Title:
ROTARY VALVE
United States Patent 3650295
Abstract:
A rotary valve including a housing having a chamber within which rotates a sleeve having at least one port for intermittent communication with a discharge port in the chamber, and a second sleeve within the first having a port adapted for communication with the port in the outer sleeve, the second sleeve being adjustable in its rotational position to control cutoff. An adjustable ported sleeve may be provided outside the rotor sleeve for controlling the timing.


Inventors:
SMITH RICHARD J
Application Number:
05/031815
Publication Date:
03/21/1972
Filing Date:
04/20/1970
Assignee:
RICHARD J. SMITH
Primary Class:
Other Classes:
137/624.15, 137/625.15, 137/625.24
International Classes:
F16K11/20; (IPC1-7): F16K11/20
Field of Search:
137/625
View Patent Images:
US Patent References:
3316846Regulating system1967-05-02Bender
1647561Rotary distributing valve and valve gearing for steam and other fluidpressure engines1927-11-01Coward
1579296Rotary-valve distributing device for compressed-air and like engines1926-04-06Francois
1056339N/A1913-03-18Johnson
0676179N/A1901-06-11
0309849N/A1884-12-30
Primary Examiner:
Rothberg, Samuel B.
Assistant Examiner:
Wright, William H.
Parent Case Data:


REFERENCE TO RELATED APPLICATION:

This a continuation of my copending patent application Ser. No. 677,223, filed Oct. 23, 1967, for Rotary Valve, now abandoned.
Claims:
I claim

1. A rotary valve comprising

2. A device as recited in claim 1 in which said port means in said second annular member is of fixed dimension circumferentially.

3. A device as recited in claim 2 in which said aperture in said first annular member is of a greater dimension circumferentially than is the corresponding dimension of said port means in said second annular member.

4. A device as recited in claim 1 in which said means for adjusting the angular position of said port means in said second annular member relative to said port means in said body includes means for moving said second annular member angularly about its axis relative to said body.

5. A device as recited in claim 1 including in addition

6. A device as recited in claim 1 in which

7. A device as recited in claim 1 in which

8. A device as recited in claim 1 in which

9. A rotary valve comprising

10. A device as recited in claim 9 in which

11. A rotary valve comprising

Description:
BACKGROUND OF THE INVENTION:

1. The Field of the Invention

This invention relates to a rotary valve for an engine or fluid motor.

2. The Prior Art

For certain types of pressure-operated engines or motors, it is desirable to vary the cutoff point of the admission of the pressurized fluid into the cylinder. For example, in a steam engine under certain heavy load conditions the steam will be admitted during a major part of the stroke of the piston. Under lighter loads steam is conserved by providing a short cutoff, allowing the steam to enter the cylinder only during a small portion of the stroke of the piston. Conventionally, somewhat complex linkages have been provided for changing the cutoff of a steam engine. However, they have allowed variation of the cutoff only through a narrow range. Moreover, at short cutoffs, the steam flow has been restricted so that wire drawing becomes a severe problem. While it is recognized that a control of the timing of the engine as well as the cutoff is desirable, previous valve mechanisms have been incapable of achieving a timing control function.

SUMMARY OF THE INVENTION:

The present invention provides a simple yet versatile valve arrangement overcoming the difficulties of the prior art. It allows infinite variation of the cutoff, while maintaining large port areas and avoiding wire drawing. The valve includes a cylindrical chamber having a discharge port leading to the cylinder. Two concentric sleeves are located within the chamber. The outer sleeve is a rotor having a relatively long port that communicates with the chamber discharge port as the outer sleeve turns. The inner sleeve includes a smaller port that communicates with the port in the outer sleeve as the latter rotates. Steam is admitted into the center of the inner sleeve, passing through its port into that of the rotor sleeve and thence to the port in the chamber that conducts it to the cylinder. The cutoff is controlled by positioning the inner sleeve such that its port is rotationally either relatively close to the port in the chamber or spaced from it. The latter condition results in a short cutoff as the port of the rotor sleeve is opened to the port in the inner sleeve and the port in the chamber during only a brief period in its rotational cycle. When the port of the inner sleeve is positioned adjacent the port in the chamber, there is a long cutoff as all three ports are in registry during a greater period.

The sleeves normally include additional ports for reverse of the engine, which may take place instantaneously as the inner sleeve is turned appropriately to provide communication through the reverse ports to the engine. The valve may be ported, also, to supply more than one cylinder. When two diametrically opposite outlet ports are included in the valve for supplying the cylinders, the valve becomes fully balanced.

An additional sleeve may be provided between the rotor sleeve and the housing. This further sleeve also includes a port and may be turned to vary the position at which the ports in all of the sleeves are in communication. In this manner, the timing of the engine is controlled.

An object of this invention is to provide an improved rotary valve for an engine or motor.

Another object of this invention is to provide a valve providing an infinitely variable cutoff for an engine or motor.

A further object of this invention is to provide a valve having large port areas at all cutoffs, resulting in smooth running of the engine or motor without wire drawing.

An additional object of this invention is to provide a valve that can produce an instantaneous shift to reverse operation of the engine or motor.

A still further object of this invention is to provide a valve that incorporates a timing control.

Yet another object of this invention is to provide a balanced rotary valve.

These and other objects will become apparent from the following detailed description taken in connection with the accompanying drawing.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 is a perspective view of the valve device of this invention;

FIG. 2 is an enlarged longitudinal sectional view taken along line 2--2 of FIG. 1;

FIG. 3 is an exploded perspective view of the inner and outer sleeves of the valve mechanism;

FIG. 4 is a transverse sectional view taken along line 4--4 of FIG. 2 showing the ports positioned for forward operation and a long cutoff;

FIG. 5 is a view similar to FIG. 4 but with the inner sleeve adjusted to provide a short cutoff;

FIG. 6 is a transverse sectional view taken along line 6--6 of FIG. 2 illustrating the reversing ports;

FIG. 7 is a view similar to FIG. 6 with the reversing ports in an operative position;

FIG. 8 is a transverse sectional view of a modified form of the invention for providing two power impulses per rotation, the ports for forward operation being shown;

FIG. 9 is a view similar to FIG. 8 showing the reversing ports;

FIG. 10 is a transverse sectional view of an embodiment of the valve for supplying two cylinders simultaneously, the ports for forward operation being shown;

FIG. 11 is a view similar to FIG. 10 illustrating the reversing ports in operation;

FIG. 12 is a transverse sectional view of a modified form of the invention incorporating a rotor for controlling the timing of the engine, the ports for forward operation being shown; and

FIG. 13 is a view similar to FIG. 12 showing the reversing ports in an operative position.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

With reference to FIGS. 1, 2 and 3 of the drawing, the valve arrangement of this invention is shown constructed for use with a four-cylinder uniflow steam engine. Therefore, the valve housing 10 is provided with outlets 11, 12, 13 and 14 for connection with the individual cylinders of the engine. The fitting 15 provides the inlet for the steam that is distributed to the engine by the valve mechanism. The valve is actuated through rotation of a shaft 16 that extends from one end of the valve housing 10 and is turned by the engine.

The interior of the valve housing 10 is provided with a cylindrical bore 18, within which is complementarily received an outer sleeve 19. An inner sleeve 20 is complementary along its outer surface with the interior of the sleeve 19, and is concentric with the bore 18 and the sleeve 19.

The outer sleeve 19 is a rotor that is turned by the shaft 16 which is driven by the engine. The connection to the shaft 16 is made through an intermediate shaft 21 that extends through a packing 22 in an end plug 23 threaded into the interior of the valve housing 10 to form a wall at one end of the bore 18. At its inner end, an enlarged portion 24 of the shaft 21 is connected by a cross pin 25 to the sleeve 19. Similarly, a pin 26 connects the shaft 21 to the drive shaft 16. Therefore, as the engine rotates, the outer sleeve 19 is caused to rotate within the bore 18.

The inner sleeve 20 does not rotate with the engine, but may be turned manually to adjust the cutoff. This movement of the sleeve 20 is accomplished by a shaft 28 to which is attached a handle 29 or other suitable rotating means. The shaft 28 passes through a packing 30 in a member 31 threaded into the valve housing 10 to close off the end of the bore 18. Inside the housing a pin 32 connects the shaft 28 to the inner sleeve 20.

The steam outlet fittings 11, 12, 13 and 14 extend into passageways 34, 35, 36, and 37 within the valve housing 10. Each of these, in turn, connects to two passageways that connect to the bore 18. In the design illustrated, the passageways 38, 39, 40 and 41 to the left in FIG. 2 are used during forward operation of the engine. The other ports 42, 43, 44 and 45 are for reverse rotation of the engine.

The outer sleeve 19 also is ported both for forward and for reverse operation of the engine. The ports 47, 48, 49 and 50 located to the left in each set, as shown in FIG. 3, are the forward ports and intermittently communicate with the ports 38, 39, 40 and 41 in the valve housing 10 as the sleeve 19 is rotated. The other ports 51, 52, 53 and 54 provide communication through the valve housing ports 42, 43, 44 and 45 when the engine is being operated in the reverse direction.

The inner sleeve 20 includes ports 56, 57, 58 and 59 through its wall, which are positioned axially of the valve to register with the ports 47, 48, 49 and 50 in the outer sleeve 19 when the engine is driven forwardly. The ports 47, 48, 49 and 50 are staggered rotationally around the sleeve 19, inasmuch as they deliver steam to the cylinders and thereby provide for actuation of different pistons at different times. The ports 56, 57, 58 and 59, however, are aligned in the longitudinal direction rather than being at different rotational positions, and positioned to align with the respective ports 38, 39, 40 and 41 in the valve housing 10.

In addition, for cooperating with the outlet ports of the sleeve 19 and the valve housing 10, the inner sleeve 20 is provided with four ports 60, 61, 62 and 63. The ports 60, 61, 62 and 63 are similar to the ports for forward operation.

Steam for operating the engine enters through the fitting 15, being discharged through passageway 65 and port 66 into an annulus 67 around the inner sleeve 20 and adjacent the end of the outer sleeve 19 (see FIG. 2). The sleeve 20 includes a pair of inlet ports 68 through its circumferential wall which receive the steam and transmit it through the bore 69 of the sleeve 20. From there, it is distributed by the ports of the sleeves in the valve housing to the cylinders of the engine.

For a long cutoff, the inner sleeve 20 is turned by the handle 29 to the position of FIG. 4. In this location, the port 56 of the inner sleeve 20 is adjacent the discharge port 38 in the valve housing 10. Similarly, the ports 57, 58 and 59 of the inner sleeve 20 then will be in general alignment with the valve housing ports 39, 40 and 41. As the outer sleeve 19 is rotated by the engine, in a clockwise direction as the engine is viewed in FIG. 4, steam may be transmitted from the bore 69 of the sleeve 20 into the outlet port 38 as soon as the leading edge 70 of the port 47 passes the edge 71 of the port 56 in the inner sleeve 20. At this time, the leading edge 70 of the rotor sleeve 19 already has passed the leading edge 72 of the chamber discharge port 38, so that an uninterrupted passage is established from the bore 69 of the sleeve 20 to the outlet port 38. The steam will continue to flow into the cylinder through the ports 56, 47 and 38 until the trailing edge 73 of the port 47 passes the edge 74 of the port 56. Thus, the entire length of the port 47 is used in transmitting steam to the cylinder, resulting in a very long cutoff.

For a short cutoff, the inner sleeve 20 is moved in the counterclockwise direction from the position shown in FIG. 4 to that of FIG. 5. There, instead of being opposite the port 38 in the valve housing 10, the port 56 is advanced more than 45° ahead of the port 38. Then, when the rotor sleeve 19 is turned by the engine, no steam will be transmitted to the cylinder when the leading edge 70 of the port 47 first passes the edge 71 of the port 56, because at that time there is no communication with the outlet port 38 in the valve housing 10. Instead, the leading edge 70 of the port 47 must reach the edge 72 of the outlet port 38 before steam can enter the cylinder. Almost immediately, however, upon this occurrence, the trailing edge 73 of the port 47 passes the edge 74 of the port 56 in the inner sleeve 20. As this takes place, the connection between the center of the inner sleeve 20 and the outlet port 38 is broken so that steam no longer can be conducted to the cylinder. As a result, there is a very early cutoff.

An infinite range of cutoffs can be obtained through appropriate positioning of the inner sleeve 20. It may be very short or allow steam for the full stroke of the piston in the cylinder. Any cutoff in between the extremes can be achieved simply by rotating the inner sleeve 20 the appropriate amount to position it so that the cutoff will take place when desired.

When the valve is positioned for forward rotation of the engine, the reversing ports 60, 61, 62 and 63 of the inner sleeve 20 are so located that there is no access from them to the engine. Thus, as seen in FIG. 6, the port 60 of the sleeve 20 is remote from the port 42 of the valve housing 10 so that, as the port 51 of the outer sleeve 19 rotates past it, the steam is blocked by the periphery of the bore 18 and does not affect the engine performance. For reverse operation, however, the inner sleeve 20 is positioned so that the ports 60, 61, 62 and 63 are in an operative location, such as illustrated in FIG. 7. There it may be seen that the port 60 of the sleeve 20 is located so that it will cooperate with the port 51 of the outer sleeve 19 and conduct steam at the proper times to the engine connected to the port 42 for accomplishing reverse operation. The forward ports 56, 57, 58 and 59, of course, are located remote from the steam outlets when the reverse position is in use, so that only the reverse ports are in operation at that time. Reversal of the engine is accomplished smoothly and very rapidly by merely shifting the inner sleeve 20 to bring the reversing ports into action.

In the embodiment of FIGS. 8 and 9, the valve is arranged to provide two power impulses to the cylinder per revolution of the rotor sleeve 19. Thus, the outer sleeve 78 has a pair of diametrically opposed ports 79 and 80 for discharging steam into the outlet port 38 of the valve housing 10 during forward operation of the engine. A single port 81 is provided in the inner sleeve 82 for varying the cutoff during forward operation. As before, there will be a long cutoff when the port 81 is adjacent the outlet port 38 of the valve housing, while a short cutoff occurs when the port 81 is positioned away from the outlet passageway 38.

In the arrangement of FIGS. 8 and 9, the reversing ports are similar to those provided for forward operation. Thus, there are reversing ports 84 and 85 in the outer sleeve 78 and a single reversing cutoff port 86 in the inner sleeve 82. Operation in the reverse direction is the same as that in the forward direction, and reversing is accomplished instantaneously by appropriately positioning the inner sleeve 82. The reversing cutoff port 86 is opposite from the port 81 in the sleeve 82 used for the variable cutoff in the forward operation of the engine.

The valve may be used for discharging steam simultaneously into two cylinders when constructed as shown in FIGS. 10 and 11. In this event, the valve is fully balanced, while it is semibalanced in the arrangements previously described. In the design of FIGS. 10 and 11, the valve housing 87 has a duality of opposed outlet passages 88 and 89, which conduct the steam to two different cylinders of the engine. The outer sleeve 90 is similar to the sleeve 78 of the embodiment of FIGS. 8 and 9, having diametrically opposite outlet ports 91 and 92 used to conduct the fluid during forward operation of the engine. The inner sleeve 93 has a pair of diametrically opposite cutoff ports 94 and 95 that cooperate with the discharge ports 91 and 92. Rotation of the inner sleeve 93 simultaneously positions the ports 94 and 95 equal distances from their respective outlet passages 88 and 89. Thus, cutoff is controlled equally for both cylinders of the engine and the cutoff variation occurs at the same time as the inner sleeve is adjusted.

FIG. 11 represents a section taken through the reversing portion of the valve which is in effect identical to the construction for forward operation. Thus, the outer sleeve 90 has a pair of discharge ports 96 and 97 for conducting the fluid to the outlet passage 98 and 99 used in reverse operation of the engine. Cutoff during reverse is controlled by opposed ports 100 and 101 in the inner sleeve 92.

In the embodiment of FIGS. 12 and 13, an additional sleeve is included which has the effect of allowing an adjustment in the timing of the engine as well as permitting a variation in its cutoff. The device shown is a double-acting valve which discharges simultaneously into two outlet passages, but the valve could be with a single outlet as well while incorporating the timing adjustment function. Moreover, the timing adjustment may be used alone without the added ability to vary the cutoff. In that event, the inner sleeve with the cutoff ports is omitted.

The rotor sleeve in the valve housing 103 may be the identical rotor sleeve 90 used in the embodiment of FIGS. 10 and 11. Similarly, the inner adjustable cutoff sleeve 93 may be the same as that in the embodiment of FIGS. 10 and 11. In addition to these sleeves, there is provided an outer adjustable sleeve 104 for controlling the timing of the engine. The sleeve 104 is adjustable in its rotational position about its axis similarly to the adjustment provided for the inner cutoff sleeve 93. The outer sleeve 104 includes diametrically opposite outlet ports 105 and 106 that cooperate with the discharge passageways 107 and 108 in the valve housing 103 during forward operation of the engine.

As the rotor sleeve 90 turns within the outer sleeve 104, its port 91 ultimately communicates with the port 105 adjacent the outlet passageway 107. Similarly, the port 92 of the rotor sleeve simultaneously will communicate with the port 106 of the outer sleeve 104. When this occurs, there is an opening through the outer sleeve 104 into the outlet passageway 107 and also into the outlet passageway 108. This communication will not take place, however, until there is an overlapping of the port 92 with port 106. Thus, until the leading edge 109 of the port 91 passes the edge 110 of the port 105, steam cannot flow into the outlet passageway 107. Also, the leading edge 111 of the port 92 must cross the edge 112 of the port 106 to permit the fluid to enter the outlet passageway 108.

The timing of the engine is varied by controlling the rotational position of the outer sleeve 104. Thus, if the sleeve 104 is moved in a counterclockwise direction from that illustrated in FIG. 12, the edge 110 is advanced in the rotational cycle of the valve mechanism. Therefore, the leading edge 109 of the port 91 will pass the edge 110 of the port 105 sooner as the rotor sleeve 90 turns. Also, the edge 111 of the port 92 will be moved past the edge 112 of the port 106 at an earlier point in the rotation of the sleeve 90. The effect, therefore, is to advance the time at which the fluid is introduced into the outlet passages 107 and 108 and, in turn, transmitted to the cylinders. Thus, the timing is advanced by turning the outer sleeve 105 counterclockwise as the device is illustrated and retarded by moving it clockwise to delay the time in which the fluid will enter the discharge passageways.

FIG. 13 illustrates the reverse arrangement of the valve mechanism, with the porting being similar to that for the forward operation and similar considerations of advancement and retardation of the power impulse holding true. The outer sleeve 104 includes ports 114 and 115 used during reverse operation of the engine, permitting the operating fluid to discharge into the passageways 116 and 117 in the valve housing 103. Again, the timing of the engine is controlled readily by merely varying the rotational position of the outer sleeve 104.

The device of this invention is not limited to use as a valve controlling directly the flow of fluid. It can serve also as a remote device for generating a signal to be utilized by a servo arrangement. The valve may be, for example, in a hydraulic system where separate poppet valves are operated by pulses produced by the operation of the rotary valve. The separate valves, in turn, are used in controlling the flow of steam or other fluid in a different system. The device also is adapted for use relative to radiant energy, electricity or magnetic flux. It can serve as a means to chop a source of light in a programmed manner to produce signals used in a control arrangement. In such a design, a source of radiant energy may be positioned inside the inner sleeve, while a photoelectric cell is located opposite the outlet port of the valve housing. The time and duration of the receipt of the energy by the photoelectric cell is governed by the action of the sleeves within the housing, as the radiant energy will be permitted to strike the cell only when the various ports are in proper alignment.

The foregoing detailed description is to be clearly understood as given by way of illustration and example only, the spirit and scope of this invention being limited solely by the appended claims.