Title:
Vorrichtung, Versorgungsleitung für eine solche, Sensorleitung und Verfahren zur Torsionsmessung
Document Type and Number:
Kind Code:
A1

Abstract:

Die Erfindung betrifft eine Vorrichtung (2). Die Vorrichtung weist zwei Maschinenteilen (4, 6) auf, welche relativ zueinander beweglich sind und welche mittels einer Versorgungsleitung (8) miteinander verbunden sind, wobei entlang der Versorgungsleitung (8) eine Sensorleitung (10) angebracht ist, zur Messung der Torsion der Versorgungsleitung (8), und wobei die Sensorleitung (10) an eine Messeinheit (11) angeschlossen ist, welche derart ausgebildet ist, dass ein elektrischer Parameter (P) der Sensorleitung (10) gemessen wird, wobei mittels des Parameters (P) die Torsion bestimmt wird. Weiterhin betrifft die Erfindung eine entsprechende Versorgungsleitung (8), eine Sensorleitung (10) sowie ein Verfahren zur Torsionsmessung.





Inventors:
Janssen, Bernd (26169, Friesoythe, DE)
Pöhmerer, Rainer (90610, Winkelhaid, DE)
Application Number:
DE102016210615A
Publication Date:
12/21/2017
Filing Date:
06/15/2016
Assignee:
LEONI Kabel GmbH, 90402 (DE)
International Classes:
G01B7/16; G01L3/02; G01L5/04; G01N3/22; H01B7/32
Domestic Patent References:
DE10324919A1N/A
Attorney, Agent or Firm:
FDST Patentanwälte Freier Dörr Stammler Tschirwitz Partnerschaft mbB, 90411, Nürnberg, DE
Claims:
1. Vorrichtung mit zwei Maschinenteilen, welche relativ zueinander beweglich sind und welche mittels einer Versorgungsleitung miteinander verbunden sind, wobei die Versorgungsleitung eine Sensorleitung zur Messung der Torsion der Versorgungsleitung aufweist, und wobei die Sensorleitung an eine Messeinheit angeschlossen ist, welche derart ausgebildet ist, dass ein elektrischer Parameter der Sensorleitung gemessen wird und dass mittels des Parameters auf die Torsion geschlossen wird.

2. Vorrichtung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Sensorleitung zwei Leiter aufweist, welche ein Leiterpaar bilden und dass der Parameter eine Kapazität des Leiterpaares ist.

3. Vorrichtung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass zwischen den beiden Leitern ein weiches Material angeordnet ist, welches bei einer Torsion des Kabels komprimiert oder aufgeweitet wird.

4. Vorrichtung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass das weiche Material eine Shore-A-Härte im Bereich von 10 bis 30 aufweist.

5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die beiden Leiter gemeinsam in ein Profil aus einem isolierenden Material eingebettet sind und mittels diesem zueinander beabstandet sind.

6. Vorrichtung nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass die beiden Leiter jeweils als Koaxialleiter ausgebildet sind.

7. Vorrichtung nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass die beiden Leiter von einer gemeinsamen Schirmung umgeben sind.

8. Versorgungsleitung, insbesondere Kabel, für eine Vorrichtung nach einem der vorhergehenden Ansprüche mit einer Anzahl von Versorgungssträngen sowie mit einer Sensorleitung zur Messung einer Torsion der Versorgungsleitung, wobei anhand eines elektrischen Parameters der Sensorleitung die Torsion bestimmbar ist und die Sensorleitung hierzu zwei Leiter aufweist, welche ein Leiterpaar bilden und dass der Parameter eine Kapazität des Leiterpaares ist.

9. Sensorleitung zur Messung einer Torsion der Sensorleitung, wobei anhand eines elektrischen Parameters der Sensorleitung die Torsion bestimmbar ist und die Sensorleitung hierzu zwei Leiter aufweist, welche ein Leiterpaar bilden und dass der Parameter eine Kapazität des Leiterpaares ist.

10. Verfahren zur Messung der Torsion einer Sensorleitung gemäß dem vorhergehenden Anspruch.

Description:

Die Erfindung betrifft eine Vorrichtung, eine Versorgungsleitung für eine solche, sowie eine Sensorleitung und ein Verfahren zur Messung der Torsion der Versorgungsleitung.

Eine Versorgungsleitung dient zur Verbindung zweier Maschinenteile und zur Übertragung von Energie, Signalen und/oder Arbeitsmedien zwischen den beiden Maschinenteilen. Die beiden Maschinenteile sind häufig relativ zueinander beweglich, sodass die Versorgungsleitung insbesondere widerkehrenden mechanischen Belastungen ausgesetzt ist, besonders Torsionsbelastungen, aber z.B. auch Biegebelastungen. Besonders hohe Anforderungen bezüglich der Flexibilität einer solchen Versorgungsleitung ergeben sich im Bereich von Robotern, beispielsweise Roboterarmen in der Fertigung. Auch im automotiven Bereich werden Versorgungsleitungen oftmals potentiell stark beansprucht.

Kritisch ist dabei insgesamt, dass die Versorgungsleitung konstruktionsbedingt nur ein bestimmtes Maß an Verformung, insbesondere Torsion, toleriert und bei einer Überbeanspruchung die Gefahr eines Funktionsausfalls besteht. Grundsätzlich ist es möglich, die Versorgungsleitung über eine starre Führungskontur oder eine bewegungslimitierte Mechanik zwangszuführen, d.h. lediglich entlang eines vorbestimmten Pfads zu führen und die Bewegung auf bestimmte Fixpunkte, z.B. Drehpunkte zu beschränken. An diesen Fixpunkten kann dann mittels herkömmlicher Sensoren die Torsionsbelastung gemessen werden. Die mitunter regelmäßige Lageänderung und wiederholte Verformung der Versorgungsleitung ist in den eingangs genannten Einsatzbereichen jedoch besonders komplex und es wird oftmals ein hohes Maß an Variabilität verlangt. Eine Erfassung der Torsionsbelastung bei nicht-zwangsgeführten Versorgungsleitungen ist jedoch mit herkömmlichen Sensoren nicht möglich.

Vor diesem Hintergrund ist es eine Aufgabe der Erfindung, eine zuverlässige Überwachung oder Messung der Torsion bei solchen beanspruchten, insbesondere nicht zwangsgeführten Versorgungsleitungen zu ermöglichen. Hierzu soll eine Vorrichtung mit einer Versorgungsleitung angegeben werden, deren Torsion möglichst einfach und flexibel messbar ist und gemessen wird. Die Versorgungsleitung selbst soll dabei möglichst frei beweglich sein. Des Weiteren soll eine Torsionsmessung insbesondere gerade nicht lediglich punktuell erfolgen, sondern unter Berücksichtigung der gesamten Versorgungsleitung. Weiterhin soll eine entsprechende Versorgungsleitung angegeben werden sowie eine Sensorleitung und ein Verfahren zur Messung der Torsion der Versorgungsleitung.

Die Aufgabe wird erfindungsgemäß gelöst durch eine Vorrichtung mit den Merkmalen gemäß Anspruch 1. Weiterhin wird die Aufgabe gelöst durch eine Versorgungsleitung mit den Merkmalen gemäß Anspruch 8, durch eine Sensorleitung mit den Merkmalen gemäß Anspruch 9 sowie durch ein Verfahren mit den Merkmalen gemäß Anspruch 10. Vorteilhafte Ausgestaltungen, Weiterbildungen und Varianten sind Gegenstand der Unteransprüche. Dabei gelten die Ausführungen im Zusammenhang mit der Vorrichtung sinngemäß auch für die Versorgungsleitung, die Sensorleitung und das Verfahren sowie umgekehrt.

Die Vorrichtung weist generell zwei Maschinenteile auf, welche relativ zueinander beweglich sind und welche mittels einer Versorgungsleitung miteinander verbunden sind. Die Versorgungsleitung selbst weist üblicherweise eine Anzahl, also ein oder mehrere Versorgungstränge auf, über die das eine der beiden Maschinenteile versorgt wird. Neben den Versorgungssträngen weist die Versorgungsleitung zusätzlich eine Sensorleitung zur Messung der Torsion der Versorgungsleitung auf, d.h. zur Messung einer Verdrehung der Versorgungsachse um eine (Mitten-)Längsachse derselben. Dabei ist die Sensorleitung an eine Messeinheit angeschlossen, welche derart ausgebildet ist, dass ein elektrischer Parameter der Sensorleitung gemessen wird und dass mittels des Parameters auf die Torsion zumindest geschlossen wird. Aus dem Messwert des Parameters wird daher eine Kenngröße für die aktuelle Torsionsbelastung abgeleitet und damit zumindest indirekt die Torsion bestimmt. Dabei wird insbesondere die Torsion der Versorgungsleitung entlang deren insbesondere gesamter Länge zwischen den beiden Maschinenteilen bestimmt.

Der Erfindung liegt insbesondere die Beobachtung zugrunde, dass eine Torsionsmessung herkömmlicherweise lediglich punktuell durch Anbringen eines Torsionssensors möglich ist. Die Versorgungsleitung muss dann beispielsweise zwangsgeführt sein, um lediglich in bestimmter Weise belastet zu werden, sodass eine Messung der Torsion an bestimmten Fixpunkten möglich ist. Alternativ müssen entsprechend viele Sensoren entlang der Versorgungsleitung verteilt angeordnet werden, wodurch die Messung in konstruktiver Hinsicht besonders aufwendig ist. Demgegenüber wurde erkannt, dass sich die elektrischen Eigenschaften einer Leitung mit geeignetem Aufbau bei einer Bewegung und/oder Verformung in messbarer Weise verändern, sodass eine entsprechende Leitung vorteilhaft als Sensorleitung verwendbar ist. Ein wesentlicher Vorteil der Erfindung besteht somit insbesondere darin, dass auf spezielle Torsionssensoren verzichtet wird und stattdessen eine geeignete Sensorleitung als Torsionssensor verwendet wird. D.h. die Sensorleitung ist keine Zuleitung zu einem Sensor, sondern selbst ein Sensor, genauer gesagt ein Torsionssensor. Die Torsion wird daher mittels der Sensorleitung nicht punktuell sondern über größere Längsabschnitte von typischerweise mehreren 10cm bis hin zu mehreren Metern, insbesondere über die gesamte Länge der Sensorleitung, erfasst.

Wesentlich für die Bestimmung der Torsion ist die Messung des elektrischen Parameters der Sensorleitung. Ein Kennzeichen dieses Parameters ist, dass sich dieser in Abhängigkeit einer Torsion der Sensorleitung verändert. Da die Sensorleitung mit der Versorgungsleitung mechanisch gekoppelt ist, ergibt sich aus einer Torsion der Versorgungsleitung auch eine vorzugsweise identische Torsion der Sensorleitung. Diese weist wiederum bestimmte Übertragungseigenschaften auf, welche durch den Parameter charakterisiert sind. Die Änderung des Parameters entspricht somit insbesondere einer Änderung der Übertragungseigenschaften der Sensorleitung, d.h. durch Messung des Parameters erfolgt eine Messung der Übertragungseigenschaften. Zweckmäßigerweise wird daher zur Messung des Parameters ein elektrisches Testsignal an die Sensorleitung angelegt oder in diese eingespeist und die Übertragungseigenschaften anhand der Änderung des Testsignals bestimmt. Dazu ist die Sensorleitung an die Messeinheit angeschlossen, welche ein geeignetes Testsignal bereitstellt und insbesondere dessen Änderung misst. Die Messeinheit misst den Parameter und wertet die Messung vorzugsweise auch aus, z.B. durch Vergleichen mit zuvor gemessenen Werten des Parameters. Mit der Messung des Parameters bestimmt die Messeinheit dann letztendlich die Torsion der Sensorleitung und damit auch die Torsion der Versorgungsleitung.

Das Prinzip der Messung der Torsionsbelastung der Versorgungsleitung beruht daher allgemein darauf, dass durch die Integration der Sensorleitung in die Versorgungsleitung auch die Sensorleitung einer Torsionsbeanspruchung unterliegt, welche zu einer mechanischen Änderung des Aufbaus der Sensorleitung führt, wodurch sich die Übertragungseigenschaften für ein über die Sensorleitung übermitteltes (Sensor-)Signal ändern und dadurch zu einer charakteristischen Änderung des Signals führen. Anhand dieser charakteristischen Änderung des Signals werden dann mittels der Messeinheit Rückschlüsse auf die Torsionsbelastung geschlossen.

Die Sensorleitung wird entlang der Versorgungsleitung angeordnet und ist mit dieser verbunden, sodass die Sensorleitung folglich den gleichen oder zumindest ähnlichen Belastungen unterliegt wie die Versorgungsleitung. Durch Messung des elektrischen Parameters, d.h. einer der elektrischen Eigenschaften der Sensorleitung wird dann auf besonders einfache Weise die Verformung der Sensorleitung selbst und mit dieser auch die Verformung der Versorgungsleitung gemessen. Dabei wird bei der Messung prinzipbedingt der Verlauf der gesamten Sensorleitung berücksichtigt und entsprechend ein langgestreckter und insbesondere durchgängiger Abschnitt der Versorgungsleitung. Vorzugsweise verläuft die Sensorleitung entlang der gesamten Versorgungsleitung, sodass die Torsion derselben insgesamt gemessen wird. Alternativ wird die Torsion jedoch lediglich abschnittsweise gemessen und hierzu die Sensorleitung lediglich abschnittsweise entlang der Versorgungsleitung angebunden.

Die Sensorleitung ist Teil der Versorgungsleitung und mit dieser mechanisch verbunden. Insbesondere bildet Sie mit den einzelnen Versorgungssträngen der Versorgungsleitungen einen Verbund, welcher bevorzugt von einem gemeinsamen Außenmantel umgeben ist.

Mittels der Sensorleitung lassen sich insbesondere Torsionen im Bereich von größer einer vollständigen Umdrehung der Versorgungsleitung um deren Längsachse pro laufendem Meter der Versorgungsleitung bis hin zu 20 Umdrehungen pro Meter messen. Grundsätzlich sind aber auch weniger oder mehr Umdrehungen mit der hier beschriebenen Sensorleitung messbar. Der Messbereich ist dabei vor Allem durch die konkrete Auslegung und Dimensionierung der Sensorleitung bestimmt. Durch entsprechende Anpassung der Sensorleitung ist es somit möglich, die Torsionsmessung optimal auf die vorliegende Anwendung anzupassen.

Die Versorgungsleitung dient vorrangig der Übertragung von Energie, Signalen und/oder Arbeitsmedien zwischen den beiden Maschinenteilen. Die einzelnen Versorgungsstränge der Versorgungsleitung sind daher wahlweise oder in beliebigen, anwendungsabhängigen Kombinationen ein Stromkabel zur Leistungsversorgung des Maschinenteils, ein Datenkabel, ein Schlauch, beispielsweise ein Hydraulik- oder ein Pneumatikschlauch zur Versorgung des Maschinenteils mit einer Hydraulikflüssigkeit, einem Betriebs- oder Schmiermittel, mit einem Gas oder mit Druckluft. Als Versorgungsstränge können weiterhin ein Hybridkabel, ein Kabelbaum verwendet werden. Die Versorgungstränge sind üblicherweise, insbesondere im Bereich der Robotik, von einem Schlauch umgeben und bilden ein Schlauchpaket aus. Die Maschinenteile müssen nicht zwangsweise zusätzlich miteinander gekoppelt sein, können allerdings beispielsweise über ein Gelenk miteinander verbunden sein. Die Maschinenteile sind beispielsweise zwei Teile eines Roboters, z.B. eine Basis und ein relativ hierzu beweglicher Manipulator. Die Versorgungsleitung führt hierbei dem Manipulator beispielsweise Energie und Steuersignale zu. In einer Variante sind die beiden Maschinenteile ein Fahrzeug und eine insbesondere elektrische Ladestation und die Versorgungsleitung ist ein Ladekabel, zur Übertragung elektrischer Energie zu einem Energiespeicher des Fahrzeugs.

Allgemein sind die beiden Maschinenteile derart zueinander beweglich, dass eine Torsion, d.h. Verdrehung der Versorgungsleitung erfolgt oder zumindest möglich ist. Insbesondere wird die Torsion im Rahmen einer online-Überwachung kontinuierlich oder in regelmäßigen Zeitabständen gemessen. Auf Grundlage und abhängig von der gemessenen Torsion wird dann beispielsweise ein Warnsignal ausgegeben, falls die Versorgungsleitung über ein vorgegebenes Limit hinaus verdreht wird. Alternativ oder zusätzlich wird die gemessene Torsion zur Verschleißprognose verwendet, d.h. die Torsion wird regelmäßig gemessen und insbesondere in einem Speicher der Messeinheit speichert, um den tatsächlichen Gebrauch und damit den Verschleiß der Versorgungsleitung zu überwachen.

Die Messeinheit weist zweckmäßigerweise eine geeignete Auswerteschaltung auf, um ausgehend von der gemessenen Kapazität die Torsion zu ermitteln. Sowohl analoge als auch digitale Ansätze sind hierfür geeignet. Die gemessene Kapazität wird beispielsweise über eine Tabelle in eine Torsion der Versorgungsleitung in Grad oder Umdrehungen pro Meter umgerechnet oder direkt als Wert für die Torsion verwendet.

In einer bevorzugten Ausgestaltung weist die Sensorleitung zwei Leiter auf, welche ein Leiterpaar bilden. Der Parameter ist hierbei eine Kapazität des Leiterpaares. Dem liegt insbesondere die Erkenntnis zugrunde, dass die zwei Leiter einen Kondensator bilden, mit einer Kapazität, welche vom Abstand zwischen den beiden Leitern abhängig ist. Bei einer Torsion des Leiterpaares wird dieses entsprechend verdreht und der Abstand der Leiter verändert sich, insbesondere rücken die Leiter näher zueinander. Durch Messung der torsionsabhängigen Kapazität lässt sich auf einfache Weise die Torsion der Sensorleitung und somit der Versorgungsleitung bestimmen. Dabei müssen die Leiter nicht zwingend als Litzenleiter ausgebildet sein, sondern sind zweckmäßigerweise massive Einzeldrähte, deren individuelle Übertragungseigenschaften dann insbesondere nicht von der Torsion beeinflusst werden. Vielmehr wird eine Übertragungseigenschaft und somit ein elektrischer Parameter des Leiterpaares an sich gemessen.

Die beiden Leiter bilden allgemein ein Übertragungspaar für ein Sensorsignal. Allgemein sind die Leiter jeweils von einem Isolationsmantel umgeben und bilden jeweils beispielsweise eine Ader aus. Im Hinblick auf eine möglichst ungestörte Übertragung der Sensorsignale ist das Übertragungspaar geeignet zueinander angeordnet. Das Übertragungspaar kann allgemein als verdrilltes oder unverdrilltes Paar ausgebildet sein sowie mit oder ohne Paarschirmung.

Bei Verwendung zweier paralleler Leiter ändert sich die Kapazität prinzipbedingt in beiden Torsionsrichtungen gleichermaßen. In einer vorteilhaften Variante wird daher zur Bestimmung der Richtung der Torsion das Leiterpaar bei der Herstellung verseilt, sodass auch ein Aufdrehen und somit eine Vergrößerung des Abstands möglich ist. Je nach Richtung der Torsion wird dann der Abstand vergrößert oder verringert.

Die Messeinheit ist zur Messung der Kapazität zweckmäßigerweise als Kapazitätsmesseinheit ausgebildet. Beispielsweise stellt die Messeinheit über einen zweipoligen Anschluss als Testsignal eine Wechselspannung bereit, welche an das Leiterpaar angelegt wird. Durch Messung des Antwortverhaltens des Leiterpaares wird dann die Kapazität bestimmt. Die Bestimmung der Torsion wiederum erfolgt dann beispielsweise durch eine Zuordnung mittels einer hinterlegten Tabelle. Als Testsignal eignen sich insbesondere Signale mit einer Frequenz im Bereich von 0 bis 100 kHz.

Um insbesondere eine geeignete Deformation der Sensorleitung und eine Abstandsveränderung der Leiter bei der Torsion zu ermöglichen, ist in einer bevorzugten Ausgestaltung zwischen den beiden Leitern ein weiches Material angeordnet, welches bei einer Torsion des Kabels komprimiert oder aufgeweitet wird. Als Material eignen sich hier besonders geschäumte Kunststoffe. Beispielsweise weist die Sensorleitung ein Profil oder Profilelement auf, in welches die Leiter eingebettet sind, wobei das Profilelement ein Kernelement aufweist, welches dann zwischen den beiden Leitern angeordnet ist. Zumindest das Kernelement ist dann aus dem weichen Material gefertigt. Das Profil ist beispielsweise in etwa H-förmig oder doppel-V-förmig.

In einer geeigneten Ausgestaltung weist das weiche Material eine Shore-A-Härte im Bereich von 10 bis 30 auf. Konkret hängt die optimale Härte jedoch den Abmessungen der Sensorleitung ab. Beispielsweise ist ein flexibler Schaum, z.B. aus PUR geeignet. In jedem Fall ist das Material vorzugsweise derart gewählt, dass eine durch eine Torsion verursachte Geometrieänderung reversibel ist. Ein solches Material ist hinreichend weich, um bei einer Torsion eine geeignete Abstandsänderung der Leiter zueinander zu gewährleisten.

Die beiden Leiter sind zweckmäßigerweise gemeinsam in ein Profil aus einem isolierenden Material eingebettet und mittels des Profils zueinander beabstandet. Das isolierende Material bildet insbesondere zugleich eine gemeinsame Ummantelung oder einen Leitungsmantel der beiden Leiter. Als Material eignen sich vor allem Kunststoffe, beispielsweise PE, PP, PVC oder PA. Der oben genannte Steg aus weichem Material ist zweckmäßigerweise durch das Profil ausgebildet und dann insbesondere ein Bestandteil desselben.

In einer vorteilhaften Ausgestaltung sind die beiden Leiter jeweils als Koaxialleiter ausgebildet, d.h. individuell mit einem Dielektrikum und einer Schirmung versehen. Dadurch sind die Übertragungseigenschaften definierter und Störeinflüsse aus der Umgebung werden wirkungsvoll abgeschirmt.

Um insbesondere die Leiter insgesamt vor Umwelteinflüssen, vor allem elektrischen Störungen zu schützen, sind in einer geeigneten Ausgestaltung beide Leiter von einer gemeinsamen Schirmung umgeben. Dadurch sind die Leiter der Sensorleitung vorteilhaft auch in einem Gesamtverbund mit der Versorgungsleitung gegenüber anderen Leitern der Versorgungsleitung abgeschirmt.

Für die Ausgestaltung der Sensorleitung kann allgemein – unter Berücksichtigung der vorhergehenden Anforderungen für die gewünschte Auswertung der Torsionsbelastung – auf übliche Ausgestaltungen bei Datenleitungen zurückgegriffen werden. Auch kann die Sensorleitung in einen (Daten-)Leitungsverbund, beispielsweise einen (Vierer-)Verseilverbund integriert sein. Darüber hinaus besteht auch die Möglichkeit, die Sensorleitung auch für eine zusätzliche Datenübertragung und/oder Übertragung einer Versorgungsspannung bzw. einer elektrischen Leistung heranzuziehen. Im letztgenannten Fall wird das Sensorsignal beispielsweise aufmoduliert.

Nachfolgend werden Ausführungsbeispiele der Erfindung anhand einer Zeichnung näher erläutert. Darin zeigen jeweils schematisch:

1 eine Vorrichtung, mit einer Versorgungsleitung und einer Sensorleitung und 2 eine Sensorleitung.

In 1 ist eine Vorrichtung 2 gezeigt, die hier ein Roboter ist. Die Vorrichtung 2 weist zwei Maschinenteile 4, 6 auf, hier eine Basis 4 und einen Manipulator 6. Die Maschinenteile 4, 6 sind mittels einer Versorgungsleitung 8 miteinander verbunden. Diese weist zur Übertragung von Energie, Daten, Signalen und/oder Arbeitsmedien üblicherweise mehrere, insbesondere unterschiedliche Arten von hier nicht näher dargestellten Versorgungssträngen in Form von elektrischen, hydraulischen oder pneumatischen Leitungen etc. auf. In 1 werden mittels der Versorgungsleitung 8 beispielsweise Steuersignale von der Basis 4 zum Manipulator 6 übertragen. In einer nicht gezeigten Variante sind die beiden Maschinenteile 4, 6 beispielsweise ein Fahrzeug und eine elektrische Ladestation und die Versorgungsleitung 8 ist ein Ladekabel, zum Laden eines Energiespeichers des Fahrzeugs.

Die Maschinenteile 4, 6 sind zueinander beweglich und entsprechend soll auch die Versorgungsleitung 8 möglichst flexibel beweglich sein. Dadurch ergeben sich unter Umständen komplexe mechanische Belastungen der Versorgungsleitung 8, besonders auch eine Torsion, d.h. Verdrehung. Die Torsion der Versorgungsleitung 8 wird mittels einer Sensorleitung 10 bestimmt, welche Teil der Versorgungsleitung 8 ist und dadurch mit den Versorgungssträngen mechanisch gekoppelt ist. Die Sensorleitung 10 wird im Falle einer Torsion der Versorgungsleitung 8 entsprechend ebenfalls verdreht. Die Sensorleitung 10 ist vorzugsweise zusammen mit den weiteren Versorgungssträngen von einem gemeinsamen Außenmantel der Versorgungsleitung 8 umgeben oder alternativ auch außen an einem solchen Außenmantel oder auch an einem Versorgungsstrang angebracht.

Die Sensorleitung 10 dient selbst als Sensor, nämlich als Torsionssensor, sodass sich zwischen den beiden Maschinenteilen 4, 6 eine Torsion nicht lediglich punktuell sondern entlang der gesamten Versorgungsleitung 8 bestimmen lässt. Die Sensorleitung 10 weist Übertragungseigenschaften auf, welche von einer Torsion der Sensorleitung 10 abhängig sind. Diese Übertragungseigenschaften sind durch zumindest einen elektrischen Parameter charakterisiert, welcher mittels einer Messeinheit 11 gemessen wird. Hierzu wird mittels der Messeinheit 11 ein Testsignal in die Sensorleitung 10 eingespeist und insbesondere die Änderung des Testsignals aufgrund veränderter Übertragungseigenschaften untersucht.

Ein Ausführungsbeispiel der Sensorleitung 10 ist in 2 im Querschnitt senkrecht zur Längsrichtung der Sensorleitung 10 dargestellt. Diese weist zwei Leiter 12 auf, mittels welcher die Messung der Torsion erfolgt. Die beiden Leiter 12 sind in einem Abstand A voneinander beabstandet. Bei einer Torsion der Sensorleitung 10 werden die beiden Leiter 12 gegeneinander verdreht und der Abstand A verändert sich. Ausgehend von zwei parallelen Leitern 12 verringert sich der Abstand A. In einer Variante sind die beiden Leiter 12 in einer Ausgangslage bereits miteinander verseilt, sodass eine Torsion in einer Richtung eine Abstandsverringerung bewirkt und eine Torsion in anderer Richtung eine Abstandsvergrößerung. Die beiden Leiter 12 sind in ein Profil 14 eingebettet, welches ein Kernelement 16 aufweist. Das Kernelement 16 ist zwischen den Leitern 12 angeordnet und gibt den Abstand A vor. Um eine Änderung des Abstands A zu ermöglichen ist das Kernelement 16 aus einem weichen und somit verformbaren Material gefertigt. Dadurch lässt sich das Kernelement 16 komprimieren oder auseinanderziehen.

Die Torsionsmessung beruht auf der Erkenntnis, dass die beiden Leiter 12 einen Kondensator bilden, mit einer Kapazität, welche vom Abstand A und somit von der Torsion abhängig ist. Entsprechend ist dann die Messeinheit 11 zweckmäßigerweise als Kapazitätsmesseinheit ausgebildet und misst als elektrischen Parameter die Kapazität des Leiterpaares. Mithilfe der gemessenen Kapazität wird dann die Torsion bestimmt.

Die Sensorleitung 10 der 2 weist zusätzlich eine Schirmung 18 auf, welche die beiden Leiter 12 umgibt und gegen Störeinflüsse von außen abschirmt. Um die Schirmung 18 herum ist ein Leitungsmantel 20 angeordnet. Die Leiter 12 sind jeweils von einem Isoliermantel 22 umgeben. In einer nicht gezeigten Variante sind die Leiter 12 nicht jeweils von einem Isoliermantel 22 umgeben. In einer ebenfalls nicht gezeigten Variante sind die beiden Leiter 12 als Koaxialleiter ausgebildet und weisen dann alternativ oder zusätzlich zur Schirmung 18 jeweils eine eigene Schirmung auf.