Title:
Vorrichtung für elastische Wellen
Kind Code:
A1
Abstract:

Eine Vorrichtung für elastische Wellen (1) enthält ein piezoelektrisches Substrat (2) und mehrere Elemente für elastische Wellen (S1–S4, P1–P3), die auf dem piezoelektrischen Substrat ausgebildet sind und jeweils IDT-Elektroden enthalten. Die IDT-Elektrode eines ersten Elements für elastische Wellen (P1) unter den Elementen für elastische Wellen enthält erste und zweite Sammelschienen (9a, 9b), und die IDT-Elektrode eines zweiten Elements für elastische Wellen (S1) unter den Elementen für elastische Wellen enthält dritte und vierte Sammelschienen (9c, 9d). Die zweite Sammelschiene (9b) und die dritte Sammelschiene (9c) erstrecken sich im Wesentlichen parallel zueinander und sind mit einem Spalt dazwischen in einer Richtung senkrecht zu einer Ausbreitungsrichtung der elastischen Wellen angeordnet. Jede der zweiten und dritten Sammelschienen (9b, 9c) enthält eine erste Elektrodenschicht (9b1/9c1) und eine zweite Elektrodenschicht (9b2/9c2), wovon mindestens ein Teil auf die erste Elektrodenschicht laminiert ist. Die zweite Elektrodenschicht (9b2) der zweiten Sammelschiene(9b) ist an mindestens einer Stelle in einer Richtung zertrennt (9B), welche die Ausbreitungsrichtung der elastischen Wellen kreuzt.



Inventors:
Kameoka, Yoshinori (Kyoto-fu, Nagaokakyo-shi, JP)
Application Number:
DE102016125160A
Publication Date:
06/29/2017
Filing Date:
12/21/2016
Assignee:
Murata Manufacturing Co., Ltd. (Kyoto-fu, Nagaokakyo-shi, JP)
International Classes:
Foreign References:
JP2002100952A2002-04-05
Attorney, Agent or Firm:
CBDL Patentanwälte, 47051, Duisburg, DE
Claims:
1. Vorrichtung für elastische Wellen (1), umfassend:
– ein piezoelektrisches Substrat (2) und
– mehrere Elemente für elastische Wellen, die auf dem piezoelektrischen Substrat ausgebildet sind und jeweils IDT-Elektroden enthalten,
– wobei die IDT-Elektrode eines ersten Elements für elastische Wellen (P1) unter den mehreren Elementen für elastische Wellen erste und zweite Sammelschienen (9a, 9b) enthält, die einander gegenüberliegen, und die IDT-Elektrode eines zweiten Elements für elastische Wellen (S1) unter den mehreren Elementen für elastische Wellen dritte und vierte Sammelschienen (9c, 9d) enthält, die einander gegenüberliegen,
– wobei die zweite Sammelschiene (9b) und die dritte Sammelschiene (9c) sich im Wesentlichen parallel zueinander erstrecken und so angeordnet sind, dass ein Spalt dazwischen in einer Richtung senkrecht zu einer Ausbreitungsrichtung der elastischen Wellen verbleibt,
– wobei jede der zweiten und dritten Sammelschienen (9b, 9c) eine erste Elektrodenschicht (9b1, 9c1) und eine zweite Elektrodenschicht (9b2, 9c2) enthält, wovon mindestens ein Teil auf die erste Elektrodenschicht laminiert ist, und
die zweite Elektrodenschicht (9b2) der zweiten Sammelschiene (9b) an mindestens einer Stelle in einer Richtung zertrennt ist (9B), welche die Ausbreitungsrichtung der elastischen Wellen kreuzt.

2. Vorrichtung für elastische Wellen nach Anspruch 1, wobei die zweite Elektrodenschicht (9b2) der zweiten Sammelschiene (9b) in einer Richtung senkrecht zu der Ausbreitungsrichtung der elastischen Wellen zertrennt ist (9B).

3. Vorrichtung für elastische Wellen nach Anspruch 1 oder 2, wobei die zweite Elektrodenschicht (9c2) der dritten Sammelschiene (9c) an mindestens einer Stelle in einer Richtung zertrennt ist (9C), welche die Ausbreitungsrichtung der elastischen Wellen kreuzt.

4. Vorrichtung für elastische Wellen nach Anspruch 3, wobei die zweite Elektrodenschicht (9c2) der dritten Sammelschiene (9c) in einer Richtung senkrecht zu der Ausbreitungsrichtung der elastischen Wellen zertrennt ist (9C).

5. Vorrichtung für elastische Wellen nach Anspruch 3 oder 4, wobei die zweite Elektrodenschicht (9c2) der dritten Sammelschiene (9c) in einem Abschnitt (9C) zertrennt ist, der einer Erstreckung ab einem zertrennten Abschnitt (9B) der zweiten Elektrodenschicht (9b2) der zweiten Sammelschiene (9b) entspricht, wobei die Erstreckung in einer Richtung verläuft, in der die zweite Elektrodenschicht (9b2) der zweiten Sammelschiene (9b) zertrennt ist.

6. Vorrichtung für elastische Wellen nach einem der Ansprüche 1 bis 5, wobei die mehreren Elemente für elastische Wellen einen oder mehrere Reihenarmresonatoren (S1–S4) und mehrere Parallelarmresonatoren (P1–P3) enthalten, und die ersten und zweiten Elemente für elastische Wellen die Parallelarmresonatoren sind.

7. Vorrichtung für elastische Wellen (1) nach einem der Ansprüche 1 bis 6, die ferner ein erstes Bandpassfilter (3a) und ein zweites Bandpassfilter (3b) mit einem Durchlassband, das sich von einem Durchlassband des ersten Bandpassfilters unterscheidet, umfasst, wobei das erste Bandpassfilter (3a) mindestens eines (S1/P1) der ersten und zweiten Elemente für elastische Wellen enthält.

8. Vorrichtung für elastische Wellen (21) nach Anspruch 7, wobei das erste Bandpassfilter (23a) eines (P3) der ersten und zweiten Elemente für elastische Wellen enthält, und das zweite Bandpassfilter (23b) das andere (S11) der ersten und zweiten Elemente für elastische Wellen enthält.

Description:
TECHNISCHES GEBIET DER ERFINDUNG

Die Erfindung betrifft eine Vorrichtung für elastische Wellen.

HINTERGRUND DER ERFINDUNG

Auf dem Gebiet der Erfindung ist es bekannt, Vorrichtungen für elastische Wellen in Filtern von Mobiltelefonen zu verwenden. Die JP 2002-100952 A offenbart ein Beispiel einer Vorrichtung für elastische Wellen, die Sammelschienen mit IDT(Interdigitaltransducer)-Elektroden enthält. Jede der Sammelschienen der IDT-Elektroden enthält eine Unterschichtverdrahtung und eine Oberschichtverdrahtung, die auf die Unterschichtverdrahtung laminiert ist.

Um der Nachfrage nach einer weiteren Verkleinerung der Vorrichtung für elastische Wellen zu befriedigen, ist in letzter Zeit die Distanz zwischen benachbarten Sammelschienen der IDT-Elektroden reduziert worden, indem im Design die Resonatoren für elastische Wellen in einer Richtung senkrecht zu einer Ausbreitungsrichtung der elastischen Wellen näher zueinander gebracht wurden. Demgegenüber wurde bei einem Kettenfilter die Größe der IDT-Elektrode des Resonators für elastische Wellen entlang der Ausbreitungsrichtung der elastischen Wellen erhöht, um die Filterkennlinien zu verbessern, weshalb auch eine Länge der Sammelschiene zugenommen hat. Das heißt, wenn die Resonatoren für elastische Wellen, welche die IDT-Elektroden enthalten, die die Sammelschienen mit der Zweischichtstruktur aufweisen und die horizontal länglich sind, wie in der JP 2002-100952 A, nahe beieinander angeordnet sind, so kann es passieren, dass die Sammelschienen nicht ausgebildet werden, was zur Folge hat, dass es zwischen den benachbarten Sammelschienen zu Kurzschlüssen kommen kann. Aus diesem Grund ist es schwierig, die IDT-Elektroden hinreichend nahe beieinander anzuordnen und eine befriedigende Verkleinerung der Vorrichtung für elastische Wellen zu erreichen.

OFFENBARUNG DER ERFINDUNG

Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung für elastische Wellen bereitzustellen, bei der die Wahrscheinlichkeit von Fehlern bei der Bildung von Sammelschienen in einer Region vermindert ist, wo sich IDT-Elektroden nebeneinander befinden, und bei der eine weitere Verkleinerung realisiert werden kann.

Gemäß einer bevorzugten Ausführungsform der Erfindung wird eine Vorrichtung für elastische Wellen bereitgestellt, die ein piezoelektrisches Substrat und mehrere Elemente für elastische Wellen enthält, die auf dem piezoelektrischen Substrat ausgebildet sind und jeweils IDT-Elektroden enthalten, wobei: die IDT-Elektrode eines ersten Elements für elastische Wellen unter den mehreren Elementen für elastische Wellen erste und zweite Sammelschienen enthält, die einander gegenüberliegen, die IDT-Elektrode eines zweiten Elements für elastische Wellen unter den mehreren Elementen für elastische Wellen dritte und vierte Sammelschienen enthält, die einander gegenüberliegen, die zweite Sammelschiene und die dritte Sammelschiene sich im Wesentlichen parallel zueinander erstrecken und so angeordnet sind, dass ein Spalt dazwischen in einer Richtung senkrecht zu einer Ausbreitungsrichtung der elastischen Wellen verbleibt, jede der zweiten und dritten Sammelschienen eine erste Elektrodenschicht und eine zweite Elektrodenschicht enthält, wovon mindestens ein Teil auf die erste Elektrodenschicht laminiert ist, und die zweite Elektrodenschicht der zweiten Sammelschiene an mindestens einer Stelle in einer Richtung zertrennt wird, welche die Ausbreitungsrichtung der elastischen Wellen kreuzt.

Bei einer vorteilhaften Ausführungsform der erfindungsgemäßen Vorrichtung für elastische Wellen wird die zweite Elektrodenschicht der zweiten Sammelschiene in einer Richtung senkrecht zu der Ausbreitungsrichtung der elastischen Wellen zertrennt.

Bei einer anderen vorteilhaften Ausführungsform der erfindungsgemäßen Vorrichtung für elastische Wellen wird darüber hinaus die zweite Elektrodenschicht der dritten Sammelschiene an mindestens einer Stelle in einer Richtung zertrennt, welche die Ausbreitungsrichtung der elastischen Wellen kreuzt. In diesem Fall ist ein Fehler bei der Bildung der zweiten und dritten Sammelschienen noch weniger wahrscheinlich.

Bei einer weiteren vorteilhaften Ausführungsform der erfindungsgemäßen Vorrichtung für elastische Wellen wird die zweite Elektrodenschicht der dritten Sammelschiene in einer Richtung senkrecht zu der Ausbreitungsrichtung der elastischen Wellen zertrennt.

Bei einer weiteren vorteilhaften Ausführungsform der erfindungsgemäßen Vorrichtung für elastische Wellen wird die zweite Elektrodenschicht der dritten Sammelschiene in einem Abschnitt zertrennt, der einer Erstreckung ab einem zertrennten Abschnitt der zweiten Elektrodenschicht der zweiten Sammelschiene entspricht, wobei die Erstreckung in einer Richtung verläuft, in der die zweite Elektrodenschicht der zweiten Sammelschiene zertrennt wird.

Bei einer weiteren vorteilhaften Ausführungsform der erfindungsgemäßen Vorrichtung für elastische Wellen enthalten die mehreren Elemente für elastische Wellen einen oder mehrere Reihenarmresonatoren und mehrere Parallelarmresonatoren, und die ersten und zweite Elemente für elastische Wellen sind die Parallelarmresonatoren. In diesem Fall kommt es selbst dann mit geringerer Wahrscheinlichkeit Zu Fehlern bei der Bildung der Sammelschienen der Parallelarmresonatoren, wenn die Längen der Parallelarmresonatoren in der Ausbreitungsrichtung der elastischen Wellen vergrößert werden. Infolge dessen können die Filterkennlinien der Vorrichtung für elastische Wellen verbessert werden, und die Größe der Vorrichtung für elastische Wellen kann weiter reduziert werden.

Bei einer weiteren vorteilhaften Ausführungsform der erfindungsgemäßen Vorrichtung für elastische Wellen enthält die Vorrichtung für elastische Wellen ferner ein erstes Bandpassfilter und ein zweites Bandpassfilter mit einem Durchlassband, das sich von einem Durchlassband des ersten Bandpassfilters unterscheidet, und das erste Bandpassfilter enthält das erste und/oder das zweite Element für elastische Wellen.

Bei einer weiteren vorteilhaften Ausführungsform der erfindungsgemäßen Vorrichtung für elastische Wellen enthält das erste Bandpassfilter eines der ersten und zweiten Elemente für elastische Wellen, und das zweite Bandpassfilter enthält das andere der ersten und zweiten Elemente für elastische Wellen. In diesem Fall kann eine Distanz zwischen dem ersten Bandpassfilter und dem zweiten Bandpassfilter weiter reduziert werden. Infolge dessen kann die Größe der Vorrichtung für elastische Wellen weiter reduziert werden.

Mit der Vorrichtung für elastische Wellen gemäß der Erfindung kommt es mit geringerer Wahrscheinlichkeit zu Fehlern bei der Bildung der Sammelschienen in einer Region, wo die IDT-Elektroden nebeneinander liegen, und es kann eine weitere Verkleinerung realisiert werden.

Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden rein beispielhaften und nicht-beschränkenden Beschreibung von Ausführungsbeispielen in Verbindung mit der Zeichnung.

KURZE BESCHREIBUNG DER ZEICHNUNG

1 zeigt eine schematische Draufsicht einer Vorrichtung für elastische Wellen gemäß einer ersten Ausführungsform der Erfindung.

2 zeigt ein Schaltbild der Vorrichtung für elastische Wellen gemäß der ersten Ausführungsform der Erfindung.

3 zeigt eine Draufsicht, die eine Elektrodenkonfiguration eines Reihenarmresonators in der ersten Ausführungsform der Erfindung veranschaulicht.

4 zeigt eine Draufsicht, die Elektrodenkonfigurationen von ersten und zweiten in Längsrichtung gekoppelten Filtern für elastische Wellen vom Resonator-Typ in der ersten Ausführungsform der Erfindung veranschaulicht.

5 zeigt eine vergrößerte schematische Draufsicht der Vorrichtung für elastische Wellen gemäß der ersten Ausführungsform der Erfindung.

6 zeigt eine schematische Draufsicht eines Abschnitts entsprechend ersten und zweiten Elementen für elastische Wellen, wobei die Ansicht der Erläuterung eines Herstellungsverfahrens für die Vorrichtung für elastische Wellen gemäß der ersten Ausführungsform der Erfindung dient.

7 zeigt eine schematische Draufsicht des Abschnitts entsprechend den ersten und zweiten Elementen für elastische Wellen, wobei die Ansicht der Erläuterung eines Herstellungsverfahrens für die Vorrichtung für elastische Wellen gemäß der ersten Ausführungsform der Erfindung dient.

8 zeigt eine schematische Draufsicht des Abschnitts entsprechend den ersten und zweiten Elementen für elastische Wellen, wobei die Ansicht der Erläuterung eines Herstellungsverfahrens für die Vorrichtung für elastische Wellen gemäß der ersten Ausführungsform der Erfindung dient.

9 zeigt ein Diagramm, in dem Einfügeverluste von jeweiligen ersten Bandpassfiltern in der ersten Ausführungsform der Erfindung und eines Vergleichsbeispiels aufgetragen sind.

10 zeigt eine schematische Draufsicht einer Vorrichtung für elastische Wellen gemäß einer zweiten Ausführungsform der Erfindung.

BESCHREIBUNG BEVORZUGTER AUSFÜHRUNGSFORMEN

Es ist anzumerken, dass die in der nachfolgenden Beschreibung offenbarten Ausführungsformen lediglich veranschaulichend sind und dass Komponenten oder Konfigurationen in den verschiedenen Ausführungsformen teilweise ausgetauscht oder miteinander kombiniert werden können.

1 zeigt eine schematische Draufsicht einer Vorrichtung für elastische Wellen gemäß einer ersten Ausführungsform der Erfindung. 2 ist ein Schaltbild der Vorrichtung für elastische Wellen gemäß der ersten Ausführungsform. In 1 sind jeweils Resonatoren für elastische Wellen und in Längsrichtung gekoppelte Filter für elastische Wellen vom Resonator-Typ in einer vereinfachten Form veranschaulicht, die durch die Zeichnung zweier diagonaler Linien in einem Polygon dargestellt ist. Der obige Punkt gilt gleichermaßen für die 5, 6, 8 und 10, die später noch beschrieben werden.

Die Vorrichtung für elastische Wellen gemäß dieser Ausführungsform ist ein Duplexer 1, der in 1 veranschaulicht ist. Der Duplexer 1 enthält ein piezoelektrisches Substrat 2. Das piezoelektrische Substrat 2 besteht zum Beispiel aus einem piezoelektrischen Einkristall, wie zum Beispiel LiNbO3 oder LiTaO3, oder einer entsprechenden piezoelektrischen Keramik.

Der Duplexer 1 enthält ein erstes Bandpassfilter 3a und ein zweites Bandpassfilter 3b mit einem anderen Durchlassband als dem des ersten Bandpassfilters 3a, wobei beide Filter 3a und 3b auf dem piezoelektrischen Substrat 2 ausgebildet sind. Das erste Bandpassfilter 3a ist ein Sendefilter, und das zweite Bandpassfilter 3b ist ein Empfangsfilter.

Der Duplexer 1 ist auf dem piezoelektrischen Substrat 2 angeordnet und enthält einen Antennenanschluss 5, der mit einer Antenne verbunden ist. Das erste und das zweite Bandpassfilter 3a und 3b sind gemeinsame mit dem Antennenanschluss 5 verbunden.

Das erste Bandpassfilter 3a entspricht der Vorrichtung für elastische Wellen gemäß einer Ausführungsform der Erfindung.

Sowohl das erste als auch das zweite Bandpassfilter 3a und 3b enthalten mehrere Elemente für elastische Wellen. Jedes der mehreren Elemente für elastische Wellen enthält eine IDT-Elektrode. Genauer gesagt enthält, wie in 2 veranschaulicht, das erste Bandpassfilter 3a, als die mehreren Elemente für elastische Wellen, Reihenarmresonatoren S1 bis S4 und Parallelarmresonatoren P1 bis P3. Das erste Bandpassfilter 3a ist ein Kettenfilter.

3 ist eine Draufsicht, die eine Elektrodenkonfiguration des Reihenarmresonators S1 in der ersten Ausführungsform veranschaulicht.

Der Reihenarmresonator S1 enthält eine IDT-Elektrode 10A, die auf dem piezoelektrischen Substrat 2 ausgebildet ist. Reflektoren 11A und 11A sind auf beiden Seiten der IDT-Elektrode 10A in einer Ausbreitungsrichtung der elastischen Wellen angeordnet. Gleichermaßen enthält jeder der anderen Reihenarmresonatoren S2 bis S4, der Parallelarmresonatoren P1 bis P3 und jeder der später noch beschriebenen Resonatoren für elastische Wellen S11 und P11, wie in 2 veranschaulicht, eine IDT-Elektrode und ein Paar Reflektoren.

Das zweite Bandpassfilter 3b enthält, als die mehreren Elemente für elastische Wellen, erste und zweite in Längsrichtung gekoppelte Filter für elastische Wellen vom Resonator-Typ 7a und 7b und die Resonatoren für elastische Wellen S11 und P11.

4 ist eine Draufsicht, die Elektrodenkonfigurationen der ersten und zweiten in Längsrichtung gekoppelten Filter für elastische Wellen vom Resonator-Typ in der ersten Ausführungsform veranschaulicht.

Das erste in Längsrichtung gekoppelte Filter für elastische Wellen vom Resonator-Typ 7a enthält IDT-Elektroden 10Ba bis 10Bc. Reflektoren 11B und 11B sind auf beiden Seiten der IDT-Elektroden 10Ba bis 10Bc in der Ausbreitungsrichtung der elastischen Wellen angeordnet. Das zweite in Längsrichtung gekoppelte Filter für elastische Wellen vom Resonator-Typ 7b enthält IDT-Elektroden 10Ca bis 10Cc. Reflektoren 11C und 11C sind auf beiden Seiten der IDT-Elektroden 10Ca bis 10Cc in der Ausbreitungsrichtung der elastischen Wellen angeordnet.

5 ist eine vergrößerte schematische Draufsicht der Vorrichtung für elastische Wellen gemäß der ersten Ausführungsform. Dabei entspricht der Parallelarmresonator P1 in dem ersten Bandpassfilter 3a einem ersten Element für elastische Wellen in der Erfindung.

Die IDT-Elektrode des Parallelarmresonators P1 enthält erste und zweite Sammelschienen 9a und 9b, die einander gegenüberliegen. Der Reihenarmresonator S1 entspricht einem zweiten Element für elastische Wellen in der Erfindung. Die IDT-Elektrode des Reihenarmresonators S1 enthält dritte und vierte Sammelschienen 9c und 9d, die einander gegenüberliegen.

Die ersten bis vierten Sammelschienen 9a bis 9d sind in einer Längsrichtung jeweils länglich. Die zweite Sammelschiene 9b und die dritte Sammelschiene 9c erstrecken sich parallel zueinander. Es ist anzumerken, dass eine Erstreckungsrichtung der zweiten Sammelschiene 9b und eine Erstreckungsrichtung der dritten Sammelschiene 9c im Wesentlichen parallel zueinander verlaufen können. In dieser Ausführungsform ist die Längsrichtung als eine Richtung parallel zu der Ausbreitungsrichtung der elastischen Wellen sowohl in dem Parallelarmresonator P1 als auch in dem Reihenarmresonator S1 definiert. Die zweite Sammelschiene 9b und die dritte Sammelschiene 9c sind mit einem Spalt dazwischen in einer Richtung senkrecht zu der Längsrichtung versehen.

Sowohl die zweite als auch die dritte Sammelschiene 9b und 9c haben eine erste Elektrodenschicht und eine zweite Elektrodenschicht, die auf die erste Elektrodenschicht laminiert ist. In dieser Ausführungsform haben sowohl die erste als auch die vierte Sammelschiene 9a und 9d außerdem eine erste Elektrodenschicht und eine zweite Elektrodenschicht, die auf die erste Elektrodenschicht laminiert ist. Der elektrische Widerstand kann mit einer solchen Zweischichtstruktur reduziert werden. Es ist nur erforderlich, dass jede von mindestens den zweiten und dritten Sammelschienen 9b und 9c die ersten und zweiten Elektrodenschichten aufweist. Darüber hinaus braucht die zweite Elektrodenschicht nur teilweise auf der ersten Elektrodenschicht laminiert zu sein.

In den ersten und zweiten Bandpassfiltern hat jedoch jede der Sammelschienen der IDT-Elektroden in allen Elementen für elastische Wellen bevorzugt Elektrodenschichten entsprechend den oben beschriebenen ersten und zweiten Elektrodenschichten. Mit einer solchen Konfiguration kann der elektrische Widerstand weiter reduziert werden.

Die zweite Sammelschiene 9b hat einen zertrennten Abschnitt 9B, wo die zweite Elektrodenschicht in einer Richtung senkrecht zu der Längsrichtung der teilweise abzutrennenden zweiten Sammelschiene 9b zertrennt wird. Die erste Elektrodenschicht der zweiten Sammelschiene 9b liegt in dem zertrennten Abschnitt 9B frei.

Gleichermaßen hat die dritte Sammelschiene 9c einen zertrennten Abschnitt 9C, wo die zweite Elektrodenschicht in einer Richtung senkrecht zu der Längsrichtung der teilweise abzutrennenden dritten Sammelschiene 9c zertrennt wird. Genauer gesagt, wird die zweite Elektrodenschicht der dritten Sammelschiene 9c in einem Abschnitt zertrennt, der einer Erstreckung von dem zertrennten Abschnitt 9B der zweiten Sammelschiene 9b entspricht, wobei die Erstreckung in der Richtung verläuft, in der die zweite Elektrodenschicht der zweiten Sammelschiene 9b zertrennt wird.

Die erste Elektrodenschicht der dritten Sammelschiene 9c liegt in dem zertrennten Abschnitt 9C frei. Diese Ausführungsform ist dadurch gekennzeichnet, dass die zweite Elektrodenschicht der zweiten Sammelschiene 9b und die zweite Elektrodenschicht der dritten Sammelschiene 9c jeweils zertrennt werden, um teilweise abgetrennt zu werden, wie oben beschrieben. Dank dieses Merkmals kommt es mit geringerer Wahrscheinlichkeit zu Fehlern bei der Bildung der Sammelschienen in einer Region, wo die IDT-Elektroden nebeneinander liegen. Außerdem kann eine Verkleinerung des Duplexers 1 realisiert werden. Dieser Punkt wird im Folgenden zusammen mit einer detaillierten Konfiguration des Duplexers 1 und einem Herstellungsverfahren dafür beschrieben.

Wie in 2 veranschaulicht, hat das erste Bandpassfilter 3a einen Eingangsanschluss 4. Die Reihenarmresonatoren S1 bis S4 sind zwischen dem Eingangsanschluss 4 und dem Antennenanschluss 5 in Reihe geschaltet.

Der Parallelarmresonator P1 ist zwischen einem Übergang des Reihenarmresonators S1, der dem Eingangsanschluss 4 am nächsten liegt, und des Reihenarmresonators S2 und einem Erdungspotenzial verbunden. Der Parallelarmresonator P2 ist zwischen einem Übergang des Reihenarmresonators S2 und des Reihenarmresonators S3 und dem Erdungspotenzial verbunden. Der Parallelarmresonator P3 ist zwischen einem Übergang des Reihenarmresonators S3 und des Reihenarmresonators S4 und dem Erdungspotenzial verbunden. Es ist anzumerken, dass die Schaltkreiskonfiguration des ersten Bandpassfilters 3a nicht auf eine bestimmte beschränkt ist.

Das zweite Bandpassfilter 3b hat einen Ausgangsanschluss 6. Die ersten und zweiten in Längsrichtung gekoppelten Filter für elastische Wellen vom Resonator-Typ 7a und 7b sind zwischen dem Antennenanschluss 5 und dem Ausgangsanschluss 6 in Reihe geschaltet.

Der Resonator für elastische Wellen S11 für die Kennlinienjustierung ist zwischen dem Antennenanschluss 5 und dem ersten in Längsrichtung gekoppelten Filter für elastische Wellen vom Resonator-Typ 7a verbunden. Der Resonator für elastische Wellen P11 für die Kennlinienjustierung ist zwischen einem Übergang des Antennenanschlusses 5 und des Resonators für elastische Wellen S11 für die Kennlinienjustierung und dem Erdungspotenzial verbunden. Es ist anzumerken, dass die Schaltkreiskonfiguration des zweiten Bandpassfilters 3b nicht auf eine bestimmte beschränkt ist.

Wie in 1 veranschaulicht, sind mehrere Erdungsanschlüsse 8 auf dem piezoelektrischen Substrat 2 angeordnet. Die mehreren Erdungsanschlüsse 8 sind mit einem Erdungspotenzial verbunden.

Ein Beispiel eines Herstellungsverfahrens für den Duplexer 1, d. h. die Vorrichtung für elastische Wellen gemäß der ersten Ausführungsform, wird im Folgenden beschrieben.

6 ist eine schematische Draufsicht eines Abschnitts entsprechend den ersten und zweiten Elementen für elastische Wellen, wobei die Ansicht dazu dient, das Herstellungsverfahren für die Vorrichtung für elastische Wellen gemäß der ersten Ausführungsform zu erläutern.

7 ist eine schematische Draufsicht des Abschnitts entsprechend den ersten und zweiten Elementen für elastische Wellen, wobei die Ansicht dazu dient, das Herstellungsverfahren für die Vorrichtung für elastische Wellen gemäß der ersten Ausführungsform zu erläutern.

8 ist eine schematische Draufsicht des Abschnitts entsprechend den ersten und zweiten Elementen für elastische Wellen, wobei die Ansicht dazu dient, das Herstellungsverfahren für die Vorrichtung für elastische Wellen gemäß der ersten Ausführungsform zu erläutern.

In 6 bis 8 sind Elektrodenkonfigurationen für die anderen Elemente für elastische Wellen auf dem piezoelektrischen Substrat als die ersten und zweiten Elemente für elastische Wellen weggelassen. Darüber hinaus sind, wie oben angesprochen, die ersten und zweiten Elemente für elastische Wellen der Parallelarmresonator P1 bzw. der Reihenarmresonator S1, die in 5 veranschaulicht sind. In 7 ist eine Region, wo eine später noch beschriebene Resiststruktur gebildet wird, schraffiert dargestellt.

Wie in 6 veranschaulicht, wird das piezoelektrische Substrat 2 hergestellt. Dann wird ein Metallfilm auf dem piezoelektrischen Substrat 2 gebildet. Der Metallfilm kann zum Beispiel durch Sputtern oder CVD gebildet werden. Dann wird eine erste Verdrahtungsschicht 12 durch Strukturieren des Metallfilms mittels Photolithografie gebildet. Die erste Verdrahtungsschicht 12 enthält Elektroden in jeweiligen ersten Schichten der IDT-Elektroden und der Reflektoren. Jeweilige erste Elektrodenschichten 9a1 bis 9d1 der oben beschriebenen ersten bis vierten Sammelschienen werden durch die oben beschriebenen Schritte gebildet.

Als Nächstes wird, wie in 7 veranschaulicht, eine Resiststruktur 13 auf dem piezoelektrischen Substrat 2 gebildet, um einen Teil der ersten Verdrahtungsschicht 12 zu bedecken. Die Resiststruktur 13 bedeckt einzelne Elektrodenfinger der IDT-Elektroden. Die Resiststruktur 13 hat Abschnitte, die an Positionen über den ersten Elektrodenschichten 9a1 bis 9d1 der ersten bis vierten Sammelschienen geöffnet sind. In einem später noch beschriebenen Schritt werden jeweilige zweite Elektrodenschichten der ersten bis vierten Sammelschienen in den geöffneten Regionen gebildet.

Die Dicke der Resiststruktur 13 ist bevorzugt größer als die der in 6 veranschaulichten ersten Verdrahtungsschicht 12. Mit einem solchen Merkmal können die Dicken jeweiliger zweiter Elektrodenschichten der ersten bis vierten Sammelschienen erhöht werden, und der elektrische Widerstand kann weiter reduziert werden.

Die Resiststruktur 13 hat einen Abschnitt mit geringer Breite 13a, der zwischen der ersten Elektrodenschicht 9b1 der zweiten Sammelschiene und der ersten Elektrodenschicht 9c1 der dritten Sammelschiene positioniert ist und sich entlang der ersten Elektrodenschichten 9b1 und 9c1 erstreckt. Der Abschnitt mit geringer Breite 13a erstreckt sich über eine gesamte Länge einer Region, wo die ersten Elektrodenschichten 9b1 und 9c1 der zweiten und dritten Sammelschienen in einer gegenüberliegenden Beziehung positioniert sind.

Eine Breite des Abschnitts mit geringer Breite 13a ist als eine Größe des Abschnitts mit geringer Breite 13a definiert, in einer Richtung gemessen, die die Richtung kreuzt, wo sich der Abschnitt mit geringer Breite 13a erstreckt. In dem Maße, wie sich die Distanz zwischen der zweiten Sammelschiene und der dritten Sammelschiene verkürzt, verringert sich die Breite des Abschnitts mit geringer Breite 13a.

In einem in 7 veranschaulichten Schritt wird die Resiststruktur 13 so gebildet, dass sie Verstärkungsabschnitte 13b und 13c aufweist, die dazu dienen, den Abschnitt mit geringer Breite 13a zu verstärken. Genauer gesagt, wird der Verstärkungsabschnitt 13b auf der ersten Elektrodenschicht 9b1 der zweiten Sammelschiene gebildet.

Der Verstärkungsabschnitt 13b verbindet den Abschnitt mit geringer Breite 13a und den anderen Abschnitt der Resiststruktur 13. Gleichermaßen wird der Verstärkungsabschnitt 13c auf der ersten Elektrodenschicht 9c1 der dritten Sammelschiene gebildet. Der Verstärkungsabschnitt 13c verbindet außerdem den Abschnitt mit geringer Breite 13a und den anderen Abschnitt der Resiststruktur 13. Wie später noch beschrieben wird, werden die zweite Elektrodenschicht der zweiten Sammelschiene und die zweite Elektrodenschicht der dritten Sammelschiene in Regionen zertrennt, die den Verstärkungsabschnitten 13b bzw. 13c entsprechen.

Ein Fehler, wie zum Beispiel eine Positionsabweichung, bei der Bildung des Abschnitts mit geringer Breite 13a wird mit größerer Wahrscheinlichkeit auftreten, wenn sich die Breite des Abschnitts mit geringer Breite 13a verringert und seine Dicke zunimmt. Darüber hinaus wird ein Fehler bei der Bildung des Abschnitts mit geringer Breite 13a mit größerer Wahrscheinlichkeit auftreten, wenn die Länge des Abschnitts mit geringer Breite 13a zunimmt. In Anbetracht der obigen Punkte wird der Abschnitt mit geringer Breite 13a durch die Verstärkungsabschnitte 13b und 13c verstärkt.

Durch das Vorhandensein der Verstärkungsabschnitte 13b und 13c werden Fehler bei der Bildung des Abschnitts mit geringer Breite 13a selbst dann vermieden, wenn die Distanz zwischen der zweiten Sammelschiene 9b und der dritten Sammelschiene 9c verkürzt wird. Außerdem wird ein Fehler bei der Bildung des Abschnitts mit geringer Breite 13a selbst dann vermieden, wenn die Längen der zweiten und dritten Sammelschienen vergrößert werden. Infolge dessen werden Fehler bei der Bildung der zweiten und dritten Sammelschienen, die durch Strukturieren der Resiststruktur 13 gebildet werden, vermieden. Somit wird ein Fehler bei der Bildung der zweiten und dritten Sammelschienen durch Bereitstellen der Verstärkungsabschnitte 13b und 13c vermieden, so dass die zweiten Elektrodenschichten der zweiten und dritten Sammelschienen jeweils zertrennt werden, um teilweise abgetrennt zu werden, wie oben beschrieben. Es ist lediglich erforderlich, dass mindestens einer der Verstärkungsabschnitte 13b und 13c an einer einzelnen Stelle gebildet wird. Selbst in einem solchen Fall kommt es mit geringerer Wahrscheinlichkeit zu einer Positionsabweichung des Abschnitts mit geringer Breite 13a. Alternativ kann der Verstärkungsabschnitt 13b oder 13c mehrfach ausgebildet werden.

Als Nächstes wird ein Metallfilm auf dem piezoelektrischen Substrat 2 sowohl in einem Abschnitt, der mit der Resiststruktur 13 bedeckt ist, als auch in einem Abschnitt, der nicht mit der Resiststruktur 13 bedeckt ist, gebildet. Die Resiststruktur 13 wird dann abgelöst. Infolge dessen werden die zweiten Elektrodenschichten 9a2 bis 9d2 der ersten bis vierten Sammelschienen 9a bis 9d gebildet, wie in 8 veranschaulicht.

In dem oben beschriebenen Schritt des Ablösens der Resiststruktur 13 werden die Metallfilme auf den Verstärkungsabschnitten 13b und 13c der Resiststruktur 13, wie in 7 veranschaulicht, zusammen mit der Resiststruktur entfernt. Somit werden die zertrennten Abschnitte 9B und 9C der zweiten und dritten Sammelschienen 9b und 9c gebildet. Infolge dessen werden der Parallelarmresonator P1 und der Reihenarmresonator S1 gebildet. Durch die oben beschriebenen Schritte werden gleichzeitig auch die anderen Elemente für elastische Wellen, einschließlich der Resonatoren für elastische Wellen und der in Längsrichtung gekoppelten Filter für elastische Wellen vom Resonator-Typ, ausgebildet.

Wie oben beschrieben, kommt es selbst dann mit geringerer Wahrscheinlichkeit zu einer Positionsabweichung des Abschnitts mit geringer Breite 13a, wenn die Breite des Abschnitts mit geringer Breite 13a der Resiststruktur 13 reduziert wird. Dementsprechend kommt es selbst dann mit geringerer Wahrscheinlichkeit zu einem Fehler bei der Bildung der zweiten Elektrodenschichten 9b2 und 9c2, wenn die Distanz zwischen den zweiten und dritten Sammelschienen 9b und 9c in der Richtung senkrecht zu der Längsrichtung der zweiten und dritten Sammelschienen 9b und 9c verkürzt wird. Außerdem kommt es selbst dann mit geringerer Wahrscheinlichkeit zu einem Fehler bei der Bildung der zweiten Elektrodenschichten 9b2 und 9c2, wenn die Längen der zweiten und dritten Sammelschienen 9b und 9c vergrößert werden. Folglich ist das Auftreten von Kurzschlüssen zwischen der zweiten Sammelschiene 9b und der dritten Sammelschiene 9c weniger wahrscheinlich. Darüber hinaus kann eine weitere Verkleinerung des Duplexers 1 realisiert werden.

Wie in 1 gezeigt, sind in dem Duplexer 1 die Längen des Parallelarmresonators P1 und des Reihenarmresonators S1 entlang der Ausbreitungsrichtung der elastischen Wellen gemessen größer als jene der Reihenarmresonatoren S2 bis S4 entlang der Ausbreitungsrichtung der elastischen Wellen gemessen. Dementsprechend kann die Anzahl der Paare von Elektrodenfingern der IDT-Elektrode sowohl in dem Parallelarmresonator P1 als auch in dem Reihenarmresonator S1 erhöht werden. Infolge dessen können die Filterkennlinien, einschließlich des Gütewertes, verbessert werden.

Eine Verkleinerung des Duplexers 1 kann zufriedenstellend realisiert werden, indem man den Parallelarmresonator P1 und den Reihenarmresonator S1 nebeneinander in der Richtung senkrecht zu der Ausbreitungsrichtung der elastischen Wellen anordnet, wie in 1 veranschaulicht. Darüber hinaus kann die Distanz zwischen dem Parallelarmresonator P1 und dem Reihenarmresonator S1 in der Richtung senkrecht zu der Ausbreitungsrichtung der elastischen Wellen weiter verkürzt werden. Es ist folglich möglich, die Filterkennlinien zu verbessern und eine weitere Verkleinerung des Duplexers 1 zu realisieren.

Die Position und die Richtung, an bzw. in der die zweiten Elektrodenschichten der zweiten und dritten Sammelschienen 9b und 9c in dem Parallelarmresonator P1 und dem Reihenarmresonator S1 jeweils zertrennt werden, um teilweise abgetrennt zu werden, sind nicht auf bestimmte beschränkt. Die zweiten Elektrodenschichten der zweiten und dritten Sammelschienen 9b und 9c brauchen nur an Positionen zertrennt zu werden, die einander gegenüberliegen. Die zweiten und dritten Sammelschienen 9b und 9c können auch in einer anderen Richtung als der Richtung senkrecht zu der Längsrichtung zertrennt werden, d. h. einer Richtung, welche die Längsrichtung kreuzt. Darüber hinaus ist es nur erforderlich, das nur die eine oder die andere der zweiten Elektrodenschichten der zweiten und dritten Sammelschienen 9b und 9c an mindestens einer Stelle zertrennt wird. In jedem dieser Fälle kommt es mit geringerer Wahrscheinlichkeit zu einem Fehler bei der Bildung der zweiten und dritten Sammelschienen 9b und 9c.

Ein Duplexer mit der gleichen Konfiguration wie der Duplexer der ersten Ausführungsform und ein Duplexer eines Vergleichsbeispiels wurden angefertigt, und die Einfügeverluste des ersten Bandpassfilters in beiden Duplexern wurden verglichen. Der Duplexer des Vergleichsbeispiels hat die gleiche Konfiguration wie der Duplexer der ersten Ausführungsform, außer dass der erstere Duplexer nicht in Abschnitten entsprechend den zweiten Elektrodenschichten der zweiten und dritten Sammelschienen zertrennt wird.

Die nachstehend gezeigte Tabelle 1 listet Spezifikationen der IDT-Elektroden der Reihenarmresonatoren S1 bis S4, der Parallelarmresonatoren P1 bis P3 und der Resonatoren für elastische Wellen S11 und P11 in jedem der Duplexer gemäß der ersten Ausführungsform und dem Vergleichsbeispiel auf. Die folgende Tabelle 2 listet Spezifikationen der IDT-Elektroden der ersten und zweiten in Längsrichtung gekoppelten Filter für elastische Wellen vom Resonator-Typ 7a und 7b auf. Spezifikationen der Reflektoren sind ebenfalls in den Tabellen 1 und 2 angeführt. Tabelle 1 Tabelle 2

Anzahl von Paaren von Elektrodenfingern in IDT-Elektrode (Paare) Anzahl von Elektrodenfing ern im Reflektor Überschneidungsbreite (μm) Mittenabstand von Elektrodenfing ern (μm) Erstes in Längsrichtung gekoppeltes Filter für elastische Wellen vom Resonator-Typ 7a IDT-ELEKTRODE 10Ba8 - 116,32 5,3011 IDT-ELEKTRODE 10Bb23-116,325,3276IDT-ELEKTRODE 10Bc 8-116,325,3011Reflektor 11B - 54-5,4151Zweites in Längsrichtung gekoppeltes Filter für elastische Wellen vom Resonator-Typ 7bIDT-ELEKTRODE 10Ca8 - 121,70 5,3119 IDT-ELEKTRODE 10Cb28-121,705,3603IDT-ELEKTRODE 10Cc8 -121,705,3119Reflektor 11C- 40- 5,4613

9 ist ein Diagramm, das Einfügeverluste der jeweiligen ersten Bandpassfilter in der ersten Ausführungsform und des Vergleichsbeispiels aufträgt. Eine durchgezogene Linie repräsentiert das Ergebnis der ersten Ausführungsform, und eine durchbrochene Linie repräsentiert das Ergebnis des Vergleichsbeispiels.

Wie aus 9 zu erkennen ist, ist der Einfügeverlust des ersten Bandpassfilters in der ersten Ausführungsform im Wesentlichen gleich dem des ersten Bandpassfilters in dem Vergleichsbeispiel. Somit versteht es sich, dass die erste Ausführungsform die oben beschriebenen Nutzeffekte realisieren kann, ohne einen Verlust zu verursachen, der einer Brechung der elastischen Wellen und einer Erhöhung des elektrischen Widerstands zuzuschreiben wäre.

10 ist eine schematische Draufsicht einer Vorrichtung für elastische Wellen gemäß einer zweiten Ausführungsform.

Die Vorrichtung für elastische Wellen gemäß der zweiten Ausführungsform ist ein Duplexer 21, der in 10 veranschaulicht ist. Der Duplexer 21 unterscheidet sich von dem Duplexer 1 gemäß der ersten Ausführungsform dadurch, dass jedes von ersten und zweiten Bandpassfiltern 23a und 23b erste und zweite Elemente für elastische Wellen mit den Merkmalen der Erfindung enthält. In den anderen als den oben genannten Punkten hat der Duplexer 21 die gleiche Konfiguration wie der Duplexer 1 gemäß der ersten Ausführungsform.

Der Parallelarmresonator P3 entspricht in dem ersten Bandpassfilter 23a dem oben beschriebenen ersten Element für elastische Wellen, und der Resonator für elastische Wellen S11 in dem zweiten Bandpassfilter 23b entspricht dem oben beschriebenen zweiten Element für elastische Wellen. Der Parallelarmresonator P3 und der Resonator für elastische Wellen S11 liegen in der Richtung senkrecht zu der Ausbreitungsrichtung der elastischen Wellen nebeneinander. Der Parallelarmresonator P3 enthält erste und zweite Sammelschienen 29a und 29b, die einander gegenüberliegen. Der Resonator für elastische Wellen S11 enthält dritte und vierte Sammelschienen 29c und 29d, die einander gegenüberliegen. Die zweite Sammelschiene 29b und die dritte Sammelschiene 29c erstrecken sich parallel zueinander. Die zweiten und dritten Sammelschienen 29b und 29c sind mit einem Spalt dazwischen in der Richtung senkrecht zu der Längsrichtung angeordnet.

Jede der zweiten und dritten Sammelschienen 29b und 29c hat eine erste Elektrodenschicht und eine zweite Elektrodenschicht, wovon mindestens ein Teil auf die erste Elektrodenschicht laminiert ist. Die zweiten Elektrodenschichten der zweiten Sammelschiene 29b und der dritten Sammelschiene 29c werden ähnlich denen der zweiten und dritten Sammelschienen 9b und 9c in der ersten Ausführungsform zertrennt. Somit haben die zweiten und dritten Sammelschienen 29b und 29c zertrennte Abschnitte 29B bzw. 29C.

Der Duplexer 21 kann in einer ähnlichen Weise wie in dem Herstellungsverfahren für den Duplexer 1 gemäß der ersten Ausführungsform hergestellt werden. Genauer gesagt, können die zweiten und dritten Sammelschienen 29b und 29c ähnlich den zweiten und dritten Sammelschienen 9b und 9c in dem Parallelarmresonator P1 und dem Reihenarmresonator S1 hergestellt werden. In der zweiten Ausführungsform kann darum – zusätzlich zu den vorteilhaften Effekten der ersten Ausführungsform – dafür gesorgt werden, dass ein Fehler bei der Bildung der zweiten und dritten Sammelschienen 29b und 29c in dem Parallelarmresonator P3 und dem Resonator für elastische Wellen S11 mit geringerer Wahrscheinlichkeit auftritt.

Darüber hinaus kann die Distanz zwischen dem ersten Bandpassfilter 23a und dem zweiten Bandpassfilter 23b weiter verkürzt werden. Dementsprechend kann die Größe des Duplexer 21 weiter reduziert werden.

Die vorliegende Erfindung kann zweckmäßig auch auf einzelne Bandpassfilter angewendet werden, ohne auf einen Duplexer beschränkt zu sein. Außerdem kann die vorliegende Erfindung zweckmäßig beispielsweise auf einen Multiplexierer angewendet werden, der drei oder mehr Bandpassfilter enthält.

Im Rahmen des Erfindungsgedankens sind zahlreiche Abwandlungen und Weiterbildungen möglich, ohne den durch die folgenden Ansprüche definierten Schutzumfang zu verlassen.

ZITATE ENTHALTEN IN DER BESCHREIBUNG

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.

Zitierte Patentliteratur

  • JP 2002-100952 A [0002, 0003]