten für die Bildanalyse kann auch die Patientenanamnese und demographische Daten einschließen, welche als Kontextinformation 12 für die Berechnung von Parametern verwendet werden, welche in der Bildanalyse verwendet werden. Beispielsweise kann das Identifizieren von kanzerösen Drüsenbereichen unterstützt werden durch das Kennen des Patientenalters, ob der Patient raucht oder ob Krebs in der Familienanamnese des Patienten auftritt.

Die erhaltenen Digitalbilder 11 wie auch die Kontextinformation 12 werden in einer Datenbank 13 der Patientendaten gespeichert. Eine Bildanalysesoftware, welche auf einem Datenanalyseserver 14 ausgeführt wird, führt dann eine intelligente Bildverarbeitung und automatisierte Klassifikation und Quantifikation durch. Demnach schließt der Datenanalyseserver 14 ein computerlesbares Speichermedium ein, welches Programmanweisungen darauf zum Durchführen eines Verfahrens zur Vorhersage der Rezidivierung von Drüsenkrebs aufweist. Solch ein computerlesbares Speichermedium kann Anweisungen zum Erzeugen von Objekten in Digitalbildern, welche mittels eines besonderen Biomarkers gefärbt wurden und zum Identifizieren und Definieren jener Objekte, basierend auf geometrischen Merkmalen enthalten. Die Bildanalysesoftware ist ein Computerprogrammprodukt, welches berührbar auf dem computerlesbaren Speichermedium in Server 14 verkörpert ist und computerlesbare und ausführbare Programmanweisungen umfasst, welche wenn mittels eines Prozessors auf dem Server 14 ausgeführt, eine visuelle Anzeige auf einer graphischen Benutzeroberfläche einer damit verbundenen Anzeigevorrichtung 16 beispielsweise ein Personal Computer zur Verfügung stellt. Die Bildanalysesoftware wandelt unverknüpfte Inputdaten in Form von Pixeln in ein hierarchisches Netzwerk von verknüpften Objekten um.

Das System 10 analysiert, teilt nach Graden ein und zeigt die Digitalbilder 11 der Gewebsschnitte an, welche mit einem von unterschiedlichen Biomarkern gefärbt wurden. Das Bildanalyseprogramm stellt Verknüpfungen zwischen manchen Objekten her und erzeugt dadurch Objekte mit höherem hierarchischem Rang. Das Bildanalyseprogramm liefert die Objekte mit höherem hierarchischem Rang mit Eigenschaften, klassifiziert diese in Klassen und Subklassen und verknüpft dann solche Objekte wiederum auf einem noch höheren Niveau mit weiteren Objekten. Die Objekte mit höherem hierarchischem Rang werden verwendet, um Zielobjekte in den Bildern schneller zu finden. Leichter zu erfassende Ausgangsobjekte werden zuerst gefunden und dann verwendet, um schwerer zu findende Objekte in den hierarchischen Datenstrukturen zu identifizieren.

Sowohl allgemeine als auch subjektspezifische Kenntnis wird verwendet, um Objekte in den Bildern zu klassifizieren und zu segmentieren. Diese Kenntnis und der Programmfluss des Bildanalyseprogrammes liegen in der Softwarestruktur getrennt vor. Die Parameter mittels welcher die Bildanalyse durchgeführt wird, beispielsweise Schwellen für Größe oder Helligkeit, können geändert werden, ohne dass der hierarchische Prozess der Softwareschritte revidiert werden muss. Die Bildanalysesoftware zeigt sowohl die Originaldigitalbilder 11 als auch die korrespondierenden bearbeiteten segmentierten Bilder auf der graphischen Benutzeroberfläche 15. Klassifizierte und segmentierte Objekte in den Digitalbildern sind markiert oder hervorgehoben, um ihrer Klassifikation zu entsprechen. Beispielsweise sind Objekte, welche eine Mitgliedschaft in derselben Klasse aufweisen, in derselben Farbe wiedergegeben.

2 verdeutlicht das Verfahren zum Erhalten der digitalen Bilder 11, welche analysiert werden, eine Gradeinteilung vorgenommen wird und angezeigt werden mittels des Systems 10. Die Gewebeteile, welche mit einem der unterschiedlichen Protein- und Rezeptorbiomarkern gefärbt werden, werden typischerweise von einem lebenden Patienten 17 in Form einer Biopsie entnommen. Um die Gradeinteilung von kanzerösem Prostatagewebe durchzuführen, werden immunhistochemische Proben aus Paraffin-eingebetteten Biopsieproben von Prostatagewebe hergestellt, welche dem Patienten 17 chirurgisch entnommen wurden. Das neue Gradeinteilungsverfahren für Drüsengewebskrebs ist besonders geeignet zum Vorhersagen, ob es ein Wiederauftreten des Krebses nach einer radikalen Prostatektomie gibt, in welchem dem Patienten die entartete Prostatadrüse vollständig entfernt wurde. Unterschiedliche Teile der entfernten Prostatadrüse werden dann in viele benachbarte dünne planare Schnitte geschnitten. Wenn die Prostatadrüse nicht entfernt wurde, werden Prostatanadelbiopsieproben verwendet. Die Prostatanadelbiopsie sollte wenigstens 10 bis 12 Nadelkernproben umfassen.

Das prostataspezifische Antigen (PSA) genannte Protein wird von Prostatazellen hergestellt. Nachdem eine maligne Prostatadrüse vollständig entfernt wurde, ist gewöhnlich im Blut des Patienten kein PSA-Niveau messbar, da die Prostatazellen, welche das PSA produzieren, entfernt worden sind. Wenn jedoch der Krebs in der Prostatadrüse besonders bösartig war, können manche kanzerösen Prostatazellen metastasiert haben und sich zu anderen Körperteilen des Patienten ausbreiten, wo sie dann die Produktion von PSA fortsetzen. Ein Bluttest, der das Wiederauftreten eines messbaren PSA-Niveaus zeigt, zeigt ein Prostatakrebsrezidiv an, welches sich in andere Krebsformen umwandeln kann. Ein konventioneller Gleason-Score ist kein guter Vorhersagewert für das Prostatakrebsrezidiv nach radikaler Prostatektomie. Obwohl ein Gleason-Score die Schwere des Krebses in der Prostatadrüse anzeigt, ist der Gleason-Score kein guter Vorhersagewert, ob der Krebs allmählich zu einer Metastasierung fortschreitet. Das neue Gradeinteilungsverfahren für Drüsengewebskrebs kann viel besser vorhersagen, ob es eine biochemische Wiederkehr eines Prostatakrebses nach einer radikalen Prostatektomie geben wird.

Jeder Schnitt wird mit einem von mehreren möglichen Biomarkern gefärbt, bevor er auf einen Objektträger gebracht wird. 2 verdeutlicht eine Gewebsprobe 18, welche in eine Vielzahl von benachbarten dünnen planaren Schnitten geschnitten wurde. Ein Schnitt 19 wird mit einem Biomarker gefärbt und dann auf einen Objektträger 20 gebracht. Dasselbe Gewebe reagiert einzigartig auf jeden unterschiedlichen Biomarker. Das neue Gradeinteilungsverfahren erfordert, dass das Gewebe mit lediglich einem einzigen Biomarker, wie beispielsweise einem Cytokeratin 18 (CK18) gefärbt wird. Andererseits erfordert die konventionelle Gleason-Gradeinteilung typischerweise verschiedene Färbungen, wie beispielsweise Hematoxylin und Eosin (H&E), Cytokeratin 18 (CK18) und Transkriptionsfaktor p63. Andere Färbungsmittel, welche verwendet werden können für das neue Gradeinteilungsverfahren umfassen Cytokeratin 14 (CK14), humanen epidermalen Wachstumsfaktorrezeptor 2 (Her2), Cytoplasmafärbung mit Her2/neu, Estrogenrezeptor (ER) Färbung, Progesteronrezeptor (PR) Färbung, Tumormarker Ki67, Mib, SishChr17, SishHer2, Antikörperfärbung mit Differenzierungscluster 44 (CD44), Antikörperfärbung mit CD23, Hematoxylin und Eosin (H&E) und Transkriptionsfaktor p63 (ebenso bekannt als Tumorprotein p63 und transformationsbezogenes Protein 63). Ein hochaufgelöstes Digitalbild 11 wird dann von jedem gefärbten Schnitt aufgenommen. Ein typisches Digitalbild eines Gewebsschnittes weist eine Auflösung von 100.000×200.000 Pixel oder 20 Milliarden Pixel auf.

3 ist ein Flussdiagramm der Schritte 2125 eines Verfahrens 27 zum Erzeugen eines verbesserten histopathologischen Scores, welcher das Wiederauftreten von Drüsengewebskrebs vorhersagt. In einem ersten Schritt 21 erzeugt das System 10 erste Objekte aus einem Digitalbild eines Schnittes 19 aus Gewebe des Krebspatienten 17, welches mit einem Biomarker gefärbt worden ist, welcher luminale epitheliale Zellen färbt. In einer ersten Ausführungsform ist der Biomarker, welcher verwendet wird um den Schnitt 19 zu färben, Cytokeratin 18 (CK18), welches luminale epitheliale Zellen färbt. CK18 ist ein proteinspezifischer monoclonaler Antikörper (ein Biomarker), welcher beim Menschen durch das Gen KRT18/PIG46/CYK18 kodiert wird. CK18 wird mit einem daran angehefteten Farbstoff zusammen verwendet, um ein Färbungsmittel zu bilden. In einer weiteren Ausführungsform wird der Schnitt 19 mit dem Tumorprotein p63 gefärbt, welches die basalen epithelialen Zellen durch Färben der Kerne innerhalb der basalen epithelialen Zellen färbt. Tumorprotein p63 ist ein proteinspezifischer Antikörper, welcher beim Menschen durch das TP63-Gen codiert wird. Tumorprotein p63 wird ebenfalls zusammen mit einem daran angehefteten Farbstoff verwendet, um ein Färbungsmittel zu bilden. Es sei bemerkt, dass manche Biomarker keinen daran angehängten Farbstoff erfordern, beispielsweise Hematoxylin und Eosin (H&E), welche die Fähigkeit haben, Gewebe ohne die Zugabe eines Farbstoffes zu färben. Färben mit p63 wird verwendet, um das Prostata-Adenokarzinom (der häufigste Typ des Prostatakrebses) von benignem Prostatagewebe zu unterscheiden. Die Expression des p63-Gens ist bei Adenokarzinoma der Prostata im Vergleich zu normalem Prostatagewebe heruntergeregelt. Demzufolge färbt p63 die Kerne der basalen epithelialen Zellen in gesunden Prostatadrüsen.

4 verdeutlicht die Struktur einer individuellen Drüse 28 von normalem Prostatagewebe, in welchem CK18 die luminalen epithelialen Zellen 29 gefärbt hat. Eine immunhistochemische Färbung für CK18 kann ebenfalls verwendet werden, um andere Typen von epithelialen Organen, wie beispielswese den Brüsten, Lungen, Ovarien und Nieren zu färben. Normales Prostataepithel 30 ist zusammengesetzt aus Luminalen 29, Basalen 31 und Neuroendokrinen 32 Zellen, welche die Drüsen bilden, die von fibro-muskulärem Gewebe, Stroma 33 genannt, umgeben sind. Eine Basalmembran 34 trennt die Drüse 28 von dem Stroma 33. Jede Drüse ist zusammengesetzt aus Reihen von Epithelzellen, welche um ein „Lumen“ oder Kanal 35 angeordnet sind. Das Tumorprotein p63 färbt solche Kerne 36 der basalen epithelialen Zellen 31 in kanzerösem Prostatagewebe nicht an, bei welchem die Basalmembran 34 die Basalzellen 31 nicht länger umgibt. Somit exprimieren kanzeröse Basalzellen, die keine intakten Basalmembranen aufweisen, kein p63, wogegen gesunde und weniger maligne Prostatabasalzellen p63 exprimieren. Der Unterschied in der p63-Expression ist somit bezeichnend für den Krebsfortschritt in anderen epithelialen Organen, wie beispielsweise den Brüsten, Lungen und Ovarien.

5 verdeutlicht erste Objekte 37 eines beispielhaften Datennetzwerkes 38, wie sie vom System 10 in Schritt 21 erzeugt werden, basierend auf den gefärbten luminalen epithelialen Zellen 29. Das Bildanalyseprogramm des Systems 10 verwendet objektorientierte Bildanalyse, um Objekte des Datennetzwerkes 38 durch Verknüpfen ausgewählter Pixel 39 mit Objekten in Übereinstimmung mit einer Prozesshierarchie von Schritten und Algorithmen und in Übereinstimmung mit einem Klassifikationsnetzwerk zu erzeugen. Die Bildanalyse wird durchgeführt an jedem der Bilder, welche durch System 10 erhalten wurden, einschließend ein Digitalbild 40 des Gewebeschnittes 19, um ein hierarchisches Datennetzwerk 38 der Bildobjekte für jedes Bild zu erhalten. Für eine detailliertere Beschreibung des Erzeugens eines Datennetzwerkes unter Verwendung einer Prozesshierarchie und eines Klassennetzwerkes wird auf US Patent 8,319,793 verwiesen, auf dessen Inhalt hiermit vollinhaltlich Bezug genommen wird. Jedes Digitalbild umfasst Pixelwerte, welche mit den Orten eines jedes der Pixel 39 verbunden sind. Das Bildanalyseprogramm arbeitet an den Digitalpixelwerten und verknüpft die Pixel, um Objekte zu bilden. Jedes Objekt ist verknüpft mit einer Menge von Pixelorten, basierend auf den verbundenen Pixelwerten. Beispielsweise wird ein Objekt erzeugt durch Verknüpfen des Objektes mit jenen Pixeln, welche ähnliche Charakteristiken aufweisen, wie beispielsweise Farbton, Sättigung und Helligkeit, wie durch den Pixelwert definiert. Helligkeitsschwellen an Pixelorten, welche zusammengruppiert werden, können erhalten werden aus einem Histogramm der Pixelwerte in dem Digitalbild. Die Pixel bilden das niedrigste hierarchische Niveau des Datennetzwerkes 38.

In dem ersten Schritt 21 werden Pixel mit der Farbe und Intensität, die ihnen durch den Farbstoff, der an den CK18 Antikörper angehängt ist, verliehen wird, identifiziert und mit jenen Bildobjekten 37 verknüpft, welche den gefärbten luminalen epithelialen Zellen 29 entsprechen. Die Bildobjekte 37 bilden die zweite hierarchische Ebene des Datennetzwerkes 38. Anschließend werden Bildobjekte 37 zu Klassen verknüpft, in Übereinstimmung mit Mitgliedsfunktionen der Klassen, welche in dem Klassennetzwerk definiert sind. So werden beispielsweise Objekte, welche die luminalen epithelialen Zellen repräsentieren, die zu derselben Drüse gehören, miteinander verknüpft, um die ersten Objekte 4142 in einer dritten hierarchischen Ebene des Datennetzwerkes 38 zu bilden. In 5 wird eines der Objekte 43, welches einer gefärbten luminalen epithelialen Zelle entspricht, mit dem ersten Objekt 41 verknüpft, welches einer individuellen Drüse entspricht. In einer vierten hierarchischen Ebene des Datennetzwerkes 38 wird ein zusätzliches Objekt 44 erzeugt und wird mit sämtlichen der ersten Objekte verknüpft, welche Drüsen mit gefärbten luminalen epithelialen Zellen repräsentieren. Somit werden die ersten Objekte 4142, welche analysiert werden sollen, verknüpft mit einem Bildobjekt 44 höherer Ordnung. Das System 10 kann die ersten Objekte 4142 basierend auf Pixeln mit der Farbe und einem einzigen Färbungsmittel erzeugen. Mehrfachfärbungen sind nicht erforderlich, um das Verfahren 27 durchzuführen.

In einem zweiten Schritt 22 des verbesserten Score-Einteilungsverfahrens 27 werden zweite Objekte erzeugt, welche umgeben sind von den ersten Objekten 4142. Die ersten Objekte 4142 sind die Ringe aus luminalen epithelialen Zellen 29, die einer immunzytochemischen Färbung durch CK18 unterzogen wurden. Die zweiten Objekte sind die Lumen 35, welche umgeben sind von den luminalen epithelialen Zellen 29. In 5 würde ein zweites Objekt 45 (nicht gezeigt) mit den helleren Pixeln, welche umgeben sind von dem Ring aus dunkleren Pixeln, welche mit den Objekten zwischen den Objekten 37 und 43 verknüpft sind, verknüpft.

6 zeigt ein hochaufgelöstes Digitalbild 46 des Gewebsschnittes 19 aus Krebspatienten 17, welches mit einem Biomarker gefärbt wurde, welcher luminale epitheliale Zellen anfärbt. In dieser ersten Ausführungsform hat das Cytokeratin 18 (CK18) die luminalen epithelialen Zellen 29 braun gefärbt und die Lumen sind die helleren Flächen, welche von den gefärbten Zellen 29 umgeben sind. In einer zweiten Ausführungsform färbt das Tumorprotein p63 die Kerne 36 von gesunden und weniger malignen basalen epithelialen Zellen 31, welche die helleren Flächen der Lumen umgeben. In 6 bilden die dunkler gefärbten luminalen epithelialen Zellen 29 Ringe oder Schleifen um die helleren Lumen 35 der individuellen Prostatadrüsen. Vier Lumen 4548 sind in 6 markiert.

Aus 6 ist ersichtlich, dass die individuellen Drüsen als zu Bereichen der Drüsen mit größeren Lumen, mittelgroßen Lumen und kleineren Lumen zugehörig gekennzeichnet werden können. Beispielsweise ist Lumen 45 ein Teil des Bereichs von Drüsen mit größeren Lumen. Die Lumen 4648 gehören zu einem Bereich von Drüsen mit Lumen mittlerer Größe und die Drüsen des Bereichs 49 haben kleinere Lumen. Diese unterscheidende Drüsenarchitektur des Prostatagewebes basiert auf den relativen Größen der individuellen Prostatadrüsen und der Regularität des gesamten Musters der Lumen ist die Basis für eine Gradeinteilung unter Verwendung des konventionellen Gleason-Verfahrens. Jedoch wird die Größe eines Lumens relativ zur Größe eines benachbarten Lumens und dem Gesamtmuster, welches aus den individuellen Lumen in einem örtlichen Bereich erzeugt wird, nicht als die Basis für die Vorhersage, die unter Verwendung des Verfahrens 27 getroffen wird, verwendet. Die Gleasonsche Score-Einteilung wird detailliert unten beschrieben, um das verbesserte histopathologische Score-Einteilungsverfahren 27 mit dem konventionellen Gleason-Verfahren zu vergleichen und diesem gegenüber zu stellen.

7 verdeutlicht Gewebsprobenmuster, welche in die fünf Gleason-Kategorien fallen. Ein Pathologe ordnet eines der Gleason-Muster zu jedem Gesichtsfeld zu, während der Pathologe das gesamte Digitalbild 46 durchmustert. Dann bestimmt der Pathologe, welches Gleason-Muster die größte Fläche des Digitalbildes 46 überdeckt. 7 zeigt, dass die Gleason-Muster zusammengesetzt sind aus kleinen einheitlichen Lumen und Drüsen. Muster zwei schließt mehr Stroma zwischen den Drüsen ein. Obwohl die Drüsengröße von Muster zwei eine größere Verteilung hat, ist die durchschnittliche Drüsengröße des Musters zwei in etwa dieselbe wie für Muster eins. In Muster drei beginnen die Zellen die Drüsen an den Rändern der Drüsen zu infiltrieren. In Muster vier gibt es irreguläre Zellmassen mit weniger Drüsen. Muster fünf ist gekennzeichnet durch ein Fehlen von Drüsen und das Prostatagewebe schließt Klumpen und Schichten von Zellen ein. Es ist ersichtlich, dass jedes der unterschiedlichen Bereiche des Digitalbildes 46 in 6 einem der fünf Gleason-Muster, die in 7 gezeigt sind, zugeordnet sein könnte.

Das Gleason-Verfahren hat zwei Hauptnachteile, welche durch das verbesserte Score-Einteilungsverfahren 27 überwunden werden. Zum einen ist es schwierig, visuell die große Zahl von lokalisierten Bereichen eines hochaufgelösten Bildes von gefärbtem Gewebe konsistent zu bewerten. Es ist eine große Herausforderung für den Pathologen, es zu vermeiden, dass er irgendwelche Flächen von prostatischem Adenokarzinoma auf jedem Objektträger übersieht, wenn der Pathologe das Gewebe in den kleineren Gesichtsfeldern inspiziert, wenn er durch die viel größeren hochaufgelösten Bilder navigiert. Es ist besonders schwierig, einem Gewebsbereich ein Gleason-Muster zuzuordnen, weil gesundes Prostatagewebe ebenfalls die kleinen, einheitlichen Drüsen aufweist, welche bezeichnend sind für das Gleason-Muster eins. Zusätzlich ist es ebenfalls eine Herausforderung für den Pathologen, unterschiedliche Bereiche des Gewebes auf unterschiedlichen Objektträgern konsistent in Übereinstimmung mit den fünf Gleason-Gewebsmustern zu klassifizieren. Das neue Score-Einteilungsverfahren 27 verlässt sich nicht auf das Identifizieren architektonischer Muster in Prostatagewebe, so dass keine visuelle Inspektion der Gewebsmuster erforderlich ist. Stattdessen werden lediglich geometrische Merkmale individueller Drüsen in Betracht gezogen. Vielmehr verwendet das Bildanalyseprogramm des Systems 10 objektorientierte Bildanalyse, um eine Gradeinteilung sämtlicher Lumen des Drüsengewebes auf dem Objektträger 20 zu erzielen, so dass eine visuelle Inspektion gänzlich entfallen kann.

Zweitens, selbst wenn die visuelle Bewertung zu einem genauen Gleason-Score führt, ist der Score kein guter Vorhersagewert der Wahrscheinlichkeit eines biochemischen Wiederauftretens von Prostatakrebs nach einer radikalen Prostatektomie. Der Gleason-Score stellt keine gute Differenzierung zwischen Patienten zur Verfügung in der intermediären Prognosefläche zwischen hohem und niedrigem Risiko des Wiederauftretens. So können beispielsweise Patienten, die allesamt Gleason-Scores von sieben aufweisen, dramatisch unterschiedliche Chancen eines biochemischen Wiederauftretens von Prostatakrebs aufweisen, wie es sich anhand von anschließend messbaren PSA-Niveaus ergibt. Daher hat es Versuche gegeben, den Gleason-Score von sieben in 7A und 7B zu teilen. Eine Definition eines 7A Scores ist die Kombination der Gleason-Grade 3 + 4, wogegen ein 7B Score sich aus den Gleason-Graden 4 + 3 ergibt (d. h. solche, die mehr lokalisierte Bereiche mit Grad 4 als mit Grad 3 aufweisen). Eine weitere Definition eines 7A Gleason-Scores sind die primären und sekundären Grade von drei und vier ohne tertiären Grad von fünf, wogegen ein 7B Gleason-Score einen tertiären Grad von fünf einschließt. Selbst wenn man das neue Score-Einteilungsverfahren 27 mit den modifizierten Gleason-Score Einteilungen unter Verwendung von 7A und 7B vergleicht, liefert es jedoch einen viel besseren Vorhersagewert für ein Prostatakrebsrezidiv nach einer radikalen Prostatektomie. Patienten, deren Prostatagewebe mit entweder 7A oder 7B oder mit beiden bewertet wurde, haben eine ähnliche Wahrscheinlichkeit des Auftretens von messbaren PSA-Niveaus nach Entfernen ihrer Prostatadrüsen. Erwiesenermaßen liefern die architektonischen Muster in Drüsengewebe eine gute Anzeige der Malignität oder Schwere des Krebses, aber sagen nicht genau die Wahrscheinlichkeit voraus, dass der Krebs metastasiert hat, d. h. dass manche Krebszellen die Prostatakapsel bereits verlassen haben.

In einem dritten Schritt 23 des Score-Einteilungsverfahrens 27 wird ein Formindex für jedes der zweiten Objekte 4548 (Lumen 35) in dem Digitalbild 46 bestimmt. Der Formindex wird bestimmt, basierend auf den helleren Flächen in Bild 46, welche von gefärbten Flächen umgeben sind. Hellere Pixel, die von dunkleren Pixeln um die Peripherie des Digitalbildes 46 umgeben sind, werden nicht als zweite Objekte klassifiziert, da sie wahrscheinlich Bildsensorartefakte oder künstliche Strukturen an den Schnittkanten des Gewebes sind. In dem Digitalbild 46 gibt es mehr als 21.000 zweite Objekte. Das Bildanalyseprogramm des Systems 10 berechnet den Formindex, basierend auf einem gemessenen geometrischen Merkmal jedes der zweiten Objekte. Der Formindex für jedes zweite Objekt basiert nicht auf irgendeiner Charakteristik irgendeines benachbarten zweiten Objektes. Die Bestimmung eines beispielhaften Formindex wird nun beschrieben für das zweite Objekt 45 im Bereich 50. Der „Grenzindex“ ist ein beispielhafter Formindex, der zu einer guten Vorhersage der Wahrscheinlichkeit von messbaren Niveaus an prostataspezifischem Antigen (PSA) führt, welche im Blut eines Patienten nach einer radikalen Prostatektomie erfasst werden.

8 zeigt einen Bereich 50 des Digitalbildes 46, der auf einer graphischen Benutzeroberfläche 15 des Systems 10 angezeigt wird, nachdem Schritt 23 durchgeführt wurde. Der nach rechts gerichtete Rahmen auf der graphischen Benutzeroberfläche 15 zeigt (vgl. Pfeil 51), dass das Bild in der Mitte ein Bereich des Digitalbildes „PC_21 RS“ 46 ist. Der linke Rahmen zeigt, dass die Digitalbilder des Prostatagewebes aus vielen anderen Patienten ebenfalls analysiert wurden. Die Grenzindizes für ausgewählte zweite Objekte in Digitalbild 46 sind in dem nach rechts gerichteten Rahmen auf der graphischen Benutzeroberfläche 15 gelistet. Zum Beispiel ist der Grenzindex des zweiten Objektes 45 mit der ID Nummer 14161 als 1.2741935 gelistet (vgl. Bezugszeichen 52). Es soll bemerkt werden, dass manche der Bildobjekte, die in dem Rahmen rechts gelistet sind, keine zweiten Objekte sind, welche zu der Klasse „Lumen“ gehören. Stattdessen gehören manche der Bildobjekte zu der Klasse „kleines Lumen“ oder der Klasse „Lumenkandidat“. Bei der nachfolgenden Optimierung der Bildanalyse werden jedoch gewisse Objekte in der Klasse „Lumenkanditat“ als zu der Klasse „Lumen“ reklassifiziert. Lediglich die Grenzindizes der zweiten Objekte werden in Schritt 23 in Betracht gezogen. In einer Ausführungsform werden Einzelpixel helle Flächen umgeben von gefärbten Pixeln ebenfalls aus der Klasse „Lumen“ der zweiten Objekte ausgeschlossen. Diese kleinen Bildobjekte sind wahrscheinlich lediglich Bildsensorartefakte.

Das Verfahren zum Berechnen des Grenzindex des zweiten Objektes 45 wird unten beschrieben. Der Grenzindex ist definiert als BI = (Grenzlänge)/(2·(Länge + Breite)). Die Grenzlänge ist die Länge in Pixeln um die Peripherie des zweiten Objektes. Beispielsweise weist ein Ein-Pixel-Objekt eine Grenzlänge von vier auf, ein Zwei-Pixel-Objekt hat eine Grenzlänge von sechs und ein Drei-Pixel-Objekt hat eine Grenzlänge von acht.

9 verdeutlicht, dass die Grenzlänge um das zweite Objekt 45 1.468 Pixel beträgt. Die Längen- und Breitenwerte, welche verwendet werden, um den Grenzindex zu berechnen, sind die Dimensionen eines Rechteckes, das dieselbe Fläche wie das zweite Objekt aufweist, jedoch gebildet basierend auf der kleinsten Ellipse, welche das zweite Objekt umschließen kann. 9 verdeutlicht, dass die Fläche des zweiten Objektes 45 74.041 Pixel beträgt.

10 zeigt die kleinste Ellipse 53, welche das zweite Objekt 45 umschließen kann. Die kürzeste und längste Achse 5455 der Ellipse 53 werden verwendet, um ein größeres Rechteck 56, welches die Ellipse 53 umschließt, auszurichten. 11 zeigt ein größeres Rechteck 56. Anschließend wird ein kleineres Rechteck 57 mit derselben relativen Länge und Breite als ein größeres Rechteck 56 auf den Achsen 5455 der Ellipse 53 zentriert. Das kleinere Rechteck 57 hat dieselbe Fläche wie das zweite Objekt 45. 12 zeigt das kleinere Rechteck 57, welches in der Ellipse 53 zentriert ist. 13 zeigt das kleinere Rechteck 57 überlagert über das zweite Objekt 45. Sowohl das kleinere Rechteck 57 als auch das zweite Objekt 45 haben eine Fläche von 74.041 Pixel. Die Länge und Breite des kleineren Rechtecks 57 werden bei der Berechnung des Grenzindex verwendet. Die Länge des kleineren Rechtecks 57 beträgt 319 Pixel und die Breite des kleineren Rechtecks 57 beträgt 257 Pixel. Der Grenzindex für das zweite Objekt 45 ist 1.468 Pixel geteilt durch 2·(319 Pixel + 257 Pixel), welches 1.274 ergibt.

In einem vierten Schritt 24 des Score-Einteilungsverfahrens 27 wird der durchschnittliche Formindex für sämtliche zweiten Objekte bestimmt. In diesem Beispiel ist der Formindex der Grenzindex, welcher einen durchschnittlichen Wert von 1,0616 für die etwa 21.000 zweiten Objekte im Digitalbild 46 aufweist. Der durchschnittliche Wert des Grenzindex für sämtliche zweiten Objekte ist kleiner als der 1,274 Wert für das dreieckig-förmige zweite Objekt 45 in einem großen Teil wegen des hohen Anteils an kleineren Lumen in dem Gewebe, welches rundere Formen aufweist. Ein Kreis hat einen Grenzindex von 0,886 (√Π/2). In einer Ausführungsform, in welcher Ein-Pixel-Objekte nicht aus der Klasse „Lumen“ ausgeschlossen sind, senken zweite Objekte, welche ein Pixel groß sind, ebenfalls den durchschnittlichen Grenzindex, weil ein einzelnes Pixel ebenfalls einen Grenzindex von 0,886 hat. Ein niedrigerer durchschnittlicher Grenzindex zeigt an, dass das Gewebe einen höheren Anteil an Drüsen aufweist, deren Lumen eine Fläche haben, welche lediglich ein oder wenige Pixel groß sind.

In einem letzten Schritt 25 sagt das System 10 voraus, dass der Krebspatient 17 wahrscheinlich ein Krebsrezidiv haben wird, wenn der durchschnittliche Formindex kleiner als ein vorbestimmter Schwellwert ist. Ein Krebsrezidiv ist wahrscheinlich, wenn es wahrscheinlicher ist, als nicht, dass wiederum messbare PSA-Niveaus im Blut des Patienten nach radikaler Prostatektomie des Patienten erfasst werden. In dem Fall, wo der Grenzindex als der Formindex verwendet wird, wird der vorbestimmte Schwellwert auf 1,051 gesetzt. Der Schwellwert wird empirisch bestimmt durch Berechnen des Grenzindex für viele Patienten, deren postoperative PSA-Niveaus bekannt sind. Patienten, die später ein Wiederauftreten von messbaren PSA-Niveaus in ihrem Blut nach Entfernung ihrer Prostatadrüsen aufwiesen, tendierten dazu, niedrigere Grenzindizes in ihrem Prostatagewebe zum Zeitpunkt ihrer radikalen Prostatektomie aufzuweisen. Patienten, deren PSA-Niveaus auf einem niedrigen oder nichtexistenten Niveau verblieben, tendierten dazu, Grenzwertindizes von oberhalb 1,051 zu haben. Da der durchschnittliche Grenzindex für das Digitalbild 46 von Prostatagewebe aus Patient 17 mit 1,0616 nicht kleiner ist als die vorbestimmte Schwelle von 1,051, sagt das System 10 voraus, dass Patient 17 wahrscheinlich kein Krebsrezidiv nach seiner radikalen Prostatektomie haben wird. Somit sagt das System 10 voraus, dass Patient 17 niemals eine messbare Menge an PSA in seinem Blut nach der radikalen Prostatektomie aufweisen wird.

Eine genaue Vorhersage des Krebsrezidivs, welches sich aus der Metastasierung des Prostatagewebes ergibt, kommt Patienten zugute, wobei nur solche Patienten drastischen Behandlungen mit schädlichen Nebenwirkungen unterzogen werden, die eine Vorhersage eines Krebsrezidivs zeigen. Allerdings ist die Vorhersage, welche mittels des verbesserten histopathologischen Score-Einteilungsverfahrens 27 erzeugt wird unter Verwendung lediglich des Grenzindex als dem Formindex nicht zu 100% genau. Ein kleiner Teil der Patienten, deren Prostatagewebe einen Grenzindex kleiner als die Schwelle von 1,051 aufweist, erfährt nichtsdestotrotz keine biochemische Wiederkehr des Prostatakrebses wie durch hohe PSA-Niveaus gemessen. Um die Zahl der falsch-positiven Vorhersagen von Prostatakrebsrezidiven zu vermindern, werden zusätzliche Formindizes aus dem Digitalbild des Prostatagewebes des Patienten bestimmt. Dann kann die Vorhersage des Krebsrezidives lediglich dann gemacht werden, wenn sämtliche Formindizes unter ihre entsprechenden vorbestimmten Schwellwerte fallen.

14 verdeutlicht die Bestimmung eines zweiten Formindexes zusätzlich zum Grenzindex, welcher in dem Score-Einteilungsverfahren 27 verwendet werden kann. 14 ist eine detailliertere Ansicht eines zweiten Objektes 45, welches ein Lumen darstellt. Dunklere luminale epitheliale Zellen 29, welche mit CK18 gefärbt wurden, umgeben die helleren Flächen des zweiten Objektes 45. Der Ring aus gefärbten Zellen 29 macht das erste Objekt 41 aus. Die gesamte Fläche, welche durch die luminalen epithelialen Zellen 29 eingeschlossen wird, ist eine individuelle Drüse. Der zweite Formindex ist die relative Fläche des Lumens, verglichen mit der Gesamtfläche der Drüse. In diesem Falle ist der zweite Formindex die Fläche des zweiten Objektes 45 geteilt durch die Summe der Flächen des zweiten Objektes 45 und dem umgebenden ersten Objekt 41.

15 zeigt die Berechnung des Lumenfläche-zu-Drüsenindex für das zweite Objekt 45. Die Fläche der Drüse 41 beträgt 84.392 Pixel und die Fläche des Lumens 45 beträgt 74.041 Pixel. Demzufolge beträgt der relative Flächenindex für das zweite Objekt 45 0,8773. In dem Score-Einteilungsverfahren 27 wird der relative Flächenindex bestimmt für jedes der zweiten Objekte, nachdem der durchschnittliche Grenzwert in Schritt 24 bestimmt wurde. Anschließend wird der relative Flächenindex für sämtliche der zweiten Objekte in Bild 46 bestimmt. Schlussendlich wird in Schritt 25 die Vorhersage getroffen, dass Patient 17 wahrscheinlich nur dann ein Krebsrezidiv haben wird, wenn sowohl (i) der durchschnittliche Grenzindex kleiner als der erste vorbestimmte Schwellwert von 1,051 ist und (ii) der durchschnittliche relative Flächenindex kleiner als ein zweiter vorbestimmter Schwellwert ist.

In einer weiteren Ausführungsform wird der relative Flächenindex berechnet durch Summierung der Flächen sämtlicher zweiter Objekte in Bild 46 und Dividieren dieser Gesamtfläche durch die Summe der Flächen sämtlicher Drüsen in Bild 46. Dieses alternative Verfahren zur Durchschnittsbildung des relativen Flächenindex führt zu einer kleineren Gewichtung des Beitrags aus den kleinen Lumen. Wenn dieses alternative Verfahren verwendet wird, müssen die Ein-Pixel-Objekte nicht aus der Klasse „Lumen“ ausgeschlossen werden, weil ihr Beitrag zum Formindex abgeschwächt ist.

Der zweite vorbestimmte Schwellwert wird ebenfalls empirisch bestimmt, basierend auf dem relativen Flächenindex von vielen Patienten, deren postoperative PSA-Niveaus bekannt sind. Patienten, die ein Wiederauftreten von PSA nach ihrer radikalen Prostatektomie aufwiesen, zeigten gewöhnlich einen relativen Flächenindex von kleiner als 0,450. Demzufolge sagt das System 10 voraus, dass ein Patient wahrscheinlich ein Prostatakrebsrezidiv haben wird, wenn sowohl sein durchschnittlicher Formindex kleiner als 1,051 ist und sein durchschnittlicher relativer Flächenindex kleiner als 0,450 ist. Der durchschnittliche relative Flächenindex für sämtliche der zweiten Objekte in Bild 46 des gefärbten Gewebes aus Patient 17 beträgt 0,5652. Deshalb sagt das System 10 voraus, dass Patient 17 wahrscheinlich kein Prostatakrebsrezidiv haben wird, weil sowohl sein allgemeiner Formindex von 1,0616 nicht kleiner als die erste vorbestimmte Schwelle von 1,051 ist und sein durchschnittlicher relativer Flächenindex von 0,5652 nicht kleiner als die zweite vorbestimmte Schwelle von 0,450 ist. Zum Zeitpunkt der radikalen Prostatektomie von Patient 17 sagt das System voraus, dass nach Ablauf von einigen Monaten nach der Prostatektomie noch kein messbares Niveau an PSA im Blut des Patienten 17 auftreten wird.

16 zeigt sowohl einen ersten Formindex als auch einen zweiten Formindex, bestimmt aus den Digitalbildern von gefärbtem Prostatagewebe aus 21 Prostatakrebspatienten A–U. Die Ergebnisse für Patient 17 sind unter Patient E aufgelistet. Der erste Formindex ist der Grenzindex und der zweite Formindex ist der relative Lumenfläche-zu-Drüse-Index. Lediglich auf dem Grenzindex basierend sagt das Score-Einteilungsverfahren 27 voraus, dass jeder der Patienten M–U wahrscheinlich ein Krebsrezidiv haben wird, weil jeder einen durchschnittlichen Grenzindex aufweist, der kleiner ist als der vorbestimmte Schwellwert von 1,051. Nachdem die Schritte 2324 unter Verwendung des zweiten relativen Flächenindex wiederholt wurden, sagt das Score-Einteilungsverfahren 27 voraus, dass lediglich die Patienten M–N, Q–S und U wahrscheinlich ein Krebsrezidiv haben werden, weil jeder sowohl einen durchschnittlichen Grenzindex von kleiner als 1,051 und einen durchschnittlichen relativen Flächenindex von kleiner als den zweiten vorbestimmten Schwellwert von 0,450 aufweisen.

Ein Arzt könnte aus der durch das Score-Einteilungsverfahren 27 gemachten Vorhersage schließen, dass nur die Patienten M–N, Q–S und U Therapien unterzogen werden müssen, welche sehr teuer sind und welche mit signifikant schweren Nebenwirkungen einhergehen. Der Arzt könnte weniger drastische Behandlungen für die verbleibenden Patienten empfehlen, um das Wiederauftreten von Prostatakrebs zu verhindern. Die fettgedruckten Buchstaben in 16 zeigen die Patienten an, die tatsächlich eine biochemische Wiederkehr des Prostatakrebses wie durch bestimmbare PSA-Niveaus nach ihren radikalen Prostatektomien gemessen, aufwiesen. Die Patienten D und G wiesen ein Prostatakrebsrezidiv auf, obwohl das Verfahren 27 vorhersagt, dass das Risiko eines Krebsrezidivs gering war.

Die Genauigkeit des histopathologischen Score-Einteilungsverfahrens 27 kann verbessert werden, indem man die Schritte 2324 unter Verwendung von mehr als einem oder zwei Formindizes und durch Anwendung zusätzlicher verbundener Schwellwerte im Schritt 25 wiederholt. Die geometrischen Merkmale, auf denen die zusätzlichen Formindizes beruhen, können die Länge, Breite, Grenzlänge, Fläche, Asymmetrie, elliptische Anpassung, Rundheit und Zahl von Verzweigungen eines Bildobjektes umfassen. Die Formindizes basieren auf diesen geometrischen Eigenschaften der zweiten Objekte (Lumen), der ersten Objekte (luminale epitheliale Zellen) oder den gesamten Drüsen (durch die ersten Objekte umschlossene Fläche). Einige Beispiele von zusätzlichen Formindizes umfassen: Lumenlänge dividiert durch Breite; Lumenrundheit dividiert durch Drüsenfläche; Lumenlänge mal Asymmetrie; Summe der Lumenfläche zum Gesamtgewebe im Bild; Summe der Lumenfläche zu Stromafläche im Bild und Summe der Fläche der luminalen epithelialen Zellen zu Gesamtgewebe im Bild.

Kein Formindex wird berechnet, basierend auf einem geometrischen Merkmal aus einem Objekt, verglichen mit einem geometrischen Merkmal eines benachbarten Objektes. Zum Beispiel basiert keiner der Formindizes auf der Geometrie einer Drüse oder eines Lumens, verglichen mit der Geometrie einer benachbarten Drüse oder Lumen. Demnach basiert das neue Score-Einteilungsverfahren 27 auf den geometrischen Charakteristiken von individuellen gefärbten Bildobjekten, jedoch nicht auf irgendwelchen Mustern, die durch die gefärbten Bildobjekte erzeugt werden. Demzufolge ist eine subjektive Score-Einteilung von Gewebsmustern nicht erforderlich. Die Voraussage, die durch das Score-Einteilungsverfahren 27 getroffen wird, basiert lediglich auf der Geometrie individueller Lumen oder Drüsen im Gegensatz zu Mustern oder der Architektur von Drüsenklumpen, wie sie bei der konventionellen Gleason-Score-Einteilung verwendet werden. Durch das Eliminieren des subjektiven Abgleichs von Gewebsmustern, wird die Konsistenz des histopathologischen Scores im Vergleich zu einem Gleason-Score verbessert. Darüber hinaus kann das neue Score-Einteilungsverfahren 27 voll automatisiert werden, weil es keine menschliche Beurteilung erfordert, um zu bestimmen, ob jede einzelne Region eines Gewebsobjektträgers am besten zu einem der fünf Gleason-Muster, welche in 7 gezeigt sind, passt.

Die Genauigkeit des histopathologischen Score-Einteilungsverfahrens 27 kann ebenfalls verbessert werden durch Ein-Faktorisieren des Alters des Patienten 17. Prostatakrebs tendiert dazu, eine höhere Wahrscheinlichkeit der Metastasierung bei jüngeren Patienten zu zeigen. Demzufolge kann der durchschnittliche Formindex multipliziert werden mit einem Altersfaktor, der minimal kleiner ist als einer für jüngere Patienten, bevor der durchschnittliche Formindex mit der vorbestimmten Schwelle verglichen wird. In einer Ausführungsform wird ein Altersfaktor von 0,99 mit dem durchschnittlichen Formindex für 70-jährige oder jüngere Patienten multipliziert. Patient G ist beispielsweise 69 Jahre alt zum Zeitpunkt der Score-Einteilung, weshalb der durchschnittliche Grenzindex von 1,0569 für Patient G multipliziert wird mit dem Altersfaktor von 0,99, um einen skalierten durchschnittlichen Grenzindex von 1,0463 zu ergeben. Da 1,0463 kleiner ist als die erste vorbestimmte Schwelle von 1,051, würde das Score-Einteilungsverfahren 27 unter Verwendung des Altersfaktors voraussagen, dass Patient G ein hohes Krebsrezidivrisiko hat, anstelle eines niedrigen Risikos, wie es vor der Skalierung vorhergesagt würde.

Das histopathologische Score-Einteilungsverfahren 27 kann verwendet werden für mehr als lediglich das Voraussagen des Wiederauftretens oder Nichtwiederauftretens von Drüsengewebskrebs. Die durchschnittlichen Formindizes, welche durch Verfahren 27 erzeugt wurden, können in histopathologische Scores umgewandelt werden, welche das Niveau der Krebsmalignität des Drüsengewebes anzeigen. Obwohl beispielsweise Verfahren 27 vorhersagt, dass der Prostatakrebs, dargestellt in den Bildern sämtlicher Patienten A–L eine niedrige Wahrscheinlichkeit eines Rezidivs, nach einer radikalen Prostatektomie voraussagt, zeigen die Größen der durchschnittlichen Grenzindizes an, dass die Malignität des Krebses von Patient L größer ist als die des Krebses von Patient A. Unter Verwendung mehrerer Formindizes kann die Genauigkeit des angezeigten Malignitätsgrads verbessert werden. Beispielsweise kann ein histopathologischer Score erzeugt werden durch Multiplizieren des Grenzindex mit dem relativen Flächenindex. Ein niedrigerer histopathologischer Score ist wegweisend für höhere Krebsmalignitätsniveaus des Gewebes.

17 ist eine Tabelle, welche aus den Bildern jedes der 21 Prostatakrebspatienten einen histopathologischen Score erzeugt. Der Score wird erhalten durch Multiplizieren des Grenzindex mit dem relativen Flächenindex. Die Patienten werden vom höchsten Score oben bis zum niedrigsten Score unten sortiert. Ein höherer Score zeigt ein niedriges Niveau an Krebsmalignität des Drüsengewebes an. Obwohl beispielsweise Verfahren 27 vorhersagt, dass die Patienten K–L kein Prostatakrebsrezidiv haben werden, liegen die Scores für die Patienten K–L gerade über der ersten Schwelle, welche auf dem Grenzindex allein basiert. Der histopathologische Score, der erzeugt wird unter Verwendung sowohl des Grenzindex als auch des relativen Flächenindex zeigt jedoch an, dass das Malignitätsniveau des Krebses bei beiden Patienten K und L weniger schwerwiegend ist als dasjenige der meisten der anderen 12 Patienten, bei welchen vorausgesagt wird, dass sie kein Prostatakrebsrezidiv haben werden. Das Score-Einteilungsverfahren 27 kann verwendet werden, bevor eine Prostatektomie durchgeführt wird, basierend auf einem Nadelprobengewebe, welches dem Krebspatienten 17 entnommen wurde. In dem Fall von Patienten wie beispielsweise K und L ist der histopathologische Score bezeichnend für ein niedriges Niveau an Krebsmalignität, die einen Arzt veranlassen könnte, eine radikale Prostatektomie für solche Patienten zu verzögern, insbesondere wenn die Patienten ein Alter von über 70 aufweisen.

18 ist eine Tabelle, welche noch einen weiteren histopathologischen Score auflistet, der erzeugt wird aus Bildern jedes der 21 Prostatakrebspatienten. Der Score in 18 wurde erhalten durch Multiplizieren des relativen Flächenindex mit einem gewichteten Grenzindex. In diesem Falle wird der Grenzindex für jedes zweite Objekt multipliziert mit der Zahl der Pixel in dem zweiten Objekt. Ein-Pixel-Objekte und kleine Lumen werden nicht ausgeschlossen aus der Klasse „Lumen“ in dieser Ausführungsform, weil der gewichtete Grenzindex den Beitrag der kleinen Lumen abschwächt. In 18 sind die Patienten wiederum sortiert vom höchsten Score oben zum niedrigsten Score unten und die fettgedruckten Buchstaben zeigen die Patienten, welche tatsächlich eine biochemische Wiederkehr des Prostatakrebs hatten. Das Produkt der beiden Formindizes, welches in 18 gelistet ist, kann sowohl verwendet werden, um das Prostatakrebsrezidiv als auch einen histopathologischen Score der das Malignitätsniveau des Prostatakrebses anzeigt, vorherzusagen. Eine vorbestimmte Schwelle von 11,500 wurde empirisch ermittelt. Das Verfahren 27 sagt voraus, dass Krebspatienten D, M–O und Q–U wahrscheinlich ein Krebsrezidiv haben werden, weil der histopathologische Score für diese Patienten unterhalb der Schwelle von 11,500 liegt. Von den Patienten, für die ein Krebsrezidiv vorhergesagt wurde, wies lediglich Patient O kein Rezidiv auf. Zusätzlich zeigt der histopathologische Score, der erzeugt wurde unter Verwendung des gewichteten Grenzindex und des relativen Flächenindex das relative Malignitätsniveau des Krebses der Patienten an. Patienten mit einem höheren Score haben weniger malignen Krebs.

18 listet ebenfalls die konventionellen Gleason-Scores auf, welche aus den Bildern von jedem der 21 Prostatakrebspatienten erhalten wurden. Es fällt auf, dass das Klassifizieren von Patienten mittels der Gleason-Scores von 6, 7A und 7B keine zuverlässige Vorhersage von Prostatakrebsrezidiven nach radikaler Prostatektomie erlaubt. Patienten, welche ein Krebsrezidiv aufwiesen (in Fettbuchstaben) und Patienten, welche kein Krebsrezidiv aufwiesen, wurden gleichermaßen wahrscheinlich den Gleason-Scores 6, 7A und 7B zugeordnet. Die Scores, welche jedoch mittels des Verfahrens 27 erzeugt wurden, sagten genau das Auftreten oder Nichtwiederauftreten von Krebs bei sämtlichen Patienten mit Ausnahme der Patienten G und O voraus. Darüber hinaus zeigt der histopathologische Score, der mittels des Verfahrens 27 erzeugt wird an, dass die Krebsmalignität der Patienten B–C, F und K weniger schwer ist als solche, die mittels der zugeordneten Gleason-Scores von 7A und 7B angezeigt werden. Der Score, der mittels Verfahren 27 erzeugt wurde, zeigt ebenfalls an, dass die Malignität des Krebses von Patient S größer ist als diejenige, welche durch die zugeordneten Gleason-Scores 6 angezeigt werden. Demzufolge kann der mittels Verfahren 27 erzeugte Score ein genauerer Indikator der Malignität sein, als ein konventioneller Gleason-Score.

Obwohl die vorliegende Erfindung beschrieben wird in Zusammenhang mit gewissen spezifischen Ausführungsformen für Erläuterungszwecke, ist die vorliegende Erfindung hierauf nicht beschränkt. Somit können unterschiedliche Modifikationen, Anpassungen und Kombinationen unterschiedlicher Merkmale der beschriebenen Ausführungsformen ausgeführt werden, ohne vom Umfang der Erfindung wie sie in den Ansprüchen niedergelegt ist, abzuweichen.

ZITATE ENTHALTEN IN DER BESCHREIBUNG

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.

Zitierte Patentliteratur

  • US 8319793 [0040]