Title:
Liquid-crystalline medium
United States Patent 8821757


Abstract:
The invention relates to a liquid-crystalline medium comprising one or more compounds of the formula (I), in which R0 has the meanings indicated in Claim 1, and to the use thereof in electro-optical liquid-crystal displays.



Inventors:
Wittek, Michael (Erzhausen, DE)
Schuler, Brigitte (Grossostheim, DE)
Lietzau, Lars (Darmstadt, DE)
Application Number:
13/578890
Publication Date:
09/02/2014
Filing Date:
01/25/2011
Assignee:
Merck Patent GmbH (Darmstadt, DE)
Primary Class:
Other Classes:
252/299.01, 252/299.6, 252/299.61, 252/299.63, 349/182, 428/1.1, 428/1.3
International Classes:
C09K19/12; C09K19/00; C09K19/02; C09K19/06; C09K19/30; C09K19/34; C09K19/52
Field of Search:
252/299.01, 252/299.6, 252/299.63, 252/299.61, 252/299.66, 428/1.1, 428/1.3, 349/182
View Patent Images:
US Patent References:
7682671Liquid crystalline medium and liquid crystal display2010-03-23Czanta et al.428/1.1
7635505Liquid Crystalline Medium2009-12-22Manabe et al.428/1.1
7604851Liquid-crystalline compounds2009-10-20Heckmeier et al.
20090101869Liquid crystalline medium and liquid crystal display2009-04-23Czanta et al.
20080128653Liquid Crystalline Medium2008-06-05Manabe et al.
20070269614LIQUID -CRYSTALLINE COMPOUNDS2007-11-22Heckmeier et al.
7250198Liquid-crystalline compounds2007-07-31Heckmeier et al.
6808764Liquid-crystalline medium having a high birefringence and improved UV stability2004-10-26Heckmeier et al.
20030228426Liquid-crystalline medium having a high birefringence and improved UV stability2003-12-11Heckmeier et al.
20030213935Liquid-crystalline compounds2003-11-20Heckmeier et al.



Foreign References:
DE10243776A12003-04-10New alkenyl-terminal liquid crystal compounds useful in liquid crystal mixtures for electrooptic applications, especially displays
DE102004012970A12004-10-28Flüssigkristallines Medium
DE102007009944A12007-09-20Flüssigkristallines Medium
EP13330822003-08-06Liquid crystalline medium with higher double refraction and improved UV stability
Other References:
International Search Report of PCT/EP2011/000306 (Apr. 13, 2011).
Primary Examiner:
VISCONTI, GERALDINA
Attorney, Agent or Firm:
MILLEN, WHITE, ZELANO & BRANIGAN, P.C. (2200 CLARENDON BLVD. SUITE 1400, ARLINGTON, VA, 22201, US)
Claims:
The invention claimed is:

1. A liquid-crystalline medium, comprising one or more compounds of formula I and one or more compounds of formula XXVI, embedded image in which R0 denotes an alkyl or alkoxy radical having 1 to 15 C atoms, in which one or more CH2 groups are each optionally replaced, independently of one another, by —C≡C—, —CF2O—, —CH═CH—, embedded image —O—, —CO—O— or —O—CO— in such a way that O atoms are not linked directly to one another, and in which one or more H atoms are optionally replaced by halogen atoms, X0 denotes F, Cl, CN, SF5, SCN, NCS, a halogenated alkyl radical, a halogenated alkenyl radical, a halogenated alkoxy radical or a halogenated alkenyloxy radical having up to 6 C atoms, and Y1 and Y2 each, independently of one another, denote H or F.

2. A liquid-crystalline medium according to claim 1, further comprising one or more compounds of formulae II and/or III, embedded image in which A denotes 1,4-phenylene or trans-1,4-cyclohexylene, a denotes 0 or 1, R3 denotes alkenyl having 2 to 9 C atoms, and R4 denotes an alkyl or alkoxy radical having 1 to 15 C atoms, in which one or more CH2 groups are each optionally replaced, independently of one another, by —C≡C—, —CF2O—, —CH═CH—, embedded image —O—, —CO—O— or —O—CO— in such a way that O atoms are not linked directly to one another, and in which one or more H atoms are optionally replaced by halogen atoms.

3. A liquid-crystalline medium according to claim 1, further comprising one or more of the following compounds embedded image embedded image in which R3a and R4a each, independently of one another, denote H, CH3, C2H5 or C3H7, and “alkyl” denotes a straight-chain alkyl group having 1 to 8 C atoms.

4. A liquid-crystalline medium according to claim 1, further comprising one or more compounds of formulae IV to VIII, embedded image in which R0 denotes an alkyl or alkoxy radical having 1 to 15 C atoms, in which one or more CH2 groups are each optionally replaced, independently of one another, by —C≡C—, —CF2O—, —CH═CH—, embedded image —O—, —CO—O— or —O—CO— in such a way that O atoms are not linked directly to one another, and in which one or more H atoms are optionally replaced by halogen atoms, and Y1-6 each, independently of one another, denote H or F, Z0 denotes —C2H4—, —(CH2)4—, —CH═CH—, —CF═CF—, —C2F4—, —CH2CF2—, —CF2CH2—, —CH2O—, —OCH2—, —COO—, —CF2O— or —OCF2—, and in formulae V and VI also a single bond, X0 denotes F, Cl, CN, SF5, SCN, NCS, a halogenated alkyl radical, a halogenated alkenyl radical, a halogenated alkoxy radical or a halogenated alkenyloxy radical having up to 6 C atoms, and r denotes 0 or 1.

5. A liquid-crystalline medium according to claim 1, further comprising one or more compounds of formulae VI-1a to VI-1d, embedded image in which R0 denotes an alkyl or alkoxy radical having 1 to 15 C atoms, in which one or more CH2 groups are each optionally replaced, independently of one another, by —C≡C—, —CF2O—, —CH═CH—, embedded image —CO—O— or —O—CO— in such a way that O atoms are not linked directly to one another, and in which one or more H atoms are optionally replaced by halogen atoms, and X0 denotes F, Cl, CN, SF5, SCN, NCS, a halogenated alkyl radical, a halogenated alkenyl radical, a halogenated alkoxy radical or a halogenated alkenyloxy radical having up to 6 C atoms.

6. A liquid-crystalline medium according to claim 1, further comprising one or more compounds of formulae VIII-1a and VII-1b, embedded image in which R0 denotes an alkyl or alkoxy radical having 1 to 15 C atoms, in which one or more CH2 groups are each optionally replaced, independently of one another, by —C≡C—, —CF2O—, —CH═CH—, embedded image —CO—O— or —O—CO— in such a way that O atoms are not linked directly to one another, and in which one or more H atoms are optionally replaced by halogen atoms, and X0 denotes F, Cl, CN, SF5, SCN, NCS, a halogenated alkyl radical, a halogenated alkenyl radical, a halogenated alkoxy radical or a halogenated alkenyloxy radical having up to 6 C atoms.

7. A liquid-crystalline medium according to claim 1, further comprising one or more compounds of formula XIb embedded image in which R0 denotes an alkyl or alkoxy radical having 1 to 15 C atoms, in which one or more CH2 groups are each optionally replaced, independently of one another, by —C≡C—, —CF2O—, —CH═CH—, embedded image —CO—O— or —O—CO— in such a way that O atoms are not linked directly to one another, and in which one or more H atoms are optionally replaced by halogen atoms, and X0 denotes F, Cl, CN, SF5, SCN, NCS, a halogenated alkyl radical, a halogenated alkenyl radical, a halogenated alkoxy radical or a halogenated alkenyloxy radical having up to 6 C atoms.

8. A liquid-crystalline medium according to claim 1, further comprising one or more compounds of formula XIII embedded image in which R1 and R2 each, independently of one another, denote n-alkyl, alkoxy, oxaalkyl, fluoroalkyl or alkenyl, each having up to 9 C atoms, and Y1 denotes H or F.

9. A liquid-crystalline medium according to claim 1 which comprises 1-25% by weight of one or more compounds of formula I.

10. A method of generating an electro-optical effect comprising applying a voltage to a liquid-crystalline medium according to claim 1.

11. An alectro-optical liquid-crystal display containing a liquid-crystalline medium according to claim 1.

12. A process for preparing a liquid-crystalline medium according to claim 1, comprising mixing one or more compounds of formula I with one or more compounds of formula XXVI and optionally with one or more further liquid-crystalline compounds and optionally with one or more additives.

13. A liquid-crystalline medium according to claim 1, further comprising a compound of formula XXIIa embedded image in which R0 denotes an alkyl or alkoxy radical having 1 to 15 C atoms, in which one or more CH2 groups are each optionally replaced, independently of one another, by —C≡C—, —CF2O—, —CH═CH—, embedded image —CO—O— or —O—CO— in such a way that O atoms are not linked directly to one another, and in which one or more H atoms are optionally replaced by halogen atoms, and X0 denotes F, Cl, CN, SF5, SCN, NCS, a halogenated alkyl radical, a halogenated alkenyl radical, a halogenated alkoxy radical or a halogenated alkenyloxy radical having up to 6 C atoms.

14. A liquid-crystalline medium according to claim 1, further comprising a compound of formula XXVa embedded image in which R0 denotes an alkyl or alkoxy radical having 1 to 15 C atoms, in which one or more CH2 groups are each optionally replaced, independently of one another, by —C≡C—, —CF2O—, —CH═CH—, embedded image —CO—O— or —O—CO— in such a way that O atoms are not linked directly to one another, and in which one or more H atoms are optionally replaced by halogen atoms, and X1 denotes F, Cl, CN, SF5, SCN, NCS, a halogenated alkyl radical, a halogenated alkenyl radical, a halogenated alkoxy radical or a halogenated alkenyloxy radical having up to 6 C atoms.

15. A liquid-crystalline medium according to claim 1, further comprising a compound of formula XXVIIIb embedded image in which R0 denotes an alkyl or alkoxy radical having 1 to 15 C atoms, in which one or more CH2 groups are each optionally replaced, independently of one another, by —C≡C—, —CF2O—, —CH═CH—, embedded image —CO—O— or —O—CO— in such a way that O atoms are not linked directly to one another, and in which one or more H atoms are optionally replaced by halogen atoms.

16. A liquid-crystalline medium according to claim 1, further comprising a compound of formula XIII-1 embedded image in which “alkyl” and “alkyl*” each, independently of one another, denote a straight-chain alkyl radical having 1 to 6 C atoms.

17. A liquid-crystalline medium according to claim 1, further comprising a compound of formula XIII-3 embedded image in which “alkyl” denotes a straight-chain alkyl radical having 1 to 6 C atoms, and “alkenyl” denotes a straight-chain alkenyl radical having 2 to 6 C atoms.

18. A liquid-crystalline medium according to claim 1, further comprising a compound of formula IIa embedded image in which R3a and R4a each, independently of one another, denote H, CH3, C2H5 or C3H7, and “alkyl” denotes a straight-chain alkyl group having 1 to 8 C atoms.

Description:

The present invention relates to a liquid-crystalline medium (LC medium), to the use thereof for electro-optical purposes, and to LC displays containing this medium.

Liquid crystals are used principally as dielectrics in display devices, since the optical properties of such substances can be modified by an applied voltage. Electro-optical devices based on liquid crystals are extremely well known to the person skilled in the art and can be based on various effects. Examples of such devices are cells having dynamic scattering, DAP (deformation of aligned phases) cells, guest/host cells, TN cells having a twisted nematic structure, STN (supertwisted nematic) cells, SBE (superbirefringence effect) cells and OMI (optical mode interference) cells. The commonest display devices are based on the Schadt-Helfrich effect and have a twisted nematic structure. In addition, there are also cells which work with an electric field parallel to the substrate and liquid-crystal plane, such as, for example, IPS (in-plane switching) cells. TN, STN, positive VA, FFS (fringe field switching) and IPS cells, in particular, are currently commercially interesting areas of application for the media according to the invention.

The liquid-crystal materials must have good chemical and thermal stability and good stability to electric fields and electromagnetic radiation. Furthermore, the liquid-crystal materials should have low viscosity and produce short addressing times, low threshold voltages and high contrast in the cells.

They should furthermore have a suitable mesophase, for example a nematic or cholesteric mesophase for the above-mentioned cells, at the usual operating temperatures, i.e. in the broadest possible range above and below room temperature. Since liquid crystals are generally used as mixtures of a plurality of components, it is important that the components are readily miscible with one another. Further properties, such as the electrical conductivity, the dielectric anisotropy and the optical anisotropy, have to satisfy various requirements depending on the cell type and area of application. For example, materials for cells having a twisted nematic structure should have positive dielectric anisotropy and low electrical conductivity.

For example, for matrix liquid-crystal displays with integrated non-linear elements for switching individual pixels (MLC displays), media having large positive dielectric anisotropy, broad nematic phases, relatively low birefringence, very high specific resistance, good UV and temperature stability and low vapour pressure are desired.

Matrix liquid-crystal displays of this type are known. Examples of non-linear elements which can be used to individually switch the individual pixels are active elements (i.e. transistors). The term “active matrix” is then used, where a distinction can be made between two types:

  • 1. MOS (metal oxide semiconductor) or other diodes on silicon wafers as substrate.
  • 2. Thin-film transistors (TFTs) on a glass plate as substrate.

The use of single-crystal silicon as substrate material restricts the display size, since even modular assembly of various part-displays results in problems at the joints.

In the case of the more promising type 2, which is preferred, the electro-optical effect used is usually the TN effect. A distinction is made between two technologies: TFTs comprising compound semiconductors, such as, for example, CdSe, or TFTs based on polycrystalline or amorphous silicon. Intensive work is being carried out worldwide on the latter technology.

The TFT matrix is applied to the inside of one glass plate of the display, while the other glass plate carries the transparent counterelectrode on its inside. Compared with the size of the pixel electrode, the TFT is very small and has virtually no adverse effect on the image. This technology can also be extended to fully colour-capable displays, in which a mosaic of red, green and blue filters is arranged in such a way that a filter element is opposite each switchable pixel.

The TFT displays usually operate as TN cells with crossed polarisers in transmission and are backlit.

The term MLC displays here encompasses any matrix display with integrated non-linear elements, i.e., besides the active matrix, also displays with passive elements, such as varistors or diodes (MIM=metal-insulatormetal).

MLC displays of this type are particularly suitable for TV applications (for example pocket televisions) or for high-information displays for computer applications (laptops) and in automobile or aircraft construction. Besides problems regarding the angle dependence of the contrast and the response times, difficulties also arise in MLC displays due to insufficiently high specific resistance of the liquid-crystal mixtures [TOGASHI, S., SEKIGUCHI, K., TANABE, H., YAMAMOTO, E., SORIMACHI, K., TAJIMA, E., WATANABE, H., SHIMIZU, H., Proc. Eurodisplay 84, September 1984: A 210-288 Matrix LCD Controlled by Double Stage Diode Rings, pp. 141 ff., Paris; STROMER, M., Proc. Eurodisplay 84, September 1984: Design of Thin Film Transistors for Matrix Addressing of Television Liquid Crystal Displays, pp. 145 ff., Paris]. With decreasing resistance, the contrast of an MLC display deteriorates, and the problem of after-image elimination may occur. Since the specific resistance of the liquid-crystal mixture generally drops over the life of an MLC display owing to interaction with the interior surfaces of the display, a high (initial) resistance is very important in order to obtain acceptable lifetimes. In particular in the case of low-volt mixtures, it was hitherto impossible to achieve very high specific resistance values. It is furthermore important that the specific resistance exhibits the smallest possible increase with increasing temperature and after heating and/or UV exposure. The low-temperature properties of the mixtures from the prior art are also particularly disadvantageous. High low-temperature stability is required, so that no crystallisation and/or smectic phases occur, even at low temperatures, and the temperature dependence of the viscosity is as low as possible. The MLC displays from the prior art thus do not satisfy today's requirements.

Besides liquid-crystal displays which use backlighting, i.e. are operated transmissively and if desired transflectively, reflective liquid-crystal displays are also particularly interesting. These reflective liquid-crystal displays use the ambient light for information display. They thus consume significantly less energy than backlit liquid-crystal displays having a corresponding size and resolution. Since the TN effect is characterised by very good contrast, reflective displays of this type can even be read well in bright ambient conditions. This is already known of simple reflective TN displays, as used, for example, in watches and pocket calculators. However, the principle can also be applied to high-quality, higher-resolution active matrix-addressed displays, such as, for example, TFT displays. Here, as already in the trans-missive TFT-TN displays which are generally conventional, the use of liquid crystals of low birefringence (Δn) is necessary in order to achieve low optical retardation (d·Δn). This low optical retardation results in usually acceptably low viewing-angle dependence of the contrast (cf. DE 30 22 818). In reflective displays, the use of liquid crystals of low birefringence is even more important than in transmissive displays since the effective layer thickness through which the light passes is approximately twice as large in reflective displays as in transmissive displays having the same layer thickness.

For TV and video applications, displays having fast response times are required in order to be able to reproduce multimedia content, such as, for example, films and video games, in near-realistic quality. Such short response times can be achieved, in particular, if liquid-crystal media having low values for the viscosity, in particular the rotational viscosity γ1, and having high optical anisotropy (Δn) are used.

Furthermore, the mixtures according to the invention are also suitable for positive VA applications, also known as HT-VA applications. These are taken to mean electro-optical displays having an in-plane drive electrode configuration and homeotropic arrangement of the liquid-crystal medium having positive anisotropy.

Thus, there continues to be a great demand for MLC displays having very high specific resistance at the same time as a large working-temperature range, short response times, even at low temperatures, and a low threshold voltage which do not exhibit these disadvantages or only do so to a lesser extent.

In the case of TN (Schadt-Helfrich) cells, media are desired which facilitate the following advantages in the cells:

    • extended nematic phase range (in particular down to low temperatures)
    • the ability to switch at extremely low temperatures (outdoor use, automobiles, avionics)
    • increased resistance to UV radiation (longer lifetime) low threshold voltage.

The media available from the prior art do not enable these advantages to be achieved while simultaneously retaining the other parameters.

In the case of supertwisted (STN) cells, media are desired which facilitate greater multiplexability and/or lower threshold voltages and/or broader nematic phase ranges (in particular at low temperatures). To this end, a further widening of the available parameter latitude (clearing point, smectic-nematic transition or melting point, viscosity, dielectric parameters, elastic parameters) is urgently desired.

In particular in the case of LC displays for TV and video applications (for example LCD TVs, monitors, PDAs, notebooks, games consoles), a significant reduction in the response times is desired. This requires LC mixtures having low rotational viscosities. At the same time, the LC media should have high clearing points.

However, it has been found that the LC media known from the prior art often have inadequate stability, in particular inadequate specific resistance, and an inadequate voltage holding ratio (VHR or HR), in particular in the case of rising temperature and after heating and/or UV exposure.

The invention is based on the object of providing media, in particular for MLC, TN, STN, FFS or IPS displays of this type, which have the desired properties indicated above and do not exhibit the disadvantages indicated above or only do so to a lesser extent. The LC media should preferably have fast response times and low rotational viscosities at the same time as high birefringence. In addition, the LC media should have a high clearing point, high dielectric anisotropy and a low threshold voltage.

In particular, the LC media should have high HR values, especially in the case of rising temperature and after heating and/or UV exposure, and exhibit high low-temperature stability (LTS), so that no crystallisation occurs, even at low temperatures.

It has now been found that this object can be achieved if LC media comprising one or more compounds of the formula I are used. The compounds of the formula I result in mixtures having the desired properties indicated above.

The invention relates to a liquid-crystalline medium, characterised in that it comprises one or more compounds of the formula I

embedded image
in which R0 denotes an alkyl or alkoxy radical having 1 to 15 C atoms, where, in addition, one or more CH2 groups in these radicals may each be replaced, independently of one another, by —C≡C—, —CF2O—, —CH═CH—,

embedded image
—CO—O— or —O—CO— in such a way that O atoms are not linked directly to one another, and where, in addition, one or more H atoms may be replaced by halogen.

Surprisingly, it has been found that LC media comprising compounds of the formula I have high HR values and a stable electro-optical curve after heating and/or UV exposure.

Furthermore, the compounds of the formula I are very readily soluble in liquid-crystalline media and enable the preparation of LC media having high low-temperature stability.

In addition, the LC media according to the invention comprising compounds of the formula I exhibit a very good ratio of rotational viscosity γ1 and clearing point, a high value for the optical anisotropy Δ∈ and adequate birefringence Δn, fast response times, a low threshold voltage, a high clearing point, high positive dielectric anisotropy and a broad nematic phase range.

The compounds of the formula I have a broad range of applications. Depending on the choice of substituents, they can serve as base materials of which liquid-crystalline media are predominantly composed; however, liquid-crystalline base materials from other classes of compound can also be added to the compounds of the formula I in order, for example, to modify the dielectric and/or optical anisotropy of a dielectric of this type and/or in order to optimise its threshold voltage and/or its viscosity.

Particular preference is given to compounds of the formula I in which R0 denotes C2H5, n-C3H7 or n-C5H11.

In the pure state, the compounds of the formula I are colourless and form liquid-crystalline mesophases in a temperature range which is favourably located for electro-optical use. They are stable chemically, thermally and to light.

The compounds of the formula I are prepared by methods known per se, as described in the literature (for example in the standard works, such as Houben-Weyl, Methoden der organischen Chemie [Methods of Organic Chemistry], Georg-Thieme-Verlag, Stuttgart), to be precise under reaction conditions which are known and suitable for the said reactions. Use can also be made here of variants known per se, which are not mentioned here in greater detail.

A particularly suitable and preferred preparation process for compounds of the formula I is described below. Suitable reaction conditions are known to the person skilled in the art.

embedded image

4-Bromo-2-fluorobenzoic acid 1 is reacted with propanedithiol and trifluoromethanesulfonic acid with elimination of water to give dithianylium triflate 2. The salt 2 obtained is converted into the difluoromethyl ether 3 in an oxidative fluorination. After final boronic acid coupling to 4-propylphenylboronic acid 4, the desired target molecule 5 is obtained.

If R0 in the formulae above and below denotes an alkyl radical and/or an alkoxy radical, this may be straight-chain or branched. It is preferably straight-chain, has 2, 3, 4, 5, 6 or 7 C atoms and accordingly preferably denotes ethyl, propyl, butyl, pentyl, hexyl, heptyl, ethoxy, propoxy, butoxy, pentoxy, hexyloxy or heptyloxy, furthermore methyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, methoxy, octyloxy, nonyloxy, decyloxy, undecyloxy, dodecyloxy, tridecyloxy or tetradecyloxy.

Oxaalkyl preferably denotes straight-chain 2-oxapropyl (=methoxymethyl), 2-(=ethoxymethyl) or 3-oxabutyl (=2-methoxyethyl), 2-, 3- or 4-oxapentyl, 2-, 3-, 4- or 5-oxahexyl, 2-, 3-, 4-, 5- or 6-oxaheptyl, 2-, 3-, 4-, 5-, 6- or 7-oxaoctyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-oxanonyl, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-oxadecyl.

If R0 denotes an alkyl radical in which one CH2 group has been replaced by —CH═CH—, this may be straight-chain or branched. It is preferably straight-chain and has 2 to 10 C atoms. Accordingly, it denotes, in particular, vinyl, prop-1- or -2-enyl, but-1-, -2- or -3-enyl, pent-1-, -2-, -3- or -4-enyl, hex-1-, -2-, -3-, -4- or -5-enyl, hept-1-, -2-, -3-, -4-, -5- or -6-enyl, oct-1-, -2-, -3-, -4-, -5-, -6- or -7-enyl, non-1-, -2-, -3-, -4-, -5-, -6-, -7- or -8-enyl, dec-1-, -2-, -3-, -4-, -5-, -6-, -7-, -8- or -9-enyl. These radicals may also be mono- or polyhalogenated.

If R0 denotes an alkyl or alkenyl radical which is at least monosubstituted by halogen, this radical is preferably straight-chain, and halogen is preferably F or Cl. In the case of polysubstitution, halogen is preferably F. The resultant radicals also include perfluorinated radicals. In the case of monosubstitution, the fluorine or chlorine substituent may be in any desired position, but is preferably in the ω-position.

In the formulae above and below, X0 is preferably F, Cl or a mono- or polyfluorinated alkyl or alkoxy radical having 1, 2 or 3 C atoms or a mono- or polyfluorinated alkenyl radical having 2 or 3 C atoms. X0 is particularly preferably F, Cl, CF3, CHF2, OCF3, OCHF2, OCFHCF3, OCFHCHF2, OCFHCHF2, OCF2CH3, OCF2CHF2, OCF2CHF2, OCF2CF2CHF2, OCF2CF2CH2F, OCFHCF2CF3, OCFHCF2CHF2, OCH═CF2, OCF═CF2, OCF2CHFCF3, OCF2CF2CF3, OCF2CF2CClF2, OCClFCF2CF3, CF═CF2, CF═CHF or CH═CF2, very particularly preferably F or OCF3.

Further preferred embodiments are indicated below:

    • The medium additionally comprises one or more neutral compounds of the formulae II and/or III,

embedded image

      • in which
      • A denotes 1,4-phenylene or trans-1,4-cyclohexylene,
      • a is 0 or 1, and
      • R3 denotes alkenyl having 2 to 9 C atoms,
      • and R4 has the meaning indicated for R0 in formula I and preferably denotes alkyl having 1 to 12C atoms or alkenyl having 2 to 9 C atoms.
    • The compounds of the formula II are preferably selected from the following formulae,

embedded image

      • in which R3a and R4a each, independently of one another, denote H, CH3, C2H5 or C3H7, and “alkyl” denotes a straight-chain alkyl group having 1 to 8 C atoms. Particular preference is given to compounds of the formula IIa and IIf, in particular in which R3a denotes H or CH3, and compounds of the formula IIc, in particular in which R3a and R4a denote H, CH3 or C2H5.
      • Preference is furthermore given to compounds of the formula II which have a non-terminal double bond in the alkenyl side chain:

embedded image

      • Very particularly preferred compounds of the formula II are the compounds of the formulae

embedded image embedded image

    • The compounds of the formula III are preferably selected from the following formulae,

embedded image

      • in which “alkyl” and R3a have the meanings indicated above, and R3a preferably denotes H or CH3. Particular preference is given to compounds of the formula IIIIb;
    • The medium preferably additionally comprises one or more compounds selected from the following formulae,

embedded image

      • in which
      • R0 has the meanings indicated in formula I, and
      • Y1-6 each, independently of one another, denote H or F,
      • Z0 denotes —C2H4—, —(CH2)4—, —CH═CH—, —CF═CF—, —C2F4—, —CH2CF2—, —CF2CH2—, —CH2O—, —OCH2—, —COO—, —CF2O— or —OCF2—, in the formulae V and VI also a single bond,
      • X0 denotes F, Cl, CN, SF5, SCN, NCS, a halogenated alkyl radical, a halogenated alkenyl radical, a halogenated alkoxy radical or a halogenated alkenyloxy radical having up to 6 C atoms, and
      • r denotes 0 or 1.
      • In the compounds of the formula IV to VIII, X0 preferably denotes F or OCF3, furthermore OCHF2, CF3, CF2H, Cl, OCH═CF2. R0 is preferably straight-chain alkyl or alkenyl having up to 6 C atoms.
    • The compounds of the formula IV are preferably selected from the following formulae,

embedded image

      • in which R0 and X0 have the meanings indicated for formula IV.
      • Preferably, R0 in formula IV denotes alkyl having 1 to 8 C atoms and X0 denotes F, Cl, OCHF2 or OCF3, furthermore OCH═CF2. In the compound of the formula IVb, R0 preferably denotes alkyl or alkenyl. In the compound of the formula IVd, X0 preferably denotes Cl, furthermore F.
    • The compounds of the formula V are preferably selected from the following formulae,

embedded image

      • in which R0 and X0 have the meanings indicated for formula V. Preferably, R0 in formula V denotes alkyl having 1 to 8 C atoms and X0 denotes F;
    • The medium comprises one or more compounds of the formula VI-1,

embedded image

      • particularly preferably those selected from the following formulae,

embedded image

      • in which R0 and X0 have the meanings indicated for formula VI. Preferably, R0 in formula VI denotes alkyl having 1 to 8 C atoms and X0 denotes F, furthermore OCF3.
    • The medium comprises one or more compounds of the formula VI-2,

embedded image

      • which are different from the compounds of the formula I, particularly preferably those selected from the following formulae,

embedded image

      • in which R0 and X0 have the meanings indicated for formula VI. Preferably, R0 in formula VI denotes alkyl having 1 to 8 C atoms and X0 denotes F;
    • The medium preferably comprises one or more compounds of the formula VII in which Z0 denotes —CF2O—, —CH2CH2— or —COO—, particularly preferably those selected from the following formulae,

embedded image

      • in which R0 and X0 have the meanings indicated for formula VII. Preferably, R0 in formula VII denotes alkyl having 1 to 8 C atoms and X0 denotes F, furthermore OCF3.
      • The compounds of the formula VIII are preferably selected from the following formulae,

embedded image

      • in which R0 and X0 have the meanings indicated for formula VIII. R0 preferably denotes a straight-chain alkyl radical having 1 to 8 C atoms. X0 preferably denotes F.
    • The medium additionally comprises one or more compounds of the following formula,

embedded image

      • in which R0, X0, Y1 and Y2 each, independently of one another, have the meanings indicated for formula IV, and

embedded image

      • each, independently of one another, denote

embedded image

      • where rings A and B do not both simultaneously denote cyclohexylene;
    • The compounds of the formula IX are preferably selected from the following formulae,

embedded image

      • in which R0 and X0 have the meanings indicated for formula IX. Preferably, R0 denotes alkyl having 1 to 8 C atoms and X0 denotes F. Particular preference is given to compounds of the formula IXa;
    • The medium additionally comprises one or more compounds selected from the following formulae,

embedded image

      • in which R0, X0 and Y1-4 have the meanings indicated for formula V, and

embedded image

      • each, independently of one another,
      • denote

embedded image

    • The compounds of the formulae X, XI and XII are preferably selected from the following formulae,

embedded image embedded image

      • in which R0 and X0 have the meanings indicated for formula X, XI and XII. Preferably, R0 denotes alkyl having 1 to 8 C atoms and X0 denotes F. Particularly preferred compounds are those in which Y1 denotes F and Y2 denotes H or F, preferably F. Particular preference is given to media comprising one or more compounds of the formula XIb in which X0═F.
    • The medium additionally comprises one or more compounds of the following formula,

embedded image

      • in which R1 and R2 each, independently of one another, denote n-alkyl, alkoxy, oxaalkyl, fluoroalkyl or alkenyl, each having up to 9 C atoms, and preferably each, independently of one another, denote alkyl having 1 to 8 C atoms. Y1 denotes H or F.
      • Preferred compounds of the formula XIII are the compounds of the formula,

embedded image

      • in which
      • alkyl and alkyl* each, independently of one another, denote a straight-chain alkyl radical having 1 to 6 C atoms, and
      • alkenyl and
      • alkenyl* each, independently of one another, denote a straight-chain alkenyl radical having 2 to 6 C atoms.
      • Particular preference is given to media comprising one or more compounds of the formulae XIII-1 and/or XIII-3.
    • The medium additionally comprises one or more compounds selected from the following formulae,

embedded image

    • in which R0, X0, Y1 and Y2 have the meanings indicated for formula IV. Preferably, R0 denotes alkyl having 1 to 8 C atoms and X0 denotes F or Cl;
    • The compounds of the formulae XIV, XV and XVI are preferably selected from compounds of the formulae,

embedded image

      • in which R0 and X0 have the meanings indicated for formula XIV, XV and XVI. R0 preferably denotes alkyl having 1 to 8 C atoms. In the compounds of the formula XIV, X0 preferably denotes F or Cl.
    • The medium additionally comprises one or more compounds of the following formulae D1 and/or D2,

embedded image

      • in which Y1, Y2, R0 and X0 have the meanings indicated for formula IV. Preferably, R0 denotes alkyl having 1 to 8 C atoms and X0 denotes F.
      • Particular preference is given to compounds of the formulae,

embedded image

      • in which R0 has the meaning indicated for formula IV and preferably denotes straight-chain alkyl having 1 to 6 C atoms, in particular C2H5, n-C3H7 or n-C5H11.
    • The medium additionally comprises one or more compounds of the following formula,

embedded image

      • in which Y1, R1 and R2 have the meanings indicated for formula XIII. R1 and R2 preferably each, independently of one another, denote alkyl having 1 to 8 C atoms;
    • The medium additionally comprises one or more compounds of the following formula,

embedded image

      • in which X0, Y1 and Y2 have the meanings indicated for formula IV, and “alkenyl” denotes C2-7-alkenyl. Particular preference is given to compounds of the following formula:

embedded image

      • in which R3a has the meaning indicated above and preferably denotes H;
    • The medium additionally comprises one or more tetracyclic compounds selected from the formulae XX to XXVI,

embedded image

      • in which Y1-4, Ro and X0 each, independently of one another, have the meanings indicated for formula V. X0 is preferably F, Cl, CF3, OCF3 or OCHF2. R0 preferably denotes alkyl, alkoxy, oxaalkyl, fluoroalkyl or alkenyl, each having up to 8 C atoms.
      • Particularly preferred compounds of the formula XXII are those of the following formula

embedded image

      • in which R0 and X0 have the meanings indicated for formula XXII, and X0 preferably denotes F.
      • The compound of the formula XXII is preferably employed in amounts of 0.5-20% by weight, in particular 1-10% by weight;
      • Particularly preferred compounds of the formula XXV are those of the following formula

embedded image

      • in which R0 and X0 have the meanings indicated for formula XXV, and X0 preferably denotes F or OCF3.
      • The compound of the formula XXV is preferably employed in amounts of 1-20% by weight, in particular 2-15% by weight;
      • Particularly preferred compounds of the formula XXVI are those of the following formula,

embedded image

      • in which R0 and X0 have the meanings indicated for formula XXVI, and X0 preferably denotes F.
      • The compound of the formula XXVI is preferably employed in amounts of 0.5-50% by weight, in particular 4-35% by weight;
    • The medium additionally comprises one or more compounds of the following formula:

embedded image

      • in which alkyl and alkyl* each, independently of one another, denote a straight-chain alkyl radical having 1 to 6 C atoms.
      • Particularly preferred compounds of the formula XXVII are selected from the following formulae

embedded image

      • The compound of the formula XXVII is preferably employed in amounts of 0.5-30% by weight, in particular 3-25% by weight;
    • The medium additionally comprises one or more compounds of the following formula,

embedded image

      • in which R0 and X0 have the meanings indicated for formula IV, and L1 to L6 each, independently of one another, denote H or F, where preferably at least one of the radicals L1, L3 and L5 denotes F.
      • Particularly preferred compounds of the formula XXVIII are selected from the following formulae,

embedded image

      • in which R0 has the meaning indicated for formula XXVIII and preferably denotes straight-chain alkyl. Particular preference is given to the compounds of the formulae XXVIIb and XXVllld, preferably in which R0 denotes C2H5, n-C3H7 or n-C5H11.
      • The compound of the formula XXVIII is preferably employed in amounts of 0.5-30% by weight, in particular 3-25% by weight;
    • The medium additionally comprises one or more compounds of the following formula,

embedded image

      • in which R1 and R2 have the meanings indicated for formula XIII. R1 and R2 preferably each, independently of one another, denote alkyl having 1 to 8 C atoms.
      • The compound of the formula XXIX is preferably employed in amounts of 0.5-30% by weight, in particular 1-10% by weight;

embedded image

    • is preferably

embedded image

    • R0 is preferably straight-chain alkyl or alkenyl having 2 to 7 C atoms;
    • X0 is preferably F, furthermore OCF3, C1 or CF3;
    • The medium preferably comprises one, two or three compounds of the formula I;
    • The medium preferably comprises one or more compounds selected from the group consisting of compounds of the formulae I, II, III, VI-1, VII, XI, XIII, XVIII, XXII, XXV, XXVI, XXIX;
    • The medium preferably comprises one or more compounds of the formula II and/or III;
    • The medium preferably comprises one or more compounds of the formula XXVI;
    • The medium preferably comprises 1-25% by weight, particularly preferably 2-20% by weight, of compounds of the formula I;
    • The proportion of compounds of the formulae II-XXIX in the mixture as a whole is preferably 75 to 99% by weight;
    • The medium preferably comprises 20-80% by weight, particularly preferably 25-70% by weight, of compounds of the formula II and/or III;
    • The medium preferably comprises 2-25% by weight, particularly preferably 3-15% by weight, of compounds of the formula VI-1;
    • The medium preferably comprises 1-20% by weight, particularly preferably 2-15% by weight, of compounds of the formula VII;
    • The medium preferably comprises 1-20% by weight, particularly preferably 2-15% by weight, of compounds of the formula XI;
    • The medium preferably comprises 5-40% by weight, particularly preferably 7-30% by weight, of compounds of the formula XIII;
    • The medium preferably comprises 1-20% by weight, particularly preferably 2-15% by weight, of compounds of the formula XXII;
    • The medium preferably comprises 2-25% by weight, particularly preferably 3-15% by weight, of compounds of the formula XXV;
    • The medium preferably comprises 3-45% by weight, particularly preferably 4-35% by weight, of compounds of the formula XXVI;
    • The medium preferably comprises 2-25% by weight, particularly preferably 3-15% by weight, of compounds of the formula XXVIII;
    • The medium preferably comprises 1-20% by weight, particularly preferably 1-10% by weight, of compounds of the formula XXIX;
    • The medium preferably comprises no compounds of the formula VI-2a as indicated above;
    • The medium preferably comprises no compounds of the formula VI-2 as indicated above.

It has been found that even a relatively small proportion of compounds of the formula I mixed with conventional liquid-crystal materials, but in particular with one or more compounds of the formulae II to XXIX, results in a significant increase in the light stability and in low birefringence values, with broad nematic phases with low smectic-nematic transition temperatures being observed at the same time, improving the shelf life. At the same time, the mixtures exhibit very low threshold voltages and very good values for the VHR on exposure to UV.

The term “alkyl” or “alkyl*” in this application encompasses straight-chain and branched alkyl groups having 1-7 carbon atoms, in particular the straight-chain groups methyl, ethyl, propyl, butyl, pentyl, hexyl and heptyl. Groups having 1-6 carbon atoms are generally preferred.

The term “alkenyl” or “alkenyl*” in this application encompasses straight-chain and branched alkenyl groups having 2-7 carbon atoms, in particular the straight-chain groups. Preferred alkenyl groups are C2-C71E-alkenyl, C4-C7-3E-alkenyl, C5-C7-4-alkenyl, C6-C7-5-alkenyl and C7-6-alkenyl, in particular C2-C7-1E-alkenyl, C4-C7-3E-alkenyl and C5-C7-4-alkenyl. Examples of particularly preferred alkenyl groups are vinyl, 1E-propenyl, 1Ebutenyl, 1E-pentenyl, 1E-hexenyl, 1E-heptenyl, 3-butenyl, 3E-pentenyl, 3E-hexenyl, 3E-heptenyl, 4-pentenyl, 4Z-hexenyl, 4E-hexenyl, 4Z-heptenyl, 5-hexenyl, 6-heptenyl and the like. Groups having up to 5 carbon atoms are generally preferred.

The term “fluoroalkyl” in this application encompasses straight-chain groups having at least one fluorine atom, preferably a terminal fluorine, i.e. fluoromethyl, 2-fluoroethyl, 3-fluoropropyl, 4-fluorobutyl, 5-fluoropentyl, 6-fluorohexyl and 7-fluoroheptyl. However, other positions of the fluorine are not excluded.

The term “oxaalkyl” or “alkoxy” in this application encompasses straight-chain radicals of the formula CnH2n+1—O—(CH2)m, in which n and m each, independently of one another, denote 1 to 6. m may also denote 0. Preferably, n=1 and m=1-6 or m=0 and n=1-3.

Through a suitable choice of the meanings of R0 and X0, the addressing times, the threshold voltage, the steepness of the transmission characteristic lines, etc., can be modified in the desired manner. For example, 1E-alkenyl radicals, 3E-alkenyl radicals, 2E-alkenyloxy radicals and the like generally result in shorter addressing times, improved nematic tendencies and a higher ratio between the elastic constants k33 (bend) and k11 (splay) compared with alkyl and alkoxy radicals. 4-Alkenyl radicals, 3-alkenyl radicals and the like generally give lower threshold voltages and lower values of k33/k11 compared with alkyl and alkoxy radicals. The mixtures according to the invention are distinguished, in particular, by high K1 values and thus have significantly faster response times than the mixtures from the prior art.

The optimum mixing ratio of the compounds of the above-mentioned formulae depends substantially on the desired properties, on the choice of the components of the above-mentioned formulae and on the choice of any further components that may be present.

Suitable mixing ratios within the range indicated above can easily be determined from case to case.

The total amount of compounds of the above-mentioned formulae in the mixtures according to the invention is not crucial. The mixtures can therefore comprise one or more further components for the purposes of optimisation of various properties. However, the observed effect on the desired improvement in the properties of the mixture is generally greater, the higher the total concentration of compounds of the above-mentioned formulae.

In a particularly preferred embodiment, the media according to the invention comprise compounds of the formula IV to VIII in which X0 denotes F, OCF3, OCHF2, OCH═CF2, OCF═CF2 or OCF2—CF2H. A favourable synergistic action with the compounds of the formula I results in particularly advantageous properties. In particular, mixtures comprising compounds of the formulae I, VI and XI are distinguished by their low threshold voltages.

The individual compounds of the above-mentioned formulae and the subformulae thereof which can be used in the media according to the invention are either known or can be prepared analogously to the known compounds.

The invention also relates to electro-optical displays, such as, for example, TN, STN, FFS, OCB, IPS, TN-TFT or MLC displays, having two plane-parallel outer plates, which, together with a frame, form a cell, integrated non-linear elements for switching individual pixels on the outer plates, and a nematic liquid-crystal mixture having positive dielectric anisotropy and high specific resistance located in the cell, which contain media of this type, and to the use of these media for electro-optical purposes.

The liquid-crystal mixtures according to the invention enable a significant broadening of the available parameter latitude. The achievable combinations of clearing point, viscosity at low temperature, thermal and UV stability and high optical anisotropy are far superior to previous materials from the prior art.

The mixtures according to the invention are particularly suitable for mobile applications and high-Δn TFT applications, such as, for example, PDAs, notebooks, LCD TVs and monitors.

The liquid-crystal mixtures according to the invention, while retaining the nematic phase down to −20° C. and preferably down to −30° C., particularly preferably down to −40° C., and the clearing point ≧70° C., preferably ≧75° C., at the same time allow rotational viscosities γ1 of ≦120 mPa·s, particularly preferably 100 mPa·s, to be achieved, enabling excellent MLC displays having fast response times to be achieved.

The dielectric anisotropy Δ∈ of the liquid-crystal mixtures according to the invention is preferably ≧+5, particularly preferably ≧+10. In addition, the mixtures are characterised by low operating voltages. The threshold voltage of the liquid-crystal mixtures according to the invention is preferably ≦1.5 V, in particular ≦1.2 V. The birefringence Δn of the liquid-crystal mixtures according to the invention is preferably ≧0.10, particularly preferably ≧0.11.

The nematic phase range of the liquid-crystal mixtures according to the invention preferably has a width of at least 90°, in particular at least 1000. This range preferably extends at least from −25° C. to +70° C.

It goes without saying that, through a suitable choice of the components of the mixtures according to the invention, it is also possible for higher clearing points (for example above 100° C.) to be achieved at higher threshold voltages or lower clearing points to be achieved at lower threshold voltages with retention of the other advantageous properties. At viscosities correspondingly increased only slightly, it is likewise possible to obtain mixtures having higher Δ∈ and thus low thresholds. The MLC displays according to the invention preferably operate at the first Gooch and Tarry transmission minimum [C. H. Gooch and H. A. Tarry, Electron. Lett. 10, 2-4, 1974; C. H. Gooch and H. A. Tarry, Appl. Phys., Vol. 8, 1575-1584, 1975], where, besides particularly favourable electro-optical properties, such as, for example, high steepness of the characteristic line and low angle dependence of the contrast (German patent 30 22 818), lower dielectric anisotropy is sufficient at the same threshold voltage as in an analogous display at the second minimum. This enables significantly higher specific resistance values to be achieved using the mixtures according to the invention at the first minimum than in the case of mixtures comprising cyano compounds. Through a suitable choice of the individual components and their proportions by weight, the person skilled in the art is able to set the birefringence necessary for a pre-specified layer thickness of the MLC display using simple routine methods.

Measurements of the voltage holding ratio (HR) [S. Matsumoto et al., Liquid Crystals 5, 1320 (1989); K. Niwa et al., Proc. SID Conference, San Francisco, June 1984, p. 304 (1984); G. Weber et al., Liquid Crystals 5, 1381 (1989)] have shown that mixtures according to the invention comprising compounds of the formula I exhibit a significantly smaller decrease in the HR on UV exposure than analogous mixtures comprising cyanophenylcyclohexanes of the formula

embedded image
or esters of the formula

embedded image
instead of the compounds of the formula I.

The light stability and UV stability of the mixtures according to the invention are considerably better, i.e. they exhibit a significantly smaller decrease in the HR on exposure to light or UV. Even low concentrations of the compounds (<10% by weight) of the formula I in the mixtures increase the HR by 6% or more compared with mixtures from the prior art.

The construction of the MLC display according to the invention from polarisers, electrode base plates and surface-treated electrodes corresponds to the usual design for displays of this type. The term usual design is broadly drawn here and also encompasses all derivatives and modifications of the MLC display, in particular including matrix display elements based on poly-Si TFTs or MIM.

A significant difference between the displays according to the invention and the hitherto conventional displays based on the twisted nematic cell consists, however, in the choice of the liquid-crystal parameters of the liquid-crystal layer.

The liquid-crystal mixtures which can be used in accordance with the invention are prepared in a manner conventional per se, for example by mixing one or more compounds of the formula I with one or more compounds of the formulae II-XXVII or with further liquid-crystalline compounds and/or additives. In general, the desired amount of the components used in the smaller amount is dissolved in the components making up the principal constituent, advantageously at elevated temperature. It is also possible to mix solutions of the components in an organic solvent, for example in acetone, chloroform or methanol, and to remove the solvent again, for example by distillation, after thorough mixing.

The dielectrics may also comprise further additives known to the person skilled in the art and described in the literature, such as, for example, UV stabilisers, such as Tinuvin® from Ciba, antioxidants, free-radical scavengers, nanoparticles, etc. For example, 0-15% of pleochroic dyes or chiral dopants can be added. Suitable stabilisers and dopants are mentioned below in Tables C and D.

In the present application and in the examples below, the structures of the liquid-crystal compounds are indicated by means of acronyms, the trans-formation into chemical formulae taking place in accordance with Tables A and B below. All radicals CnH2n+1 and CmH2m+1 are straight-chain alkyl radicals having n and m C atoms respectively; n, m and k are integers and preferably denote 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12. The coding in Table B is self-evident. In Table A, only the acronym for the parent structure is indicated. In individual cases, the acronym for the parent structure is followed, separated by a dash, by a code for the substituents R1, R2* L1* and L2*:

Code for R1*,
R2*, L1*, L2*,L3*R1*R2*L1*L2*
nmCnH2n+1CmH2m+1HH
nOmCnH2n+1OCmH2m+1HH
nO.mOCnH2n+1CmH2m+1HH
nCnH2n+1CNHH
nN.FCnH2n+1CNFH
nN.F.FCnH2n+1CNFF
nFCnH2n+1FHH
nClCnH2n+1ClHH
nOFOCnH2n+1FHH
nF.FCnH2n+1FFH
nF.F.FCnH2n+1FFF
nOCF3CnH2n+1OCF3HH
nOCF3.FCnH2n+1OCF3FH
n-VmCnH2n+1—CH═CH—CmH2m+1HH
nV-VmCnH2n+1—CH═CH——CH═CH—CmH2m+1HH

Preferred mixture components are shown in Tables A and B.

TABLE A
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image

TABLE B
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image

Particular preference is given to liquid-crystalline mixtures which, besides the compounds of the formula I, comprise at least one, two, three, four or more compounds from Table B.

TABLE C
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image

Table C indicates possible dopants which are generally added to the mixtures according to the invention. The mixtures preferably comprise 0-10% by weight, in particular 0.01-5% by weight and particularly preferably 0.01-3% by weight, of dopants.

TABLE D
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image

Stabilisers which can be added, for example, to the mixtures according to the invention in amounts of 0-10% by weight are mentioned below.

The following examples are intended to explain the invention without limiting it.

Above and below, percentage data denote percent by weight. All temperatures are indicated in degrees Celsius. m.p. denotes melting point, cl.p.=clearing point. Furthermore, C=crystalline state, N=nematic phase, S=smectic phase and I=isotropic phase. The data between these symbols represent the transition temperatures. Furthermore,

    • Δn denotes the optical anisotropy at 589 nm and 20° C.,
    • γ1 denotes the rotational viscosity (mPa·s) at 20° C.,
    • V10 denotes the voltage (V) for 10% transmission (viewing angle perpendicular to the plate surface), (threshold voltage),
    • Δ∈ denotes the dielectric anisotropy at 20° C. and 1 kHz (Δ∈=∈−∈, where ∈ denotes the dielectric constant parallel to the longitudinal axes of the molecules and e denotes the dielectric constant perpendicular thereto),
    • LTS denotes the low-temperature stability at −20° C. (in hours),
    • HR denotes the voltage holding ratio (in %).

The electro-optical data are measured in a TN cell at the 1st minimum (i.e. at a d·Δn value of 0.5 μm) at 20° C., unless expressly indicated otherwise.

The optical data are measured at 20° C., unless expressly indicated otherwise. All physical properties are determined in accordance with “Merck Liquid Crystals, Physical Properties of Liquid Crystals”, status November 1997, Merck KGaA, Germany, and apply for a temperature of 20° C., unless explicitly indicated otherwise.

The HR value is measured as follows: The LC mixture is introduced into TN-VHR test cells (rubbed at 90°, alignment layer TN-polyimide, layer thickness d=6 μm). The HR value is determined after 5 min at 100° C. before and after UV exposure for 1 h (Atlas Suntest CPS+˜750 W/m2) at 1 V, 60 Hz, 64 μs pulse (measuring instrument: Autronic-Melchers VHRM-105).

In order to investigate the low-temperature stability, also referred to as “LTS”, i.e. the stability of the LC mixture to individual components spontaneously crystallising out and/or the liquid-crystal mixture converting into a smectic/crystalline phase state at low temperatures, vials containing 1 g of LC mixture are placed in storage at −20° C., and it is regularly checked whether the mixtures have crystallised out or converted into a smectic phase state.

EXAMPLE 1

An LC mixture according to the invention comprising a compound of the formula I (PGQU-3-F) is formulated as follows:

CC-3-V33.00%Clearing point [° C.]:80.0
PGQU-3-F14.00%Δn [589 nm, 20° C.]:0.1295
PGU-3-F7.00%Δε [kHz, 20° C.]:+16.8
CCP-V-110.00%γ1 [mPa · s, 20° C.]:98
CCP-3-11.50%V10 [V]:1.11
CCQU-3-F4.00%HR (initial):97.7%
PGUQU-3-F4.50%HR (1 h UV):71.9%
PGUQU-4-F9.00%
PGUQU-5-F9.00%
DPGU-4-F8.00%

EXAMPLE 2

An LC mixture according to the invention comprising a compound of the formula I (PGQU-3-F) is formulated as follows:

CC-3-V28.00%Clearing point [° C.]:79.0
PGQU-3-F17.00%Δn [589 nm, 20° C.]:0.1295
PGU-3-F10.00%Δε [kHz, 20° C.]:+16.3
CCP-V-19.00%γ1 [mPa · s, 20° C.]:104
CCP-3-15.00%V10 [V]:1.10
CCQU-3-F4.00%LTS [h]:1000
APUQU-3-F3.00%HR (initial):98.0%
PGUQU-3-F4.00%HR (1 h UV):72.6%
PGUQU-4-F8.00%
PGUQU-5-F8.00%
CCGU-3-F4.00%

EXAMPLE 3

An LC mixture according to the invention comprising a compound of the formula I (PGQU-3-F) is formulated as follows:

PGQU-3-F7.50%Clearing point [° C.]:80.0
CC-3-V50.50%Δn [589 nm, 20° C.]:0.1284
PGUQU-3-F6.00%Δε [kHz, 20° C.]:+6.5
PGP-2-2V17.00%γ1 [mPa · s, 20° C.]:62
PGP-2-55.00%V10 [V]:
CPGU-3-OT7.00%HR (initial):99.3%
APUQU-3-F7.00%HR (1 h UV):92.9%