Title:
Sampling valve
United States Patent 2041694


Abstract:
The invention described herein may be manufactured and used by or for the Government for governmental purposes, without the payment to me of any royalty thereon. The principal object of the invention is to provide a mechanism whereby a valve may be opened for a very short and consistent period...



Inventors:
Buckley, Edmond C.
Application Number:
US71760134A
Publication Date:
05/26/1936
Filing Date:
03/27/1934
Assignee:
Buckley, Edmond C.
Primary Class:
Other Classes:
73/863.11, 73/863.86, 251/114
International Classes:
F16K31/524
View Patent Images:



Description:

The invention described herein may be manufactured and used by or for the Government for governmental purposes, without the payment to me of any royalty thereon.

The principal object of the invention is to provide a mechanism whereby a valve may be opened for a very short and consistent period of time, the amount of lift being large considering the extremely short period. Among the various uses of such a device are: sampling the contents of the cylinder of an internal-combustion engine at some particular phase-point; indicating, at some particular phase-point, a pressure which has a cyclic variation as in an engine cylinder; injecting fuel into an engine cylinder. To sample accurately the cylinder contents or indicate accurately the pressure at some particular phasepoint requires a device with as short an open period as may be conveniently used.

The device is designed to possess advantages over previous similar machines in having no connecting passage between the cylinder and the valve as the valve opens directly into the cylinder.

It has an accurate and consistent open period and latitude of adjustment thereof from 0.001 second to no opening at all. There is a minimum of variation in phasing as the possibility of any effect of inconsistencies in operation has been reduced to a minimum. The valve has a large value of stem lift considering the extreme shortness of the period. The valve when open has a high orifice coefficient. The internal volume of the valve has been reduced to a very small quantity.

A gas-tight seal is incorporated which prevents any error because of leakage. In the valve are incorporated provisions for fluid cooling and for electrical indication of the time and amount of opening.

With these objects in view, the invention consists of the devices described and set forth in the claims and the equivalents thereof.

In general, the device operates by storing potential energy, utilizing the potential energy at the desired time to set a mass in motion and depending upon the impact of the moving mass on the valve stem to open the valve very quickly against the action of a restoring mechanism, which decelerates the valve stem and quickly restores it to its seat.

Figure 1 is a longitudinal sectional view through a valve of the class described. Figure 2 is a cross-section through the valve taken along the line I-I of Figure 1.

Referring to Figure 1, the cam I is mounted on shaft 16. Rocker arm 3 is pivotally mounted on casing IT by means of shaft 18. Cam follower 2 is adjustably mounted on rocker arm or hammer 3 and is adapted to abut against periphery of cam I. Shims 32 located between the cam follower 2 and the rocker arm 3, allow for the adjustment of the amount of movement of the rocker arm 3 and therefore the amount of compression of spring 10. Support 23 is mounted in the housing 7 and is adapted to support the end of spring 10. The other end of spring 10 abuts against spring retainer 24 which in turn is adapted to abut rocker arm 3 and by this means follower 2 is normally held in contact with cam I.

The casing ! is separably connected with the upper end of housing 7 by a coupling nut 34. Diaphragm 8, which is a flexible annular disk, is clamped at its outer edge to shoulder 35 of the housing 7, by means of nut 31 and forms a gastight seal with the housing. Valve stem 5 passes through the hole in the diaphragm 8 and is clamped by means of collar 36 and nut 19 to the diaphragm, forming a gas-tight seal with the diaphragm. The diaphragm 8 is sufficiently flexible to allow a limited movement of the valve stem 5. The valve stem 5 is provided at its lower end with a conical seat 6 adapted to seat on mating surface 20 located in the housing 7. The upper end of the valve stem 5 passes through opening 21 in the rocker arm 3 and is threaded to receive adjustable anvil 4 which is adapted to be abutted by the rocker arm. Lock nut 33 also screws on the top of valve stem 5 and locks anvil 4 in the desired position relative to rocker arm 3. The position of anvil 4 is so adjusted on the valve stem 5 and the length of spring 10 so apportioned, that the resilient element 11 acts only against the inertia of the moving parts in restoring the valve stem to its seat. Resilient element II is located in the housing 7 between nut 22, which is adjustably mounted in the housing 7, and nut 19 on the valve stem 5, and provides a means for returning the valve stem to its normal seated position and holding it thereon. Nut 22 provides a means for adjusting the initial compression of the resilient element 11. Eccentric lever 13 is pivotally mounted in casing 17 and provided with an edge 30 adapted to abut against the surface of rocker arm 3. The dimensions of the eccentric lever 13 are so apportioned that when said eccentric lever is rotated through an angle of 90° in the direction shown in Figure 1, the rocker arm 3 is depressed, moving the cam follower 2 clear of the periphery of cam I.

Insulating sleeve 25 is rigidly mounted in the casing 17. Lug 12 is adjustably mounted in the insulating sleeve 25 and provides an adjustable means for limiting the movement of the valve stem 5. The lug 12 also provides an electrical contact for indicating the time and amount of lifting of the valve stem 5.

Port 9 in the housing 1 communicates with the valve seat 6 by means of passage 26 and provides for the passage of fluid at any time that the valve stem 5 is lifted. Referring to Figures 1 and 2, ports 27 and 28 communicate with the annular passage 29 and provide a means for fluid cooling of the housing 1.

The device operates in the following manner: Cam I is rotated in the direction shown in Figure 1 and by means of its bearing on cam follower 2, depresses rocker arm 3 against the action of spring 10. When point 14 on the cam I passes point 15 on the cam follower 2, the rocker arm 3 is released and is set in motion by spring 10. Rocker arm 3 continues to move until impact with anvil 4, which causes a displacement of the valve stem 5 against the action of resilient element 11. In this manner the valve stem 5 is very quickly lifted off its seat leaving a clearance space between surface 6 on the valve stem 5 and surface 20 on the casing 7. Resilient element II quickly returns the valve stem 5 to its seated position. If desired, adjustable lug 12 can be used to limit the maximum movement of the valve stem 5. Port 9 in the casing 7 provides for the passage of the fluid through the annular space 26 and through the space between 6 and 20 when the valve stem 5 is lifted.

The action of the valve can be stopped by rotating eccentric 13 through an angle of 900 in the direction shown by the arrow in Figure 1, in which position its lower edge 30 abuts the rocker arm, depressing the rocker arm until there is no contact at any time between the cam follower 2 and the cam I.

For purposes of description, I have confined myself to the mechanism shown in the drawing, but it will be understood that many modifications in details of construction and arrangement of parts may be made without departing from the spirit of my invention.

I claim: 1. In a device of the class described, a movable valve stem, provided with an anvil and a means for periodically actuating said valve stem comprising a resilient means for normally holding the valve stem in its closed position, a movable hammer slidable on said valve stem and movable about a fixed axis at one end for impact with the anvil and a means for periodically impelling said hammer into impact with said anvil.

2. In a device of the class described, a movable valve stem provided with an anvil, a movable hammer slidable on said valve stem and movable about a fixed axis at one end for impact with said anvil, actuating mechanism comprising a means for storing potential energy and at a prescribed time releasing said potential energy for impelling the hammer into impact with the anvil whereby displacing the valve stem, and resilient means for returning the valve stem to its original position, the said anvil being so positioned on the valve stem and the actuating mechanism being so apportioned that the valve stem returning-means acts only against the inertia of the moving parts in returning the valve stem to its original position.

3. In a device of the class described, a movable valve stem, an adjustable anvil on said valve stem, a movable hammer slidable on said valve stem and movable about a fixed axis at one end for impact with said anvil, cyclic actuating mechanism comprising a means for storing and at prescribed times releasing potential energy for periodically impelling the hammer into impact with the anvil whereby displacing the valve stem, and resilient means for returning the valve stem to its original position, the position of the said anvil on the valve stem being so adjusted relative to the hammer and the strength of the said cyclic actuating mechanism being so apportioned that the valve stem returning-means acts only against the inertia of the moving parts.

4. In a device of the class described, a movable valve stem provided with an anvil and a means for periodically actuating said valve stem comprising a resilient means for normally holding the valve stem in its closed position, a movable hammer slidable on said valve stem and movable about a fixed axis at one end for impact with the anvil, a resilient element normally in contact with the hammer, and cyclic means for successively depressing the hammer against the action of the resilient element and suddenly releasing said hammer into impact with said anvil.

5. In a device of the class described, a movable valve stem provided with an anvil, a movable hammer slidable on said valve stem and movable about a fixed axis at one end for impact with said anvil, a resilient element normally in contact with said hammer, means for successively depressing the hammer against the action of the resilient element and suddenly releasing said hammer into impact with said anvil, and resilient means for restoring the valve stem to its original position.

6. In a device of the class described, a movable valve stem provided with an adjustable anvil, a movable hammer slidable on said valve stem and movable about a fixed axis at one end for impact with said anvil, a resilient element normally in contact with said hammer, means for adjusting the tension in said resilient element, means for successively depressing the hammer against the action of the resilient element, and suddenly releasing said hammer into impact with said anvil, and resilient means for returning the valve stem to its original position, the position of the said anvil on the valve stem being so adjusted relative to the hammer and the tension of the said resilient element being so apportioned that the valve stem returning means acts only against the inertia of the moving parts.

7. In a device of the class described, a housing, an orifice in the housing provided with a seat, a valve stem slidable in the housing and provided with an anvil, a flexible diaphragm fastened at 50 its central portion to the valve stem and at its outer portion to the housing, said housing, valve stem, and diaphragm combining to form a chamber of high surface-to-volume ratio, a port communicating with said chamber, a passage substantially surrounding said chamber for the flow of cooling fluid, resilient means for normally holding the valve stem in abutment with the seat, means for periodically lifting the valve stem from said seat comprising a hammer movably mounted in the housing and disposed to abut the anvil, a resilient element in contact with said hammer, and a means for successively depressing the hammer against the action of the resilient element and suddenly releasing the hammer into impact with the anvil.

8. In a device of the class described, a housing, a valve stem slidable in said housing, a flexible diaphragm fastened at its central portion to the valve stem and at its outer portion to the housing, said housing, valve stem, and diaphragm combining to form an annular chamber of extremely high surface to low volume ratio, and said housing having a passage therein substantially surrounding said chamber for the flow of cooling fluid, a movable hammer adapted to abut against said anvil, means for impelling said hammer into impact with the anvil whereby displacing said valve stem, and resilient means for returning the valve stem to its original position.

9. In a device of the class described, a housing, a valve stem provided with an anvil, a movable hammer adapted to abut against said anvil, a resilient element normally in contact with said hammer, a cam follower mounted on said hammer, a spiral quick-drop cam co-acting with said cam follower for successively depressing the hammer against the action of the resilient element and suddenly releasing said hammer into impact with said anvil, and resilient means for returning the valve stem to its original position, a flexible diaphragm fastened at its central portion to the valve stem and at its outer portion to the housing, said housing valve stem and diaphragm combining to form a chamber of high surface to volume ratio, a passage in the housing substantially surrounding the said chamber for the flow of cooling fluid.

10. In a device of the class described, a movable valve stem provided at its upper end with an anvil, a movable hammer encircling the valve stem below the anvil and slidable on the valve stem to abut against said anvil, a resilient element normally in contact with said hammer, a cam follower mounted on said hammer, a spiral quick-drop cam coacting with said cam follower for successively depressing the hammer on the valve stem and away from the anvil against the action of the resilient element and suddenly releasing the hammer for quick upward movement along the valve stem and into impact with said anvil, and resilient means for returning the valve stem to its original position.

11. In a valve mechanism, a tubular body having a port at one end, a valve in the body having a stem, an anvil on the valve stem, a flexible disk secured to the valve stem and to the tubular body inwardly of the said port and anvil to provide a seal, a rocker arm loosely encircling the stem inwardly of the anvil and pivotally mounted on the body to turn about an axis for movement along the stem into and out of impact with the anvil, a pair of elastic elements encircling the stem between the seal and the rocker arm, one of the elastic elements pressing at one end against the body and at the other end against the stem to normally maintain the valve seated over the port and the other elastic element bearing at one end against the body and at the other end against the rocker arm to normally hold the latter against the anvil, and automatic means for successively depressing the arm against the resistance of the elastic holding element and suddenly releasing the arm for impact with the anvil.

12. A valve mechanism including a tubular body having a valve port at one end thereof, a stem valve extending longitudinally of the body and normally seated at one end over the port and having an abutment-forming element on its opposite end, a flexible disk fastened to both the stem valve and the body inwardly of the opposite ends thereof to provide a seal, a rocker arm loosely encircling the stem valve adjacent to and inwardly of the said abutment-forming element and pivotally mounted on the said body to turn about an axis for movement along the stem into and away from impact with said element, and separate and independently acting elastic tension devices encircling the stem valve inwardly of the said seal and rocker arm and arranged so that each of said tension devices has one end thereof stationary with respect to the housing and the other end movable relative to the housing, the movable end of one tension device being in abutment with the rocker arm and the movable end of the other tension device being in abutment with the stem valve. 39 13. In a device of the class described, a valve housing having a valve port, a valve, elastic valveclosing means engaging and maintaining the said valve normally seated over the valve port, a stem on the valve, an abutment forming element ad- C5 jacent the outer end of the valve stem, a movable mass mounted loosely on the valve stem inwardly of the abutment-forming element, a support member to which the said mass is pivotally connected to turn about an axis for movement along the valve into and away from impact with the abutment-forming element, an elastic tension device engaged with the mass to yieldably thrust the latter normally against the abutment-forming element, cyclic actuating mechanism for moving the mass against the tension device to compress the latter and suddenly releasing the mass for valve opening impact with the abutment-forming element of the valve stem, said mechanism including a quick drop cam rotatably mounted on the support member and a cam follower on the said mass, and a stop lever pivotally mounted on said support for rotation into a position in which one end of the lever abuts and holds the rocker arm depressed with the cam follower out of contact with the cam.

EDMOND C. BUCKLEY.