Title:
Systems and methods for portable exergaming
United States Patent 9566515
Abstract:
In a first aspect, a system for playing a video game is provided that includes (1) one or more sensors adapted to monitor one or more biometric parameters of a user and communicate the one or more monitored biometric parameters (MBPs); (2) a computing device adapted to communicate with the one or more sensors and to receive the one or more communicated MBPs; and (3) a video game having an avatar adapted to move an object on an incline, the video game adapted to execute on the computing device. The video game is adapted to control the avatar to perform an action in the video game based in part on the received one or more communicated MBPs. Numerous other aspects are provided.


Inventors:
Dugan, Brian M. (Sleepy Hollow, NY, US)
Santisi, Steven M. (Ridgefield, CT, US)
Latrille, Jean Pierre (Sleepy Hollow, NY, US)
Nuyttens, Lieven (Larchmont, NY, US)
Application Number:
14/517845
Publication Date:
02/14/2017
Filing Date:
10/18/2014
Assignee:
PEXS LLC (Hawthorne, NY, US)
Primary Class:
1/1
International Classes:
A63F13/20; A63F13/21; A63F13/212; A63F13/31; A63F13/40; A63F13/42; G06F19/26
Field of Search:
463/7, 463/22, 463/31, 463/36
View Patent Images:
US Patent References:
20150258429Method and System for Physiologically Modulating Videogames and Simulations Which Use Gesture and Body Image Sensing Control Input DevicesSeptember, 2015Pope463/31
9084933Method and system for physiologically modulating action role-playing open world video games and simulations which use gesture and body image sensing control input devicesJuly, 2015Pope
20140011640SYSTEM AND METHOD FOR IMPROVING FITNESS EQUIPMENT AND EXERCISEJanuary, 2014Dugan
20130252731SYSTEMS AND METHODS FOR PORTABLE EXERGAMINGSeptember, 2013Dugan et al.
20120306643BANDS FOR MEASURING BIOMETRIC INFORMATIONDecember, 2012Dugan
8313416Reconfigurable personal display system and methodNovember, 2012Ellis et al.
20120253489SYSTEMS AND METHODS FOR FITNESS AND VIDEO GAMESOctober, 2012Dugan
20120253487SYSTEMS AND METHODS FOR FITNESS AND VIDEO GAMESOctober, 2012Dugan
20120252580SYSTEMS AND METHODS FOR FITNESS AND VIDEO GAMESOctober, 2012Dugan
8287436Training scriptsOctober, 2012Shum et al.
20120208676TRAINING SCRIPTSAugust, 2012Shum et al.
8188868Systems for activating and/or authenticating electronic devices for operation with apparelMay, 2012Case, Jr.
20110275483SYSTEM AND METHOD FOR IMPROVING FITNESS EQUIPMENT AND EXERCISENovember, 2011Dugan et al.
20110260830BIOMETRIC INTERFACE FOR A HANDHELD DEVICEOctober, 2011Weising340/5.52
20110190055VISUAL BASED IDENTITIY TRACKINGAugust, 2011Leyvand et al.
7946959Training scriptsMay, 2011Shum et al.
7934983Location-aware distributed sporting eventsMay, 2011Eisner
20110082008METHODS, SYSTEMS, AND COMPUTER PROGRAM PRODUCTS FOR PROVIDING REMOTE PARTICIPATION IN MULTI-MEDIA EVENTSApril, 2011Cheung et al.
7931563Virtual trainer system and methodApril, 2011Shaw et al.
20110065504SYSTEMS AND METHODS FOR PORTABLE EXERGAMINGMarch, 2011Dugan et al.
20100287011Method and System of Location-Based Game for Improving Mobile Operator's ProfitNovember, 2010Muchkaev
20100240458VIDEO GAME HARDWARE SYSTEMS AND SOFTWARE METHODS USING ELECTROENCEPHALOGROPHYSeptember, 2010Gaiba463/36
7749056Game system with changing character controlJuly, 2010Ando et al.
20100160041INTERACTIVE PAINTING GAME AND ASSOCIATED CONTROLLERJune, 2010Grant463/31
20100033303SYSTEMS AND METHODS FOR PROVIDING BIOFEEDBACK INFORMATION TO A CELLULAR TELEPHONE AND FOR USING SUCH INFORMATIONFebruary, 2010Dugan et al.
7628730Methods and systems for controlling an exercise apparatus using a USB compatible portable remote deviceDecember, 2009Watterson et al.
20090270743SYSTEMS AND METHODS FOR PROVIDING AUTHENTICATED BIOFEEDBACK INFORMATION TO A MOBILE DEVICE AND FOR USING SUCH INFORMATIONOctober, 2009Dugan et al.
20090121894MAGIC WANDMay, 2009Wilson et al.
20090005140REAL WORLD GAMING FRAMEWORKJanuary, 2009Rose et al.
20080318679FOOT GAME CONTROLLER WITH MOTION DETECTION AND/OR POSITION DETECTIONDecember, 2008Tran et al.
20080281633PERIODIC EVALUATION AND TELEREHABILITATION SYSTEMS AND METHODSNovember, 2008Burdea et al.
20080218310SMART GARMENTSeptember, 2008Alten et al.
20080191864Interactive Surface and Display SystemAugust, 2008Wolfson
20080167861Information Processing Terminal and Communication SystemJuly, 2008Inoue et al.
20080146892PHYSIOLOGICAL AND ENVIRONMENTAL MONITORING SYSTEMS AND METHODSJune, 2008LeBoeuf et al.
20080129518Method and system for fall detectionJune, 2008Carlton-Foss
20080094226METHODS AND SYSTEMS FOR MONITORING POSITION AND MOVEMENT OF HUMAN BEINGSApril, 2008O'Shea et al.
20080027337SYSTEMS AND METHODS FOR HEART RATE MONITORING, DATA TRANSMISSION, AND USEJanuary, 2008Dugan et al.
20070260482Exercise data device, server, system and methodNovember, 2007Nurmela et al.
7285090Apparatus for detecting, receiving, deriving and displaying human physiological and contextual informationOctober, 2007Stivoric et al.
20070208233Integrated physiologic monitoring systems and methodsSeptember, 2007Kovacs
20070197274SYSTEMS AND METHODS FOR IMPROVING FITNESS EQUIPMENT AND EXERCISEAugust, 2007Dugan
7261690Apparatus for monitoring health, wellness and fitnessAugust, 2007Teller et al.
20070173705Apparatus for monitoring health, wellness and fitnessJuly, 2007Teller et al.
20070167204Character for computer game and methodJuly, 2007Lyle et al.
20070111858SYSTEMS AND METHODS FOR USING A VIDEO GAME TO ACHIEVE AN EXERCISE OBJECTIVEMay, 2007Dugan
20070053513INTELLIGENT ELECTRONIC APPLIANCE SYSTEM AND METHODMarch, 2007Hoffberg
20070038038Wearable human physiological and environmental data sensors and reporting system thereforFebruary, 2007Stivoric et al.
20070004482Game systemJanuary, 2007Ando et al.
20060281543WAGERING GAME MACHINE WITH BIOFEEDBACK-AWARE GAME PRESENTATIONDecember, 2006Sutton463/29
7153262Wearable human physiological data sensors and reporting system thereforDecember, 2006Stivoric et al.
20060264730Apparatus for detecting human physiological and contextual informationNovember, 2006Stivoric et al.
20060224051Wireless communications device and personal monitorOctober, 2006Teller et al.
20060122474Apparatus for monitoring health, wellness and fitnessJune, 2006Teller et al.
7068860Method and apparatus for recognition of writing, for remote communication, and for user defined input templatesJune, 2006Kasabach et al.
7057551Electronic exercise monitor and method using a location determining component and a pedometerJune, 2006Vogt
7041049Sleep guidance system and related methodsMay, 2006Raniere
20060089543Method, medium, and apparatus generating health state based avatarsApril, 2006Kim et al.
7020508Apparatus for detecting human physiological and contextual informationMarch, 2006Stivoric et al.
20060031102System for detecting, monitoring, and reporting an individual's physiological or contextual statusFebruary, 2006Teller et al.
20060025282Device and method for exercise prescription, detection of successful performance, and provision of reward thereforeFebruary, 2006Redmann
20050275541Method and apparatus to perform remote monitoringDecember, 2005Sengupta et al.
6966837Linked portable and video game systemsNovember, 2005Best
20050177051Apparatus and method for monitoring heart rate variabilityAugust, 2005Almen
6902513Interactive fitness equipmentJune, 2005McClure
20050101845Physiological data acquisition for integration in a user's avatar via a mobile communication deviceMay, 2005Nihtila
6888779Method and apparatus for a waking control systemMay, 2005Mollicone et al.
6881176Exercise assistance apparatusApril, 2005Oishi et al.
20050068169Personal tracking deviceMarch, 2005Copley et al.
6796927Exercise assistance controlling method and exercise assisting apparatusSeptember, 2004Toyama
6786825Video game in which player sets control valuesSeptember, 2004Kawazu
6758746Method for providing customized interactive entertainment over a communications networkJuly, 2004Hunter et al.
6746371Managing fitness activity across diverse exercise machines utilizing a portable computer systemJune, 2004Brown et al.
6720983Digital feedback display panel for communicating computer status informationApril, 2004Massaro et al.
20040053690Video game characters having evolving traitsMarch, 2004Fogel et al.
6705972Exercise support instrumentMarch, 2004Takano et al.
20040023761Resistance exercise computer game controller and methodFebruary, 2004Emery
20030224337Training scriptsDecember, 2003Shum et al.
6652383Connection-fighting type game machine and connection-fighting type game methodNovember, 2003Sonoda et al.
6641482Portable game apparatus with acceleration sensor and information storage medium storing a game programNovember, 2003Masuyama et al.
6628847Method and apparatus for recognition of writing, for remote communication, and for user defined input templatesSeptember, 2003Kasabach et al.
6605038System for monitoring health, wellness and fitnessAugust, 2003Teller et al.
6595929System for monitoring health, wellness and fitness having a method and apparatus for improved measurement of heat flowJuly, 2003Stivoric et al.
6595858Image-display game systemJuly, 2003Tajiri et al.
6585622Interactive use an athletic performance monitoring and reward method, system, and computer program productJuly, 2003Shum et al.
6579231Personal medical monitoring unit and systemJune, 2003Phipps
6527711Wearable human physiological data sensors and reporting system thereforMarch, 2003Stivoric et al.
6514199Telecommunication system for exchanging physiological state information between a physical person and an information systemFebruary, 2003Alessandri
6513160System and method for promoting viewer interaction in a television systemJanuary, 2003Dureau
6494830Handheld controller for monitoring/using medical parametersDecember, 2002Wessel
20020163495Multi-functional ergonomic interfaceNovember, 2002Doynov
6482092Image-display game system and information storage medium used thereforNovember, 2002Tajiri et al.
20020160883System and method for improving fitness equipment and exerciseOctober, 2002Dugan
20020151992Media recording device with packet data interfaceOctober, 2002Hoffberg et al.
6456749Handheld apparatus for recognition of writing, for remote communication, and for user defined input templatesSeptember, 2002Kasabach et al.
20020090985Coexistent interaction between a virtual character and the real worldJuly, 2002Tochner et al.
D460971Docking cradle for an electronic deviceJuly, 2002Sica et al.
20020082077Interactive video game system with characters that evolve physical and cognitive traitsJune, 2002Johnson et al.
20020082065Video game characters having evolving traitsJune, 2002Fogel et al.
20020080035System for awaking a userJune, 2002Youdenko
6375572Portable game apparatus with acceleration sensor and information storage medium storing a game progamApril, 2002Masuyama et al.
6354940Game apparatus, game fight processing method, and computer readable storage medium storage program thereforMarch, 2002Itou et al.
20020022516Advertising inside electronic gamesFebruary, 2002Forden
6347993Video game device, character growth control method for video game and readable storage medium storing growth control programFebruary, 2002Kondo et al.
D451604Vest having physiological monitoring systemDecember, 2001Kasabach et al.
6302789Pedometer with game modeOctober, 2001Harada et al.
6267677Game machine and storage medium thereforJuly, 2001Tajiri et al.
6251010Game machine apparatus and method with enhanced time-related display of pokemon-type charactersJune, 2001Tajiri et al.
6244988Interactive exercise system and attachment module for sameJune, 2001Delman
6213872Pedometer with game modeApril, 2001Harada et al.
D439981Armband with physiological monitoring systemApril, 2001Kasabach et al.
6179713Full-time turn based network multiplayer gameJanuary, 2001James et al.
6152856Real time simulation using position sensingNovember, 2000Studor et al.
6066075Direct feedback controller for user interactionMay, 2000Poulton
6062216Sleep apnea detector systemMay, 2000Corn
6024675Data-using game systemFebruary, 2000Kashiwaguchi
5947868System and method for improving fitness equipment and exerciseSeptember, 1999Dugan
5928133User responsive sleep monitoring and awakening deviceJuly, 1999Halyak
5918603Method for treating medical conditions using a microprocessor-based video gameJuly, 1999Brown
5902250Home-based system and method for monitoring sleep state and assessing cardiorespiratory riskMay, 1999Verrier et al.
5885156Video game apparatus, method of controlling the growth of play character in video game, and video game medium thereforMarch, 1999Toyohara et al.
5781698Method of autonomous machine learningJuly, 1998Teller et al.
5702323Electronic exercise enhancerDecember, 1997Poulton
5672107Integral video game and cardio-waveform displaySeptember, 1997Clayman
5667459Computerized exercise game machineSeptember, 1997Su
5645513Exercising apparatus which interacts with a video game apparatus during exerciseJuly, 1997Haydocy et al.
5624316Video game enhancer with intergral modem and smart card interfaceApril, 1997Roskowski et al.
5592401Accurate, rapid, reliable position sensing using multiple sensing technologiesJanuary, 1997Kramer
5591104Physical exercise video systemJanuary, 1997Andrus et al.
5527239Pulse rate controlled exercise systemJune, 1996Abbondanza
5515865Sudden Infant Death Syndrome (SIDS) monitor and stimulatorMay, 1996Scanlon
5462504Fitness apparatus with heart rate control system and method of operationOctober, 1995Trulaske et al.
5377100Method of encouraging attention by correlating video game difficulty with attention levelDecember, 1994Pope et al.
5362069Combination exercise device/video gameNovember, 1994Hall-Tipping
RE34728Video game difficulty level adjuster dependent upon player's aerobic activity level during exerciseSeptember, 1994Hall-Tipping
5142358Earn per view television viewing regulation deviceAugust, 1992Jason
5001632Video game difficulty level adjuster dependent upon player's aerobic activity level during exerciseMarch, 1991Hall-Tipping
4976435Video game control adapterDecember, 1990Shatford et al.
4858930Game systemAugust, 1989Sato
4817938Bicycle ergometer and eddy current brake thereforApril, 1989Nakao et al.
4735410Rowing machineApril, 1988Nobuta
4542897Exercise cycle with interactive amusement deviceSeptember, 1985Melton et al.
4484743Mounting system for a video control unitNovember, 1984Williams
3834702JOGGING GAME APPARATUSSeptember, 1974Bliss
Foreign References:
EP1292217November, 2005SYSTEM FOR MONITORING HEALTH, WELLNESS AND FITNESS
EP1639939March, 2006System for monitoring health, wellness and fitness
EP1292218April, 2006SYSTEM FOR MONITORING HEALTH, WELLNESS AND FITNESS
EP1702560September, 2006System for monitoring health, wellness and fitness
EP1743571January, 2007System for monitoring health, wellness and fitness having a method and apparatus for improved measurement of heat flow
JP59170173September, 1984
JP08103568April, 1996
WO/1996/005766February, 1996A USER CONTROLLED COMBINATION VIDEO GAME AND EXERCISE SYSTEM
WO/2001/096986December, 2001SYSTEM FOR MONITORING HEALTH, WELLNESS AND FITNESS
WO/2002/000111January, 2002SYSTEM FOR MONITORING HEALTH, WELLNESS AND FITNESS
WO/2002/078538October, 2002SYSTEM FOR MONITORING HEALTH, WELLNESS AND FITNESS HAVING A METHOD AND APPARATUS FOR IMPROVED MEASUREMENT OF HEAT FLOW
WO/2003/015005February, 2003APPARATUS FOR MONITORING HEALTH, WELLNESS AND FITNESS
WO/2004/019172March, 2004APPARATUS FOR DETECTING HUMAN PHYSIOLOGICAL AND CONTEXTUAL INFORMATION
WO/2004/032715April, 2004METHOD AND APPARATUS FOR AUTO JOURNALING OF CONTINUOUS OR DISCRETE BODY STATES UTILIZING PHYSIOLOGICAL AND/OR CONTEXTUAL PARAMETERS
WO/2004/034221April, 2004APPARATUS FOR DETECTING, RECEIVING, DERIVING AND DISPLAYING HUMAN PHYSIOLOGICAL AND CONTEXTUAL INFORMATION
WO/2005/016124February, 2005SYSTEM FOR MONITORING HEALTH, WELLNESS AND FITNESS
WO/2005/027720March, 2005METHOD AND APPARATUS FOR MEASURING HEART RELATED PARAMETERS
WO/2005/029242March, 2005SYSTEM FOR MONITORING AND MANAGING BODY WEIGHT AND OTHER PHYSIOLOGICAL CONDITIONS INCLUDING ITERATIVE AND PERSONALIZED PLANNING, INTERVENTION AND REPORTING CAPABILITY
WO/2005/092177October, 2005NON-INVASIVE TEMPERATURE MONITORING DEVICE
Other References:
Busch, Fritz “Diabetes Institute Brings Dakota, New Ulm Together” Jun. 10, 2001. Ogden Newspapers, Inc.
“Bluetooth.” Wikipedia: The Free Encyclopedia. Aug. 10, 2009 .
Ichinoseki-sekine et al., “Improving the Accuracy of Pedometer Used by the Elderly with the FFT Algorithm,” Medicine & Science in Sports & Exercise 2006,1674-1681.
Mann, W. et al., “Smart Phones for the Elders: Boosting the Intelligence of Smart Homes,” Am. Assoc. for Artificial Intell., (AAAI), Jul. 2002.
Dugan, U.S. Appl. No. 13/942,605, titled: System and Method for Improving Fitness Equipment and Exercise, filed Jul. 15, 2013.
Office Action of U.S. Appl. No. 12/839,098 mailed May 22, 2012.
Sep. 24, 2012 Response to Office Action of U.S. Appl. No. 12/839,098.
Final Office Action of U.S. Appl. No. 12/839,098 mailed Jan. 4, 2013.
Mar. 4, 2013 Reply to Jan. 4, 2013 Final Office Action of U.S. Appl. No. 12/839,098.
Notice of Allowance of U.S. Appl. No. 12/839,098 mailed Mar. 22, 2013.
Office Action of U.S. Appl. No. 13/898,437 mailed Dec. 4, 2013.
May 5, 2014 Reply to Office Action and Terminal Disclaimer of U.S. Appl. No. 13/898,437.
Terminal Disclaimer of U.S. Appl. No. 13/898,437, filed May 16, 2014.
Notice of Allowance of U.S. Appl. No. 13/898,437 mailed Aug. 12, 2014.
Jovanov et al., “A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation,” Journal of NeuroEngineering and Rehabilitation, 2005, 2:6; pp. 1-10.
Aug. 28, 2014 Reply to Apr. 28, 2014 Office Action of U.S. Appl. No. 12/538,862.
Office Action of U.S. Appl. No. 12/426,193 mailed Jun. 30, 2014.
Primary Examiner:
Elisca, Pierre E.
Attorney, Agent or Firm:
Dugan & Dugan, PC
Parent Case Data:

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of and claims priority from U.S. patent application Ser. No. 13/898,437 filed May 20, 2013, and titled “SYSTEMS AND METHODS FOR PORTABLE EXERGAMING”, which is a continuation of and claims priority from U.S. patent application Ser. No. 12/839,098, filed Jul. 19, 2010 and entitled “SYSTEMS AND METHODS FOR PORTABLE EXERGAMING”, now U.S. Pat. No. 8,454,437, which claims priority to U.S. Provisional Patent Application Ser. No. 61/226,624, filed Jul. 17, 2009 and entitled “SYSTEMS AND METHODS FOR PORTABLE EXERGAMING”, each of which is hereby incorporated by reference herein in its entirety for all purposes.

The present application is related to the following co-pending U.S. patent applications, which are hereby incorporated herein by reference in their entirety for all purposes:

U.S. patent application Ser. No. 12/426,193, filed Apr. 17, 2009 and entitled “SYSTEMS AND METHODS FOR PROVIDING AUTHENTICATED BIOFEEDBACK INFORMATION TO A MOBILE DEVICE AND FOR USING SUCH INFORMATION”; and

U.S. patent application Ser. No. 12/538,862, filed Aug. 10, 2009 and entitled “SYSTEMS AND METHODS FOR PROVIDING BIOFEEDBACK INFORMATION TO A CELLULAR TELEPHONE AND FOR USING SUCH INFORMATION”.

Claims:
What is claimed is:

1. A video game comprising: a sensor operable to monitor a heart rate of a user and to output a heart rate signal indicative of the heart rate; a processor operable to receive the heart rate signal and to execute instructions stored in a memory, the instructions for programming the processor to execute a video game having an avatar wherein the video game controls the avatar to move within the video game based in part on the heart rate signal; and wherein the processor executes within a portable computing device adapted to be transported during execution of the video game.

2. The video game of claim 1 wherein the instructions for programming the processor to execute a video game further include instructions to determine a type of exercise the user is performing based in part upon the heart rate signal.

3. The video game of claim 2 wherein the instructions for programming the processor to execute a video game further include instructions to control the avatar to move based in part upon the type of exercise the user is performing.

4. The video game of claim 1 wherein the instructions for programming the processor to execute a video game further include instructions to require the user to perform one or more types or amounts of exercise to play the video game.

5. The video game of claim 1 wherein the instructions for programming the processor to execute a video game further include instructions to move the avatar in response to the user performing exercises specified by the video game.

6. The video game of claim 1 wherein the instructions for programming the processor to execute a video game further include instructions to not move the avatar in response to the user failing to perform exercises specified by the video game.

7. The video game of claim 1 wherein the instructions for programming the processor to execute a video game further include instructions to represent a level of effort needed to move the avatar that corresponds to user effort needed to perform exercise required by the game as sensed by the sensor.

8. The video game of claim 1 wherein the sensor is a wrist worn pulse monitor.

9. The video game of claim 1 wherein the instructions for programming the processor to execute a video game further include instructions to control a speed of the avatar's movement based upon the heart rate of the user.

10. The video game of claim 1 wherein the instructions for programming the processor to execute a video game further include instructions to control the avatar's movement based upon the heart rate of the user and other biometric parameters.

11. The video game of claim 10 wherein the instructions for programming the processor to execute a video game further include instructions to control the avatar's movement based upon the heart rate of the user and locations of the user.

12. The video game of claim 1 wherein the instructions for programming the processor to execute a video game further include instructions to control the avatar's movement based upon the heart rate of the user and locations of the user.

13. The video game of claim 1 wherein the instructions for programming the processor to execute a video game further include instructions to control a size of the avatar based upon the heart rate of the user.

14. The video game of claim 1 wherein the instructions for programming the processor to execute a video game further include instructions to control a size of the avatar based upon exercise performed by the user.

15. The video game of claim 1 wherein the instructions for programming the processor to execute a video game further include instructions to control a speed of the avatar based upon exercise performed by the user.

16. The video game of claim 1 wherein the instructions for programming the processor to execute a video game further include instructions to control a strength of the avatar based upon exercise performed by the user.

17. The video game of claim 1 wherein the instructions for programming the processor to execute a video game further include instructions to display a second avatar representative of a second user wherein movement of the second avatar is based at least in part upon a monitored heart rate of the second user.

18. The video game of claim 17 wherein the instructions for programming the processor to execute a video game further include instructions to enable cooperative play between the users.

19. The video game of claim 17 wherein the instructions for programming the processor to execute a video game further include instructions to enable competitive play between the users.

20. The video game of claim 17 wherein the instructions for programming the processor to execute a video game further include instructions to enable play between the users based upon locations of the users.

Description:

FIELD OF THE INVENTION

The present invention relates to the use of biofeedback devices, and more particularly to systems and methods for portable exergaming.

BACKGROUND

Biofeedback devices such as portable heart rate monitoring (HRM) devices are commonly used in fitness related activities for weight loss, goal heart rate (HR) training, and general HR monitoring. Such devices may sometimes be employed by healthcare professionals for chronic and/or acute heart condition monitoring and/or diagnosis.

Portable HRMs and other monitoring devices typically are expensive, and in some cases are cost prohibitive for many consumers. A need exists for inexpensive and/or simplified monitoring systems.

SUMMARY OF THE INVENTION

In a some aspects of the invention, a system for playing a video game is provided that includes (1) one or more sensors adapted to monitor one or more biometric parameters of a user and communicate the one or more monitored biometric parameters (MBPs); (2) a computing device adapted to communicate with the one or more sensors and to receive the one or more communicated MBPs; and (3) a video game having an avatar adapted to move an object on an incline, the video game adapted to execute on the computing device. The video game is adapted to control the avatar to perform an action in the video game based in part on the received one or more communicated MBPs.

In some aspects of the invention, a video game is provided that is operable on a computing device that communicates with one or more sensors that monitor one or more biometric parameters of an exerciser. The video game includes an avatar adapted to move an object on an incline, the video game adapted to control the avatar to perform an action relating to moving the object on the incline based in part on one or more biometric parameters communicated from the one or more sensors to the computing device.

In some aspects of the invention, a method is provided that includes (1) providing a video game on a computing device, the video game having an avatar that moves an object on an incline; (2) employing the computing device to receive one or more biometric parameters of an exerciser; and (3) selecting an action relating to moving the object on the incline based in part on one or more biometric parameters received by the computing device. Numerous other aspects are provided.

Other objects, features and aspects of the present invention will become more fully apparent from the following detailed description of the preferred embodiments, the appended claims and the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic diagram of an exemplary system for sensing, collecting and/or monitoring biometric information from a user according to some embodiments of the present invention.

FIG. 2 is a schematic diagram of an alternative exemplary system for sensing, collecting and/or monitoring biometric information from a user according to some embodiments of the present invention.

FIG. 3 is a flowchart illustrating an example method according to some embodiments of the present invention.

FIGS. 4A-B illustrate a game that may implement some embodiments of the present invention.

DETAILED DESCRIPTION

In one or more embodiments of the invention, wearable monitors and/or sensors are provided which may communicate wirelessly with a mobile device such as a cellular telephone, personal digital assistant (PDA) or other portable computing device. The monitor may be mounted on a user such that the monitor measures biometric information of the user. This information may be communicated to a portable computing device. Based on this information, the portable computing device may control and dynamically change a computer game to encourage exercise. The user may also directly control the game by controlling their biometrics.

In one example, a wrist, ankle, neck, thigh, back, head, hair, ear, eye, mouth, nose, finger, toe, or any other suitable body part/area band, strap, belt, bracelet, cover, shirt, pant, sock, glove, clip, or any other practicable securing mechanism may include one or more monitors or sensors adapted to sense biometric information from a user and to transmit this information to a cellular telephone, personal digital assistant or other portable device. Based on this information, the computing device may control aspects of a computer game. For instance, the user may control the actions of an avatar based on their biometric data.

If the user's biometric information is not within a predetermined range, the mobile computing device may modify the game play to encourage the user to keep their biometric data within the predetermined range. Exemplary biometric information that may be monitored includes, but is not limited to, heart rate, pulse rate, temperature, respiration, acceleration, skin resistivity, sweat, electrical impulses, positions of body parts (e.g., relative position of hands and feet), etc. Based on this information, a computing device can determine the type of exercise the user is performing, the length of time the user is performing the exercise, the level of fatigue of the user, etc.

In some embodiments, a retaining mechanism (e.g., a band or bracelet) may be provided at any suitable monitoring location, such as arms, legs or head of a user, to monitor movements and/or other biometrics of the user. In some embodiments, a retaining mechanism may be provided for each arm and/or each ankle of a user to monitor arm and/or leg position during exercise, golf, tennis, running, pushups, sit-ups, callisthenic exercise, weightlifting workouts (e.g., kettlebell workouts, etc.) etc. Such a system may be used, for example, to determine if the user has correct form during exercise, stride length during running, body position during a golf or tennis swing, “hang time” during a basketball dunk, and the like. In some embodiments, bands or bracelets may be provided for the torso, abdominals and/or the head of a user.

In some embodiments, a camera or other imaging device may be used with or without a band or bracelet to determine the biometric data and/or movements of a user. In some embodiments the imaging device may be mounted on the user and/or be part of the mobile computing device. In some embodiments, exercise equipment, such as a kettlebell, may be equipped with a monitor that may be used with or without an imaging device, band or a bracelet to determine biometric data of the user.

In one or more embodiments, an accelerometer may be provided within a retaining mechanism (e.g., a band or bracelet). The accelerometer may be employed to measure acceleration during a golf, tennis, hockey or other swing. Such acceleration information may be wirelessly transmitted to a computing device such as a cellular telephone, personal digital assistant or other portable device, and used to determine club, racquet or stick speed, club, racquet or stick velocity, swing tempo, or the like. In some embodiments, such acceleration information may be adjusted to compensate for the affects of gravity. In some embodiments, the accelerometer may be employed to measure acceleration during exercise, and the computing device may provide feedback to the user if the acceleration is within a range that may cause injury, or if the acceleration is outside of a predetermined range.

Software and/or one or more computer program products on the mobile computing device, such as a cellular telephone or other portable device, may be employed to calculate or otherwise determine any relevant information. A user can download the software using the internet, Bluetooth™, or any other suitable wireless protocol. A wireless or wired protocol may also be used to download software to the mobile computing device. The mobile computing device may store any information or software on a tangible, computer readable medium.

FIG. 1 is a schematic diagram of an exemplary system 100 for sensing, collecting and/or monitoring biometric information from a user (not shown). The example system 100 includes a wearable band 102 having one or more monitors or sensors (not shown) adapted to monitor or otherwise sense, for example, heart rate, pulse rate, temperature, respiration, acceleration, skin resistivity, or any other biometric information. The wearable band 102 may (wirelessly) transmit the biometric information to one or more cellular telephones 104a-b or other portable devices such as personal digital assistants, MP3 players, portable video game players, other portable computing devices, or the like. While two cellular telephones are shown in FIG. 1, it will be understood that any number of portable or mobile computing devices (e.g., 1, 2, 3, 4, 5, etc.), differing types of mobile computing devices, etc., may receive biometric information from the band 102.

Each cellular telephone 104a-b, or any other mobile computing device receiving information from the band 102, may be programmed to process the biometric information received from the band 102 (e.g., for general health monitoring, determining swing information, monitoring sleep patterns, enhancing video game performance by affecting a video game character or characteristic based on the biometric information, etc.).

In some embodiments, the band 102 may be flexible, continuous, sealed, adjustable, and/or water resistant.

FIG. 2 is a schematic diagram of an alternative system 200 for sensing, collecting and/or monitoring biometric information from a user (not shown). In the embodiment of FIG. 2, four bands 102a-d communicate information to a cellular telephone 104 (or other mobile computing device). For example, a user may employ a band 102 on each arm and each ankle, or multiple users may employ a band 102. Other numbers of bands and/or portable computing devices may be used.

FIG. 3 illustrates an exemplary method 300 provided in accordance with the present invention. In step 302, the video game begins. The video game may include one or more aspects that are controlled by the user. The user may control the one or more aspects of the game based at least in part upon their biometrics. In some embodiments, the user may control the actions of an avatar or character in the game using the user's real world biometrics. In other words, by manipulating the user's own real world biometrics (e.g., heart rate), the user may directly control one or more parts/functions of the game and/or the user's avatar in the game.

In step 304, the user may exercise. By exercising, the user may control/manipulate and change his/her biometrics, and in turn control the avatar. As discussed above, biometric data may include heart rate, pulse rate, temperature, respiration, acceleration, skin resistivity, sweat, electrical impulses, position(s) of body parts (e.g., hands and/or feet), etc.

In step 306, one or more biometrics of the user are monitored by one or more sensors coupled to the user (e.g., one or more bands 102 of FIG. 1), exercise equipment, and/or a suitable imaging device.

In step 308, the monitored biometric(s), referred to herein as monitored biometric parameter(s) (MBP(s)) or just biometric parameters, are communicated to a mobile or portable computing device, such as a cell phone or PDA (e.g., cell phone 104a and/or 104b in FIG. 1). Each MBP may be communicated to the mobile computing device using a wired protocol or wireless protocol such as Bluetooth™ or via the internet.

In step 310, the mobile computing device may determine information relating to the exercise the user is performing (e.g., the type of the exercise the user is performing, duration of exercise, frequency of the exercise, etc.) based on the received MBP. The user may move differently during different exercises. If the user is wearing monitors on all four appendages, the relative motions and/or distances between appendages may be determined. For instance, during a pushup the user's hands and feet may remain mostly stationary, while during jumping jacks the users hands and feet move away from each other, and then towards each other. Based upon the relative motion and/or position of the appendages of the user, the mobile computing device may determine whether the user is performing jumping jacks or pushups. Thus, information relating to exercise may be determined by analyzing the relative positions and/or movements of the user's body parts. Of course, the computing device may also determine any number of other parameters such as heart rate, pulse rate, temperature, respiration, acceleration, skin resistivity, sweat, electrical impulses, etc.

In step 312, the computing device may determine if an action should be taken in the video game based upon the user's MBP. For instance, by performing a certain exercise (e.g., pushup, sit-up, jogging, pull-up, etc.), the avatar in the video game may perform an action (e.g., move up, down, left, right, etc.). In some embodiments, the user may be required to perform a certain amount of exercise, such as 10 pushups, before an action is performed in the video game. In some embodiments, the user must maintain his/her heart rate within a predetermined range or above/below a predetermined threshold before an action is performed in the game. In some embodiments, an exercise must be performed for a predetermined amount of time before an action is performed in the video game. If the computing device determines no action should be taken, the method returns to step 306 to repeat steps 306-312 (e.g., until the computing device determines an action should be taken in the video game, until a victory or fail condition is met in the video game, etc.). Note that some game actions may involve direct control of the avatar's actions (e.g., speed of the avatar, whether the avatar is standing or sitting, etc.) and some game actions may involve alteration of aspects of the game itself (e.g., the size of an object, the slope of an incline).

In step 314, if the computing device determines in step 312 that an action should be taken, the avatar performs an action in the video game (e.g., move the avatar, extend the life of the avatar, give the avatar additional powers, make the avatar larger and/or stronger, or otherwise allow the avatar to perform better in the game) or the game itself is otherwise altered.

Steps 302-314 may then repeat (e.g., until the user stops video game play and/or exercise).

In some embodiments of the invention, a video game is provided that motivates a user to exercise harder, more vigorously, longer, within a target range (e.g., within a defined heart rate or pulse-ox range), to achieve a fitness goal, to exercise more, faster, slower, or the like. The game is adapted to provide gamming entertainment to the user during exercise so that the user may be distracted from the work of the exercise. As illustrated in FIG. 4A, in one exemplary video game 400, called “Boulder Push” or “BP”, an exerciser is provided with an avatar 402 that may or may not look like the exerciser. In some embodiments, the exerciser may customize the appearance of the avatar 402 (e.g., size, weight, clothing, gender, hair color, etc.). Further, exercise of the user may influence characteristics of the avatar (e.g., size, strength, stamina, etc.).

The video game 400 may start with the avatar 402 holding an object 404 (e.g., a boulder) on or near an incline 406 (e.g., a hill). One or more biometric parameters of the exerciser such as heart rate, pace, distance travelled, number of steps, etc., may be monitored (e.g., via a wrist band, chest strap, or the like, in communication with a game system such as a mobile computing device, cellphone, PDA, etc.). As the MBP of the exerciser changes, the avatar 402 may begin causing the object 404 to move up or down the incline 406. If the exerciser's MBP falls below a predetermined threshold, the movement of the object 404 up the incline 406, for example, may begin to slow down or reverse, for example. If the exerciser's MBP falls too low, the avatar 402 may lose control of the object 404 which may roll backward toward and/or crush the avatar 402. In some embodiments, if the exerciser's MBP falls above a predetermined threshold or outside a target range, the object 404 may slow down, stop rolling and/or begin to roll down the incline 406. In some embodiments, if the MBP falls above a predetermined threshold, the avatar 402 may reflect the fatigue of the exerciser by slowing down and/or by visually sweating or panting. In this manner, the exerciser is motivated to maintain his/her MBP within a desired range or to follow a defined pattern. A message (not shown) may flash on the video game screen and/or be audibly presented advising the exerciser to speed up, slow down or otherwise alter his/her exercise. The MBP also may be displayed along with an indication of the target range or predefined threshold required by the game.

In some embodiments, video game play or aspects of the game itself may dynamically change such that the slope/terrain of the incline 406 and/or the size/shape/type of the object 404 may change and may even be adjustable by the exerciser (e.g., by touching an input device such as a cellular phone running the video game, based on user heart rate or another biometric parameter, etc.). For instance, if the MBP is outside of a given range, the object 404 may increase in size or the incline 406 may become steeper. Sounds generated by the mobile computing device may be used to indicate the changes or other aspects of the game.

In some embodiments, the exerciser may design the characteristics of the incline 406 prior to or during exercise. In some embodiments, predefined incline 406 patterns may be selected that correspond to particular fitness or other goals. At the end or at some other milestone during an exercise routine, the avatar 402 may reach a summit of the incline 406, or roll the object 404 into one or more valleys. In some embodiments, the object 404 may roll down the other side of the incline 406 and crush a target such as trees, cars, a town, another player, or the like. In some embodiments, the object 404 may, for example, plug a crater of a volcano that is about to erupt (e.g., and failure to plug the crater within a predetermined time period may cause the demise of the avatar and/or other elements of the video game).

In some embodiments, the video game 400 may contain several challenges to motivate the exerciser to exercise. For instance, the characteristics of the incline 406 may change so that the exerciser has to control the avatar 402 to move the object 404 to the sides of the incline 406 (e.g., left or right) and/or let the object 404 move downhill to avoid obstacles, such as dead ends along a path or rocks that block the path of the avatar 402. Thus, the exerciser may control the avatar 402 to perform several different actions such as pushing the object 404 to the left, pushing the object 404 to the right, pushing the object 404 uphill, allowing the object 404 to move downhill, picking up the object 404, throwing the object 404, smashing the object 404 into smaller pieces, etc.

The exerciser may need to perform different physical exercises in the real world to control the avatar 402 to perform different actions in the game world. For instance, the exerciser may need to jog or run in the real world to cause the avatar 402 to push the object 404 up the incline 406 in the game, but perform pushups to push the object 404 to the left, perform sit-ups to move the object 404 to the right and perform jumping jacks to move the object 404 downhill. In some embodiments, the exerciser's MBP must stay within a desired range for a predetermined amount of time, such as 10 seconds, before an action, such as pushing the object 404, is performed.

The actions of the avatar may be controlled through any suitable MBP. In some embodiments, if the exerciser's heart rate is within a predetermined range, the avatar may perform a specific action. Several ranges may be selected so that different heart rates correspond to different actions the avatar may perform.

By having different exercises control different aspects of the video game 400, the exerciser may be encouraged to have a well balanced work out. For instance, the exerciser may exercise several muscle groups (e.g., pectorals, triceps, quadriceps, abdominals, biceps, etc.) and also use cardiovascular exercise to complete the video game.

In this manner a exerciser may have to complete one or more “circuits” to finish the video game or complete a level/portion of the video game. A circuit may be a combination of high-intensity aerobics and resistance training, for example. In some embodiments, a circuit is designed to be easy to follow and target fat loss, muscle building and/or heart fitness. An exercise circuit is one completion of all prescribed exercises. When one circuit is complete, the exerciser may stop exercising, begin the first exercise again for another circuit or start an entirely different exercise routine or circuit. In some embodiments, the time between exercises in circuit training may be short, often with rapid movement to the next exercise. An exemplary circuit may include:

    • 1. Arms—pull-up or push-up
    • 2. Abs—sit ups
    • 3. Legs—step ups
    • 4. Arms—shoulder press
    • 5. Abs—sit-ups or plank exercises
    • 6. Legs—burpees

A burpee is a full body exercise used in strength training and as aerobic exercise. It is performed in several steps and starts from a standing position: 1) the user drops into a squat position with their hands on the floor in front of them, 2) the user kicks their feet back, while simultaneously lowering themselves into a pushup 3) the user immediately returns their feet to the squat position, while simultaneously pushing up with their arms and 4) the user leaps up as high as possible from the squat position with their arms overhead. In some embodiments, more or fewer exercises may be used in a circuit. For instance, a user may be required to jog between different exercises.

As discussed above, the exerciser may be required to complete one or more circuits to finish the video game 400. Each exercise of the circuit may correspond to a different action of the avatar 402. For instance, sit-ups may correspond to pushing the object 404 uphill, while push-ups may correspond to pushing the object 404 to the left and so forth. The exerciser may be presented with several challenges or obstacles that require the avatar 402 to perform different actions, which in turn correspond to different exercises the exerciser must perform. Thus, the challenges or obstacles in the video game 400 may be selected such that the exerciser completes all of the exercises in a circuit, or several circuits, to finish the video game 400 or complete a level of the video game 400.

In some embodiments, the computing device used to execute the video game 400 may be portable and may be transported by the exerciser during exercise. Thus, the exerciser may not necessarily be tied to a specific location during video game play. For instance, the exerciser may be required to do pushups at a first location, and then jog a predetermined distance away from the first location and arrive at a second location. The exerciser may then be required to perform another exercise at the second location and then jog another predetermined distance away and arrive at a third location. The exerciser may then perform another exercise at the third location. This may repeat until the game is completed. Accordingly, the exerciser is not tied to a specific location during game play. For instance, a exerciser may play the video game 400 outside of his/her home at any number of locations (e.g., park, track, gym, etc.), and transport the computing device during exercise.

Multiplayer embodiments may be employed in which the avatars of players compete against one another or work together to move an object. For example, FIG. 4B illustrates a first avatar 402a and a second avatar 402b competitively rolling a single object 404 up and over a incline 406 at each other. In other embodiments, each avatar may roll a different object up the same (or a different) incline or toward another avatar or avatar's object (e.g., to block the other avatar's progress). Any number of players and/or avatars may be employed including multiple avatars for each user.

In some embodiments, different users can network their devices together via the internet. The users' computing devices may be connected to a server, or directly to each other. Any wired or wireless protocol may be used to connect the users' computing devices for multiplayer game play.

Any software discussed in this application may be implemented on a computing device or system, and saved onto a tangible, computer readable medium of the computing device or system.

In some embodiments, the object 404 may grow in size and/or weight as it rolls up the incline 406 (e.g., if the incline is snow covered). Alternatively, the object may erode or otherwise shrink in size and/or weight as it rolls up the incline 406.

While the present invention has been described primarily with regarding to video games operating on portable computing devices such as cellular telephones, PDAs, MP3 players, tablet computers, etc., it will be understood that other computing devices may be employed for similar exercise-controlled video game play such as desktop computers, non-portable video game players, etc.

Any methods or processes described herein may be implemented in software as a computer program product. Each computer program product may be carried by a medium readable by a computer (e.g., a carrier wave signal, a floppy disc, a hard drive, a random access memory, etc.).

Accordingly, while the present invention has been disclosed in connection with the exemplary embodiments thereof, it should be understood that other embodiments may fall within the spirit and scope of the invention, as defined by the following claims.